用户名: 密码: 验证码:
并联机器人轨迹规划中的运动误差补偿方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
运动精度是并联机器人最重要的性能指标之一,直接影响并联机器人的工作性能,是制约并联机器人进一步发展的瓶颈。因此,研究并联机器人运动误差补偿方法,提高并联机器人运动精度具有重要的理论和实际意义。本课题基于对并联机器人运动误差影响因素和运动误差补偿方法研究现状的综合分析,研究机构误差和柔性误差引起的并联机器人运动误差,分别建立相应的补偿模型,进一步提出并联机器人轨迹规划中的运动误差综合补偿方法,提高并联机器人运动精度。具体研究工作如下:
     首先,基于闭环矢量法建立并联机器人机构误差模型,通过机构误差仿真分析,获得并联机器人机构误差变化规律;基于有限元理论和Lagrange方程建立并联机器人柔性误差模型,构建柔性误差熵模型从能量角度定量描述并联机器人柔性误差,通过柔性误差仿真分析,获得并联机器人柔性误差变化规律。
     其次,分别研究并联机器人轨迹规划中的机构误差补偿方法和柔性误差补偿方法:基于并联机器人机构误差模型,提出基于改进粒子群算法的机构误差补偿方法,修正关节空间内驱动杆期望轨迹,进而补偿并联机器人机构误差;基于并联机器人柔性误差模型,设计基于柔性误差熵和群搜索算法的驱动杆轨迹优化方法,进而补偿并联机器人柔性误差;通过仿真分析,分别验证并联机器人轨迹规划中的机构误差补偿方法和柔性误差补偿方法的有效性。
     进一步,基于并联机器人机构误差补偿方法和柔性误差补偿方法,建立并联机器人轨迹规划中的机构误差和柔性误差综合补偿模型,并分析误差综合补偿过程中机构误差和柔性误差之间的耦合误差;研究并联机器人耦合误差补偿策略,提出并联机器人运动误差综合补偿方法,通过仿真分析,验证并联机器人运动误差综合补偿方法的有效性。
     最后,基于并联机床实验平台进行实验研究,进行并联机床机构误差和柔性误差建模与分析;基于所研究的并联机器人运动误差综合补偿方法,构建并联机床运动误差综合补偿模型,利用并联机床进行并联机器人运动误差补偿模拟实验,验证本文提出的并联机器人轨迹规划中的运动误差补偿方法的可行性和有效性。
The motion accuracy is one of the most important performance index of parallelrobot, which directly influences the working performance of parallel robot andrestricts the further development of parallel robot. In order to improve the motionaccuracy of parallel robot, it is essential in both theory aspect and practical aspect tostudy the compensation method for motion error. In this paper, based on thecomprehensive analysis on the research status of the influence factors andcompensation method for the motion accuracy, the mechanism error and the flexibleerror are taken into consideration and the corresponding compensation model isestablished respectively. Then a comprehensive compensation method for motion erroris proposed which can be implemented in trajectory planning process to improve themotion precision. The detail works are as follows:
     Firstly, the mechanism error model of parallel robot is established based on theclosed loop vector method, and variation rules of the mechanism error are obtained bythe simulation analysis. The flexible error model of parallel robot is established basedon the finite element theory and Lagrange equation, and the entropy model of flexibleerror is established to quantitatively describe comprehensive energy of flexible error.Then the simulation analysis of the flexible error is conducted to obtain the variationrules of the flexible error.
     Secondly, the compensation method for mechanism error and flexible errorimplemented in the trajectory planning process of parallel robot are researchedrespectively: Based on the mechanism error model of parallel robot, a mechanismerror compensation method based on the improved particle swarm optimizationalgorithm is proposed to correct the desired trajectory in joint space of drive rod.Meanwhile, according to the flexible error model of parallel robot, a trajectoryoptimization method for drive rod based on the flexible error entropy and groupsearching algorithm is designed to compensate the flexible error of parallel robot. Atlast, the simulation analysis is conducted respectively to verify the compensation methods for mechanism error and flexible error of parallel robot.
     Furthermore, a comprehensive error compensation model implemented intrajectory planning process of parallel robot is established based on the compensationmethod for mechanism error and flexible error. The coupling error of the mechanismerror and the flexible error produced in the comprehensive compensation model isanalysed and a compensation strategy for the coupling error is presented. The validityof the comprehensive compensation method for the motion error is demonstrated bysimulation analysis.
     Finally, the experimental work is carried out based on the parallel kinematicsmachine. The modeling of mechanism error and the flexible error are realized basedon the analysis of the parallel kinematics machine. Based on the proposedcompensation method, a comprehensive compensation model for motion error of theparallel kinematics machine is established. And the feasibility and effectiveness of themethod is validated by the simulating experiment conducted on the parallel kinematicsmachine.
引文
[1]黄真,孔令富,方跃法.并联机器人机构学理论与控制[M].北京:机械工业出版社,1997:1-11.
    [2]中华人民共和国科学技术部.国家中长期科学和技术发展规划纲要(2006-2020年). http://www.most.gov.cn/kjgh/index.htm.
    [3] Gursel Alici, Bijan Shirinzadeh. A systematic technique to estimate positioningerrors for robot accuracy improvement using laser interferometry basedsensing[J]. Mechanism and Machine Theory,2005,40:879-906.
    [4] Jian Yin,Yu Gao. Pose accuracy calibration of a serial five DOF robot[J]. EnergyProcedia,2012,14:977-982.
    [5] Genliang Chen, Hao Wang, Zhongqin Lin. Generalized kinematic mapping ofconstrained plane motions and its application to the accuracy analysis of generalplanar parallel robots[J]. Mechanism and Machine Theory,2012,50:29-47.
    [6] Ashraf Omran, Ayman Kassem. Optimal task space control design of a Stewartmanipulator for aircraft stall recovery[J]. Aerospace Science and Technology,2011,15:353-365.
    [7] Wu Dongsu, Gu Hongbin. Adaptive sliding control of six-DOF flight simulatormotion platform[J]. Chinese Journal of Aeronautics,2007,(20):425-433.
    [8] Abdul Wahid Khan, Chen Wuyi. Systematic geometric error modeling forworkspace volumetric calibration of a5-axis turbine blade grinding machine[J].Chinese Journal of Aeronautics,2010,23:604-615.
    [9] H.I. Krebs, J.Palazzolo, L.Dipietro, et al. Rehabilitation robotics:performance-based progressive robot-assisted therapy[J]. Autonomous Robots,2003,15(1):7-20.
    [10] Yung Ting, Hochin Jar, Chunchung Li. Measurement and calibration for Stewartmicromanipulation system[J]. Precision Engineering,2007,31:226-233.
    [11] A.H. Chebbi, Z. Affi, L. Romdhane. Prediction of the pose errors produced byjoints clearance for a3-UPU parallel robot[J]. Mechanism and Machine Theory,2009,44:1768-1783.
    [12] Yao Rui, Tang Xiaoqiang, LI Tiemin, et al. Error analysis and distribution of6-SPS and6-PSS reconfigurable parallel manipulators[J]. Tsinghua Science andTechnology,2010,15(5):547-554.
    [13] Alexander Yu, Ilian A. Bonev, Paul Zsombor. Murray. Geometric approach to theaccuracy analysis of a class of3-DOF planar parallel robots[J]. Mechanism andMachine Theory,2008,43:364-375.
    [14] Tuanjie Li, Yao Wang. Deployment dynamic analysis of deployable antennasconsidering thermal effect[J]. Aerospace Science and Technology,2009,13:210-215.
    [15] Wenfeng Hou, Xianmin Zhang. Dynamic analysis of flexible linkage mechanismsunder uniform temperature change[J]. Journal of Sound and Vibration,2009,319:570-592.
    [16] Francisco Ramos, Vicente Feliu. New online payload identification for flexiblerobots. Application to adaptive control[J]. Journal of Sound and Vibration,2008,315:34-57.
    [17] George Nikolakopoulos, Anthony Tzes. Application of adaptive lattice filters formodal parameter tracking of a single flexible link carrying a shifting payload[J].Mechanical Systems and Signal Processing,2010,24:1338-1348.
    [18] V.T. Portman, V.S. Chapsky, Y. Shneor. Workspace of parallel kinematicsmachines with minimum stiffness limits: Collinear stiffness value basedapproach[J]. Mechanism and Machine Theory,2012,49:67-86.
    [19] Parthajit Mukherjee, Bhaskar Dasgupta, A.K. Mallik. Dynamic stability index andvibration analysis of a flexible Stewart platform[J]. Journal of Sound andVibration,2007,307:495-512.
    [20] Chifu Yang, Qitao Huang, Hongzhou Jiang, O. Ogbobe Peter, Junwei Han. PDcontrol with gravity compensation for hydraulic6-DOF parallel manipulator[J].Mechanism and Machine Theory,2010,45:666-677.
    [21] Meysar Zeinali, Leila Notash. Adaptive sliding mode control with uncertaintyestimator for robot manipulators[J]. Mechanism and Machine Theory,2010,45:80-90.
    [22] Hongbo Guo, Yongguang Liu, Guirong Liu at al. Cascade control of ahydraulically driven6-DOF parallel robot manipulator based on a slidingmode[J]. Control Engineering Practice,2008,16:1055-1068.
    [23] Yangjun Pi, Xuanyin Wang. Trajectory tracking control of a6-DOF hydraulicparallel robot manipulator with uncertain load disturbances[J]. ControlEngineering Practice,2011,19:185-193.
    [24] A.Kumar, K.J Waldron. Numerical plotting of surfaces of positioning accuracy ofmanipulators[J]. Mechanism and Machine Theory,1981,16(14):361-368.
    [25] K. Suqimoto. Determination of joint velocities of robots by using screws[J].Journal of Mechanisms, Transmissions, and Automation in Design,1984,106(2):222-227.
    [26] Hongliang Cui, Zhenqi Zhu, Zhongxue Gan et al. Kinematic analysis and errormodeling of TAU parallel robot[J]. Robotics and Computer-IntegratedManufacturing,2005,21:497-505.
    [27] Sé bastien Briot, Ilian A. Bonev. Accuracy analysis of3T1R fully-parallelrobots[J]. Mechanism and Machine Theory,2010,45:695-706.
    [28]丁希仑,周乐来,周军.机器人的空间位姿误差分析方法[J].北京航空航天大学学报,2009,35(2):241-245.
    [29] S.M Wang. Error model and accuracy analysis of a Six-DOF Stewart platform[J].Manufacturing Science and Engineering,1995,2(1):519-530.
    [30]洪林.并联机器人精度分析与综合研究[D].天津:天津大学,2004:14-36.
    [31]李嘉,王纪武,陈恳等.基于广义几何误差模型的微机器人精度分析[J].机械工程学报,2000,36(8):20-24.
    [32]祃琳,黄田,王洋等.面向制造的并联机床精度设计[J].中国机械工程,1999,10(10):1114-1118.
    [33] P. L Broderick, R. J. Cipra. Method for determining and correcting robot positionand orientation errors due to manufacturing[J]. American Society of MechanicalEngineers,1986:86-87.
    [34] William K. Veitschegger, C.H. Wu. Robot calibration and compensation[C]. IEEEjournal of robotics and automation,1988,4(6):643-656.
    [35] Han. S. Kim, Y. J. Choi. Kinematic error bound analysis of the Stewart platform[J]. Journal of Robotic Systems,2000,17(1):63-73.
    [36] Y. Bai, D. Wang. Improve the robot calibration accuracy using a dynamic onlinefuzzy error mapping system [J]. IEEE Trans Syst Man Cybern Part B Cybern,2004,34(2):155-1160.
    [37] Wanghui Bu, Zhenyu Liu, Jianrong Tan, Shuming Gao. Detachment avoidance ofjoint elements of a robotic manipulator with clearances based on trajectoryplanning[J]. Mechanism and Machine Theory,2010,45:925-940.
    [38] M. Barati, A. R. Khoogar, M. Nasiriyan. Reduce positioning error for robotmanipulator with intelligent technique[J]. Advanced Materials Research,2012,403-408:697-705.
    [39] L. W. Wang, W. H. Chen, C. D. Wang. Position error research of four-leggedwalking robot’s swing leg [J]. Applied Mechanics and Materials,2012,163:29-33.
    [40] Denis Garagic, Krishnaswamy Srinivasan. Adaptive friction compensation forprecision machine tool drive[J]. Control Engineering Practice,2004,12:1451-1464.
    [41] Weiwei Shang, Shuang Cong, Yaoxin Zhang. Nonlinear friction compensation ofa2-DOF planar parallel manipulator[J]. Mechatronics,2008,18:340-346.
    [42] Santosha Kumar Dwivedy, Peter Eberhard. Dynamic analysis of flexiblemanipulators, a literature review[J]. Mechanism and Machine Theory,2006,41:749-777.
    [43] Laura Celentano, Alessandro Coppola. A computationally efficient method formodeling flexible robots based on the assumed modes method[J]. AppliedMathematics and Computation,2011,218(8):4483-4493.
    [44] Akira Abe. Trajectory planning for residual vibration suppression of a two-linkrigid-flexible manipulator considering large deformation[J]. Mechanism andMachine Theory,2009,44:1627-1639.
    [45] Mihai Dupac, David G. Beale. Dynamic analysis of a flexible linkage mechanismwith cracks and clearance[J]. Mechanism and Machine Theory,2010,45:1909-1923.
    [46] J.F. Deu, A.C. Galucio, R. Ohayon. Dynamic responses of flexible-linkmechanisms with passive/active damping treatment[J]. Computers and Structures,2008,86:258-265.
    [47] G. Piras, W.L. Cleghorn, J.K. Mills. Dynamic finite-element analysis of a planarhigh-speed, high-precision parallel manipulator with flexible links[J].Mechanism and Machine Theory,2005,40:849-862.
    [48] S.D. Yu, W.L. Cleghorn. Dynamic instability analysis of high-speed flexiblefour-bar mechanisms[J]. Mechanism and Machine Theory,2002,37:1261-1285.
    [49] Yuan Cheng, Gexue Ren, ShiLiang Dai. The multi-body system modelling of theGough–Stewart platform for vibration control[J]. Journal of Sound andVibration,2004,271:599-614.
    [50] Barun Pratiher, Santosha Kumar Dwivedy. Non-linear dynamics of a flexiblesingle link Cartesian manipulator[J]. International Journal of Non-LinearMechanics,2007,42:1062-1073.
    [51] Hassan Zohoor, Sayyid Mahdi Khorsandijou. Dynamic model of a flyingmanipulator with two highly flexible links[J]. Applied Mathematical Modelling,2008,32:2117-2132.
    [52] Yongan Huang, Zichen Deng, Youlun Xiong. High-order model and slide modecontrol for rotating flexible smart structure[J]. Mechanism and Machine Theory,2008,43:1038-1054.
    [53] E. Mirzaee, M.Eghtesad, S.A. Fazelzadeh. Maneuver control and active vibrationsuppression of a two-link flexible arm using a hybrid variablestructure/Lyapunov controldesign[J]. Acta Astronautica,2010,67:1218-1232.
    [54] Xiaoyun Wang, James K. Mills. Dynamic modeling of a flexible-link planarparallel platform using a substructuring approach[J]. Mechanism and MachineTheory,2006,41:671-687.
    [55]刘善增.三自由度空间柔性并联机器人动力学研究[D].北京:北京工业大学,2009:19-49.
    [56]杜兆才,余跃庆.5R柔性并联机器人系统运动微分方程[J].中国机械工程,2008,19(1):75-79.
    [57]刘善增,余跃庆,苏丽颖等.3-RRS柔性并联机器人的动力学建模与频率特性分析[J].中国机械工程,2008,19(10):1219-1224.
    [58]陈炜,余跃庆,张绪平等.欠驱动柔性机器人的动力学建模与耦合特性[J].机械工程学报,2006,42(6):16-23.
    [59]杜敬利,保宏,段宝岩.考虑柔索垂度影响的索牵引并联机器人跟踪控制[J].机械工程学报,2010,46(3):17-21.
    [60]訾斌,段宝岩,杜敬利.超大型天线馈源舱柔索支撑结构动力学分析与跟踪控制[J].控制理论与应用,2007,24(6):938-942.
    [61] Yuan Yun, Yangmin Li. A general dynamics and control model of a class ofmulti-DOF manipulators for active vibration control[J]. Mechanism andMachine Theory,2011,46:1549-1574.
    [62]章定国,周胜丰.柔性杆柔性铰机器人动力学分析[J].应用数学和力学,2006,27(5):615-623.
    [63]边宇枢,陆震.柔性机器人动力学建模的一种方法[J].北京航空航天大学学报,1999,25(4):486-490.
    [64] Shaochi Wang, Hiromitsu Hikita, Hiroshi Kubo, et al. Kinematics and dynamicsof a6Degree-of-Freedom fully parallel manipulator with elastic joints[J].Mechanism and Machine Theory,2003,38(5):439-461.
    [65] Ettore Pennestr, Pier Paolo Valentini, Domenico de Falco. An application of theUdwadia–Kalaba dynamic formulation to flexible multibody systems[J]. Journalof the Franklin Institute,2010,347:173-194.
    [66] Chao Liu, Chien Chern Cheah, Jean Jacques E. Slotine. Adaptive task-spaceregulation of rigid-link flexible-joint robots with uncertain kinematics[J].Automatica,2008,44:1806-1814.
    [67] M. Azadi, S.A.Fazelzadeh, M.Eghtesad, et al. Vibration suppression andadaptive-robust control of a smart flexible satellite with three axesmaneuvering[J]. Acta Astronautica,2011,69:307-322.
    [68] L. Gaudiller, S. Bochard. Adaptive active control of flexible structures subjectedto rigid body displacements[J]. Journal of Sound and Vibration,2005,283:311-339.
    [69] K.Y. Kuo, J. Lin. Fuzzy logic control for flexible link robot arm by singularperturbation approach[J]. Applied Soft Computing,2002,2:24-38.
    [70] Chunmei Jin, Ling Fan, Yang Qiu. The vibration control of a flexible linkagemechanism with impact[J]. Communications in Nonlinear Science andNumerical Simulation,2004,9:459-469.
    [71] Matthew O.T. Cole, Theeraphong Wongratanaphisan, Radom Pongvuthithum.Controller design for flexible structure vibration suppression with robustness tocontacts[J]. Automatica,2008,44:2876-2883.
    [72] Qinglei Hu. Sliding mode attitude control with L2-gain performance and vibrationreduction of flexible spacecraft with actuator dynamics[J]. Acta Astronautica,2010,67:572-583.
    [73] Xiaoyun Wang, James K. Mills. FEM dynamic model for active vibration controlof flexible linkages and its application to a planar parallel manipulator[J].Mechanism and Machine Theory,2005,66:1151-1161.
    [74] Liu Lei, Wang Pingping, Kong Xianren, et al. Robust active vibration control offlexible Stewart isolators[J]. Vibration Control,2010,335-354.
    [75] LIAO Yihuan, LI Daokui, TANG Guojin. Motion Planning for VibrationReducing of Free-floating Redundant Manipulators Based on HybridOptimization Approach[J]. Chinese Journal of Aeronautics,2011,24:533-540.
    [76]吴立成,孙富春,孙增圻等.柔性空间机器人振动抑制轨迹规划算法[J].机器人,2003,25(3):250-254.
    [77]刘迎春,余跃庆.柔性机器人的变形度和变形能量度指标[J].中国机械工程,2004,15(10):921-925.
    [78] Meysar Zeinali, Leila Notash. Adaptive sliding mode control with uncertaintyestimator for robot manipulators[J]. Mechanism and Machine Theory,2010,(45):80-90.
    [79] Yangjun Pi, Xuanyin Wang. Trajectory tracking control of a6-DOF hydraulicparallel robot manipulator with uncertain load disturbances[J]. ControlEngineering Practice,2011,(19):185-193.
    [80] Wu Dongsu, Gu Hongbin. Adaptive Sliding Control of Six-DOF Flight SimulatorMotion Platform[J]. Chinese Journal of Aeronautics,2007,(20):425-433.
    [81] Hongbo Guo, Yongguang Liu, Guirong Liu, et al. Cascade control of ahydraulically driven6-DOF parallel robot manipulator based on a slidingmode[J]. Control Engineering Practice,2008,(16):1055-1068.
    [82]赵东亚,李少远,高峰.六自由度并联机器人分散鲁棒非线性控制[J].控制理论与应用,2008,25(5):867-872.
    [83]刘华山,朱世强,吴剑波等.基于奇异摄动理论的输入有界机器人轨迹跟踪控制[J].控制理论与应用,2009,26(12):1371-1377.
    [84]赵丽敏.机器人控制不确定性及饱和吸引域评估研究[D].上海:上海交通大学,2008:20-34.
    [85]蔡自兴.机器人学(第二版)[M].北京:清华大学出版社,2009:18-72.
    [86] S. He, Q.H. Wu,, J.Y. Wen, J.R. Saunders, R.C. Paton. A particle swarm optimizerwith passive congregation[J]. BioSystems,2004,78:135-147.
    [87] A.A. Mousa, M.A. El Shorbagy, W.F. Abd El Wahed. Local search based hybridparticle swarm optimization algorithm for multiobjective optimization[J].Swarm and Evolutionary Computation,2012,3:1-14.
    [88] Christoph Bandt, Bernd Pompe. Permutation Entropy: A Natural Complexitymeasure for Time Series[J]. Physical Review Letters,2002,88(17):121-125.
    [89] Z. Meng, R.S. Che, Q.C. Huang, et al. The direct-error-compensation method ofmeasuring the error of a six-freedom-degree parallel mechanism CMM[J].Journal of Materials Processing Technology,2002,129:574-578.
    [90] Amar Khoukhi, LucBaron, Marek Balazinski. Constrained multi-objectivetrajectory planning of parallel kinematic machines[J]. Robotics andComputer-Integrated Manufacturing,2009,25:756-769.
    [91]田西勇.机器人轨迹规划方法研究[D].北京:北京邮电大学,2008:5-28.
    [92] S. He, Q. H. Wu, J. R. Saunders. Group search optimizer: An optimizationalgorithm inspired by animal searching behavior[J]. IEEE Transactions onEvolutionary Computation,2009,13(5):973-990.
    [93]訾斌,段宝岩,杜敬利等.一种柔索并联机器人的动力学建模与主动控制[J].振动与冲击,2007,26(3):96-100.
    [94] Stefan Staicu. Dynamics of the6-6Stewart parallel manipulator[J]. Robotics andComputer-Integrated Manufacturing,2011,27:212-220.
    [95] A.Tayebi, S.Islam. Adaptive iterative learning control for robot manipulators:Experimental results[J]. Control Engineering Practice,2006,14:843-851.
    [96] Abdelhamid Tayebi. Adaptive iterative learning control for robot manipulators[J].Automatica,2004,40:1195-1203.
    [97] Xinjun Liu, Jinsong Wang, Chao Wu, et al. A new family of spatial3-DOFparallel manipulators with two translational and one rotational DOFs[J].Robotica,2009,27(2):241-247.
    [98]张立新,黄玉美,何根良.混联机床轴线定位精度的干涉测量与误差补偿模型[J].仪器仪表学报,2008,29(3):545-549.
    [99] Xinjun Liu, Jinsong Wang. A new methodology for optimal kinematic design ofparallel mechanisms[J]. Mechanism and Machine Theory,2007,42:1210-1224.
    [100] Chang Peng, Wang JinSong, LI Tiemin, et al. Step kinematic calibration of a3-DOF planar parallel kinematic machine tool[J]. Science in China Series E:Technological Sciences,2008,51(12):2155-2167.
    [101] Xiaodong Ren, Zuren Feng, Chengping Su. A new calibration method forparallel kinematics machine tools using orientation constraint[J]. InternationalJournal of Machine Tools&Manufacture,2009,49:708-721.
    [102] Georg Nawratil. All planar parallel manipulators with cylindrical singularitysurface[J]. Mechanism and Machine Theory,2009,44:2179-2186.
    [103] Jiang Hongzhou, He Jingfeng, Tong Zhizhong. Characteristics analysis of jointspace inverse mass matrix for the optimal design of a6-DOF parallelmanipulator[J]. Mechanism and Machine Theory,2010,45:722-739.
    [104] Guifang Zhang. Classification of direct kinematics to planar generalized Stewartplatforms[J]. Computational Geometry,2012,45:458-473.
    [105] Haidong Li, Clement M. Gosselin, Marc J. Richard. Determination of themaximal singularity-free zones in the six-dimensional workspace of thegeneral[J]. Computational Geometry,2006,41:1168-1184.
    [106] K.Y. Tsai, J.C. Lin. Determining the compatible orientation workspace ofStewart–Gough parallel manipulators[J]. Computational Geometry,2007,42:497-511.
    [107] Hao Wang, Genliang Chen, Yong Zhao, et al. Output error bound prediction ofparallel manipulators based on the level set method[J]. Mechanism and MachineTheory,2010,45:1153-1170.
    [108] Bhaskar Dasguptaa, T.S. Mruthyunjaya. The Stewart platform manipulator: areview[J]. Mechanism and Machine Theory,2000,35:15-40.
    [109] Jeha Ryu, Jongeun Cha. Volumetric error analysis and architecture optimizationfor accuracy of HexaSlide type parallel manipulators[J]. Mechanism andMachine Theory,2003,38:227-240.
    [110] Mansour Abtahi, HodjatPendar, AriaAlasty, et al.. Experimental kinematiccalibration of parallel manipulators using a relative position error measurementsystem[J]. Robotics andComputer-IntegratedManufacturing,2010,26:799-804.
    [111] Denis G, Krishnaswamy S. Adaptive friction compensation for precisionmachine tool drive[J]. Control Engineering Practice,2004,12:1451-1464.
    [112] H.Schwenke, W.Knapp, H.Haitjema, et al. Geometric error measurement andcompensation of machines—An update[J]. CIRP Annals-ManufacturingTechnology,2008,57:660-675.
    [113] H.Chanal, E.Duc, P.Ray, J.Y.Hasco t. A new approach for the geometricalcalibration of parallel kinematics machines tools based on the machining of adedicated part[J]. International Journal of Machine Tools&Manufacture,2007,47:1151-1163.
    [114] Chunta Chen, TetanLiao. A hybrid strategy for the time and energy-efficienttrajectory planning of parallel platform manipulators[J]. Robotics andComputer-Integrated Manufacturing,2011,27:72-81.
    [115] Xin Wang, Junwei Wang, Zhi Rao. An adaptive parametric interpolator fortrajectory planning[J]. Advances in Engineering Software,2010,41:180-187.
    [116] Katjun Oen, Lichun T. Wang. Optimal dynamic trajectory planning for linearlyactuated platform type parallel manipulators having task space redundant degreeof freedom[J]. Mechanism and Machine Theory,2007,42:727-750.
    [117] Maria da Gra a Marcos, J.A. Tenreiro Machado, T.-P. Azevedo-Perdicoúlis.Trajectory planning of redundant manipulators using genetic algorithms[J].Commun Nonlinear Sci Numer Simulat,2009,14:2858-2869.
    [118] Hongshuang Li, Zhenzhou Lu, Yi Zhang. Probabilistic strength analysis ofbolted joints in laminated composites using point estimate method[J].Composite Structures,2008,88:202-211.
    [119] Yunnlin Hwang. Dynamic recursive decoupling method for closed-loop flexiblemechanical systems[J]. International Journal of Non-Linear Mechanics,2006,41:1181-1190.
    [120] M.S. Alam, M.O. Tokhi. Designing feedforward command shapers withmulti-objective genetic optimisation for vibration control of a single-linkflexible manipulator[J]. Engineering Applications of Artificial Intelligence,2008,21:229-246.
    [121] Qiang Tian, Yunqing Zhang, Liping Chen, et al.. Dynamics of spatial flexiblemultibody systems with clearance and lubricated spherical joints[J]. Computersand Structures,2009,87:913-929.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700