用户名: 密码: 验证码:
基于胞腔复形链的地下空间对象三维表达与分析计算统一数据模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的进步和社会经济的发展,地下空间作为重要的资源逐步得到开发利用,如城市地下空间设施的建设、矿产资源开发、地下能源存储库建设等。地下空间无论作何种用途,都需要对其地质环境、地质构造情况进行详细的勘察量测和模拟分析才能够进行施工作业。地下空间对象三维表达与分析计算技术可以更加便捷、精细地描述地下空间对象构造,能够对地下空间现象进行数值模拟与分析,从而使工程师们做出更加准确的决策。因此,该技术已经成为三维地理信息系统、三维地学模拟系统和岩石力学数值模拟等学科领域的研究热点。
     由于没有统一的数据结构,用于地下空间对象三维表达的模型与用于分析计算的模型之间存在着本质的差异。因此,目前地下空间对象的三维表达与分析计算多被分为两个独立的过程。这样在进行地理现象模拟与分析的过程中,既不利于地下空间对象几何拓扑信息的维护,容易产生数据冲突,也降低了分析计算的效率。本文以代数拓扑为理论依据,基于胞腔复形链实现地下空间对象几何、拓扑和属性的统一表达和形式化定义,构建了能支持地下空间对象三维表达与分析计算的统一数据模型。通过本课题的研究,从理论和方法上推进地下空间对象三维表示和分析计算技术的发展,主要的研究工作和成果包括:
     (1)将地下空间对象的代数拓扑描述方法从单纯同调理论扩展到胞腔同调,详细阐述了胞腔复形链及其相关操作算子的概念。在此基础上,给出了基于胞腔复形链的地下空间对象形式化定义,对其动态行为过程变化特征进行了描述与表达,为地下空间对象三维表达与分析计算统一数据模型的构建奠定了理论基础。
     (2)在完成了基于胞腔复形链的地下空间对象形式化定义的基础上,从地下空间对象的抽象过程入手,结合代数拓扑学的相关理论,给出了基于胞腔复形链的地下空间对象三维表达与分析计算统一数据模型的层次结构及其实现方法;并由此实现了基于统一数据模型的复杂地下空间对象三维表达、地下空间对象属性信息空间分布特征表达及动态行为过程表达的操作。
     (3)为了扩展本文提出的统一数据模型空间操作功能及增强其实用性,基于统一数据模型,实现了一系列地下空间对象三维空间分析与计算过程中的空间操作算法。基于胞腔复形链对欧拉-庞加莱公式进行了扩展,并借助于其6个拓扑不变量设计了10对欧拉算子;在此基础上,实现了基于统一数据模型的三维点集区域查询算法、三维空间相交检测算法、三维空间实体间布尔运算、三维空间网格离散及地下空间对象模型细分光滑操作等空间操作算法。
     (4)采用本文构建的基于胞腔复形链的三维表达与分析计算统一数据模型及其相关空间操作方法,以盐腔围岩蠕变数值模拟与分析为例,对统一数据模型层次结构的合理性及其相关空间操作的可靠性进行了实例验证。通过对研究区基础空间数据、声纳测腔数据等数据资料的分析,构建基于统一数据模型的盐腔围岩数值分析计算模型,实现盐岩围岩空间对象几何、拓扑、属性信息的统一表达;基于胞腔复形链对常用力学元件进行表达,通过对胞腔复形链的操作运算,实现不同蠕变机理模型的重构;在此基础上,进行基于统一数据模型进行盐腔围岩蠕变数值模拟与分析。
With the progress and development of the scientific technology and socio-economic, the underground space is gradually developed and utilized as an important resource, such as the construction of urban underground spatial facilities, development of mineral resources, and construction of underground energy storage library. No matter for what purpose, it's necessary to conduct detailed survey measurements and simulations to geological environment and geological formations of the underground space before the construction work is carried out. The technology of three-dimensional representation and analysis computation of underground spatial objects can be more convenient and fine to describe the construction instance of underground spatial objects, and be able to carry out numerical simulation and analysis to underground phenomenon, which enables engineers to do more accurate decision-making. Therefore, the technology has become a research hotspot of many subject areas, such as three-dimensional geographic information system, three-dimensional geoscience modeling, rock mechanics and numerical simulation, and so on.
     As the absence of a unified data structure, there are essential differences between the three-dimensional representation model of the underground space objects and computational model for the numerical analysis. Therefore, the traditional three-dimensional representation and analysis computation of underground spatial objects are divided into two separate courses, which are not conducive to the maintenance of the geometry and topology information of underground spatial objects during the simulation and analysis of geographical phenomena, but also prone to data conflicts and reduce the computational efficiency of the analysis. Taking algebraic topology as the theoretical basis, a unified representation and formal definition of the geometry, topology and properties of the underground spatial objects is achieved based on the cell complex chain, and then the unified data model of three-dimensional representation and analysis computation of underground spatial objects is constructed. Through the research of this subject, the development of three-dimensional representation and analysis computation technology of underground spatial objects will be promoted theoretically and methodology, the main research works and achievements are as follows:
     (1) Expaned algebraic topologyical description method of underground spatial objects from the simplicial homology theory to cell cohomology theory, the basic concepts of the cell complex chain and its operators are described. Based on cell complex chain, the formal definition and the dynamic behavior of underground spatial objects are given and descriped, which forms the theory foundation for constructing the unified data model of the three-dimensional representation and analysis computation of underground spatial objects.
     (2) On the foundation of the formal definition of underground spatial objects based on cell complex chain, starting from the abstraction processing of underground spatial objects, combining with the related theories of algebraic topology, the hierarchy structure and implementation method of the unified data model of three-dimensional representation and analysis computation of underground spatial objects are achieved based on cell complex chain. And then some operations are achieved based on the unified data model, such as the three-dimensional representation of the complex underground spatial objects, and the spatial distribution characteristics of attribute information of underground spatial objects, and the representation of dynamic behavior.
     (3) In order to improve the spatial operation function of the unified data model and enhance its practicality and a series spatial operation algorithms of three-dimensional analysis and computation process of underground spatial objects based on the unified data model are developed. Euler-Poincare formula is extended based on the cell complex chain, and10Euler operators are designed by virtue of its six topological invariants; On this basis, some spatial operation algorthms are achieved, such as a3D point set range query algorithm, three-dimensional intersection detection algorithm, Boolean operations between two three-dimensional entities, three-dimensional mesh generation method and the model subdivision smoothing operation of underground spatial objects.
     (4) Based on the unified data model of three-dimensional representation and analysis computation by the cell complex chain and its related spatial operation algorithms, taking the the salt cavity wall-rock creep numerical simulation and analysis for example, the rationality of hierarchy structure and the reliability of the related spatial operation of the unified data model are validated. By researching the basic spatial data of the study area and the sonar measurement data of the salt cavity, an analytical computational model of salt cavity wall-rock based on the unified data model are built. Thus, the unified representation of the geometry, topology, and attribute information of salt cavity wall-rock are achieved. The representation of mechanical components commonly used based on the cell complex chain and its operators are constructed. Through the operations on the cell complex chain, differences of creep mechanism models can be reconstructed. On this basis, the process of creep numerical simulation and analysis of salt cavity wall-rock based on the unified data model is carried out.
引文
[1]Zhang Z, Hou E, Zhao Z, et al. An Improved Symmetrical Modeling Method on 3D Tunnel Modeling[C]. Proceeding ICCMS'09, Washington, DC, USA:IEEE Computer Society,2009:251-256.
    [2]夏艳华.面向实时可视化与数值模拟3DSIS数据模型研究[D].武汉:中国科学院研究生院(武汉岩土力学研究所),2006.
    [3]Jones R R, Mccaffrey K J, Clegg P, et al. Integration of regional to outcrop digital data:3D visualisation of multi-scale geological models [J]. Computers & Geosciences,2009,35(1):4-18.
    [4]Tacher L, Pomian-srzednicki I, Parriaux A. Geological uncertainties associated with 3-D subsurface models[J]. Computers & Geosciences,2006,32(2):212-221.
    [5]Ron L. The application of geography markup language (GML) to the geological sciences [J]. Computers & Geosciences,2005,31(9):1081-1094.
    [6]刘刚,吴冲龙,何珍文等.地上下一体化的三维空间数据库模型设计与应用[J].地球科学(中国地质大学学报),2011,36(02):367-374.
    [7]朱庆,李晓明,张叶廷等.一种高效的三维GIS数据库引擎设计与实现[J].武汉大学学报(信息科学版),2011,36(02):127-132,139.
    [8]吴立新,陈学习,车德福等.一种基于GTP的地下真3D集成表达的实体模型[J].武汉大学学报(信息科学版),2007,32(04):331-335.
    [9]朱良峰,庄智一.城市地下空间信息三维数据模型研究[J].华东师范大学学报(自然科学版),2009(02):29-40.
    [10]韩李涛.地下空间三维数据模型分析与设计[J].计算机工程与应用.2005(32):1-3.
    [11]韩李涛,朱庆.一种面向对象的三维地下空间矢量数据模型[J].吉林大学学报(地球科学版),2006,36(04):636-641.
    [12]郑坤,刘修国,吴信才等.顾及拓扑面向实体的三维矢量数据模型[J].吉林大学学报(地球科学版),2006,36(03):474-479.
    [13]郑坤,炱新莉,刘修国等.基于规则库的三维空间数据模型[J].地球科学(中国地质大学学报),2010,35(03):369-374.
    [14]张芳.场框架下的城市地下空间三维数据模型及相关算法研究[D].上海:同济大学,2006.
    [15]王润怀.矿山地质对象三维数据模型研究[D].成都:西南交通大学,2007.
    [16]李清泉,李德仁.三维空间数据模型集成的概念框架研究[J].测绘学报,1998, 27(04):325-330.
    [17]边馥苓,傅仲良,胡自锋.面向目标的栅格矢量一体化三维数据模型[J].武汉测绘科技大学学报,2000,25(04):294-298.
    [18]李建华,边馥苓.工程地质三维空间建模技术及其应用研究[J].武汉大学学报(信息科学版),2003,28(01):25-30.
    [19]赵永军,李汉林,王海起.GIS三维空间数据模型的发展与集成[J].石油大学学报(自然科学版),2001,25(05):24-28.
    [20]龚健雅,夏宗国.矢量与栅格集成的三维数据模型[J].武汉测绘科技大学学报,1997,22(01):7-15.
    [21]程朋根,龚健雅.地勘工程3维空间数据模型及其数据结构设计[J].测绘学报,2001,30(01):74-81.
    [22]程朋根,王承瑞,甘卫军等.基于多层DEM与QTPV的混合数据模型及其在地质建模中的应用[J].吉林大学学报(地球科学版),2005,35(06):806-811.
    [23]杨林,盛业华,闾国年等.田野考古GIS数据模型研究[J].中国矿业大学学报,2007,36(03):408-414.
    [24]张俊安,杨钦,李吉刚.三维构造矢量模型的栅格表示方法及应用[J].工程图学学报,2008(05):62-66.
    [25]Rockwood A, Chambers P. Interactive Curves and Surfaces:A Multimedia Tutorial on CAGD, with Disks,1st ed[M]. San Francisco, CA, USA:Morgan Kaufmann Publishers Inc.,1996.
    [26]Caumon G, Sword J C, Mallet J L. Constrained modifications of non-manifold B-reps[C]. New York, USA:ACM,2003.
    [27]Apel M. From 3d geomodelling systems towards 3d geoscience information systems:Data model, query functionality, and data management [J]. Computers & Geosciences,2006,32(2):222-229.
    [28]Marschallinger R. A program for creating CAD-based solid models from triangulated surfaces [J]. Computers & Geosciences,2007,33(4):586-588.
    [29]Pallozzi L L, Dirk E H. Tensor3D:A computer graphics program to simulate 3D real-time deformation and visualization of geometric bodies [J]. Computers & Geosciences,2008,34(7):738-753.
    [30]Zanchi A, Francesca S, Stefano Z, et al.3D reconstruction of complex geological bodies:Examples from the Alps [J]. Computers & Geosciences,2009,35(1): 49-69.
    [31]M Breunig. An approach to the integration of spatial data and systems for a 3D geo-information system [J]. Computers & Geosciences,1999,25(01):39-48.
    [32]易善桢.基于单纯形的3D-GIS数据模型及其初步设计[J].测绘通报,1999(11):10-13.
    [33]陈军,郭薇.基于剖分的三维拓扑ER模型研究[J].测绘学报,1998,27(04):308-317.
    [34]郭薇.顾及空间剖分的三维拓扑空间数据模型[D].武汉:武汉测绘科技大学,1998.
    [35]张骏,秦小麟,包磊.一种支持空间拓扑分析的3维数据模型[J].中国图象图形学报,2006,11(07):990-997.
    [36]张骏.三维空间拓扑分析关键技术研究[D].南京:南京航空航天大学,2008.
    [37]袁林旺,俞肇元,罗文等.基于共形几何代数的GIS三维空间数据模型[J].中国科学:地球科学,2010,40(12):1740-1751.
    [38]Linwang Yuan, Zhaoyuan Yu, Shaofen Chen E A. CAUSTA:Clifford Algebra-based Unified Spatio-Temporal Analysis [J]. Transaction in GIS,2010, 14(s1):59-83.
    [39]周良辰.基于胞腔复形的三维空间数据模型及分析方法研究[D].南京:南京师范大学,2009.
    [40]刘振平.工程地质三维建模与计算的可视化方法研究[D].武汉:中国科学院研究生院(武汉岩土力学研究所),2010.
    [41]Xavier E. Simulation of geological domains using the plurigaussian model:New developments and computer programs [J]. Computers & Geosciences,2007, 33(9):1189-1201.
    [42]Feltrin L, Mclellan J G, Oliver N H. Modelling the giant, Zn-Pb-Ag Century deposit, Queensland, Australia [J]. Computers & Geosciences,2009,35(1): 108-133.
    [43]孙立双.矿体三维建模及储量计算关键问题研究[D].沈阳:东北大学,2008.
    [44]张世明,万海艳,戴涛等.复杂油藏三维地质模型的建立方法[J].油气地质与采收率,2005,12(01):9-11.
    [45]于金彪,杨耀忠,戴涛等.油藏地质建模与数值模拟一体化应用技术[J].油气地质与采收率,2009,16(05):72-75.
    [46]李攀.三维地质建模及其在天然气水合物储量评价中的应用[D].吉林:吉林大学,2009.
    [47]刘少华,肖克炎,王新海.地质三维属性建模及其可视化[J].地质通报,2010,29(10):1554-1557.
    [48]吕鹏.基于立方体预测模型的隐伏矿体三维预测和系统开发[D].北京:中国地质大学(北京),2007.
    [49]Hussein M. Finite element mesh for complex flow simulation [J]. Finite Elements in Analysis and Design.2011,47(4):434-442.
    [50]徐帮树.滑坡预测的水文—力学耦合模型研究[D].上海:华东师范大学,2006.
    [51]钟登华,李明超,刘杰.水利水电工程地质三维统一建模方法研究[J].中国科学E辑:技术科学,2007,37(3):455-466.
    [52]钟登华,王忠耀,李明超等.复杂地下洞室群工程地质三维建模与动态仿真分析[J].计算机辅助设计与图形学报,2007,27(11):1436-1441.
    [53]高正夏,赵海滨.岩体软弱夹层渗透变形试验及三维有限元数值模拟[J].水文地质工程地质,2008,(01):64-66,79.
    [54]张渭军.孔隙水文地质层三维建模与可视化研究[J].金属矿山,2010,(08):128-131.
    [55]陈锁忠,黄家柱,张金善.基于GIS的孔隙水文地质层三维空间离散方法[J].水科学进展,2004,15(5):634-639.
    [56]陈锁忠,徐网谷,张磊.基于GIS的地下水流数值模拟参数自动提取[J].水利学报,2005,36(11):1314-1319.
    [57]陈锁忠,闾国年,朱莹等.基于GIS的地下水流有限差数值模拟参数自动提取研究[J].地球信息科学,2006,8(2):77-83.
    [58]唐卫,陈锁忠,朱莹等.GIS与地下水数值模型集成中面向对象法的应用[J].地球信息科学,2006,8(2):71-76.
    [59]Chen C, Pei S, Jiao J. Land subsidence caused by groundwater exploitation in Suzhou City, China[Z]. Springer Berlin/Heidelberg,2003:11,275-287.
    [60]方建勤,彭振斌,颜荣贵.构造应力型开采地表沉陷规律及其工程处理方法[J].中南大学学报(自然科学版),2004,35(3):506-510.
    [61]Li W X, Liu L, Dai L F. Fuzzy probability measures (FPM) based non-symmetric membership function:Engineering examples of ground subsidence due to underground mining [J]. Eng. Appl. Artif. Intell.2010,23:420--431.
    [62]Ambro Toma T G. Prediction of subsidence due to underground mining by artificial neural networks [J]. Computers & Geosciences.2003,29(5):627-637.
    [63]Kumarci Kaveh, Ziaie Arash K A. Land subsidence modeling due to ground water drainage using "WTAQ" software[C]. Stevens Point, Wisconsin, USA: World Scientific and Engineering Academy and Society (WSEAS),2008.
    [64]魏加华,崔亚莉,邵景力等.济宁市地下水与地面沉降三维有限元模拟[J].长春科技大学学报,2000,30(04):376-380.
    [65]贾瑞生.矿山开采沉陷三维建模与可视化方法研究[D].青岛:山东科技大学,2010.
    [66]于保华,朱卫兵,许家林.深部开采地表沉陷特征的数值模拟[J].采矿与安全工程学报,2007,24(04):422-426.
    [67]李红霞,赵新华,迟海燕等.基于改进BP神经网络模型的地面沉降预测及分析[J].天津大学学报,2009,42(01):60-64.
    [68]于广明,张春会,潘永站等.采水地面沉降时空预测模型研究[J].岩土力学,2006,27(05):759-762.
    [69]于芳,赵维炳,李荣强.软土地基沉降蠕变-固结有限元分析及应用[J].河海大学学报(自然科学版),2006,34(02):180-184.
    [70]侯卫生,吴信才,刘修国.基于GIS的城市地面沉降信息管理与预测系统研究[J].岩土力学,2008,29(06):1685-1690.
    [71]陈沙,岳中琦,谭国焕.基于真实细观结构的岩土工程材料三维数值分析方法[J].岩石力学与工程学报,2006,25(10):1951-1959.
    [72]靳晓光,李晓红,刘新荣等.某含软弱夹层顺层岸坡应力位移特征数值模拟[J].重庆大学学报(自然科学版),2004,27(09):129-132136.
    [73]孙红月,尚岳全,张春生.大型地下洞室围岩稳定性数值模拟分析[J].浙江大学学报(工学版),2004,38(01):70-7385.
    [74]邱骋,谢谟文,江崎哲郎等.基于三维力学模型的大范围自然边坡稳定性概率评价方法[J].岩石力学与工程学报,2008,27(11):2281-2287.
    [75]纪佑军,刘建军,程林松.考虑流-固耦合的隧道开挖数值模拟[J].岩土力学,2011,32(04):1229-1233.
    [76]侯恩科,吴立新,李建民等.三维地学模拟与数值模拟的耦合方法研究[J].煤炭学报,2002,27(04):388-392.
    [77]王明华,白云.层状岩体三维可视化构模与数值模拟的集成研究[J].岩土力学,2005,26(07):1123-1126.
    [78]李新星,朱合华,蔡永昌等.基于三维地质模型的岩土工程有限元自动建模方法[J].岩土工程学报,2008,30(06):855-862.
    [79]Palmer R S, Shapiro V. Chain models of physical behavior for engineering analysis and design [J]. Research in Engineering Design,1994,5(3):161-184.
    [80]S P R. Chain models and finite element analysis:An executable formulation of plane stress [J]. Computer Aided Geometric Design,1995,12(7):733-770.
    [81]Egli R, Stewart N F. A framework for system specification using chains on cell complexes [J]. Computer-Aided Design,2000,32(7):447-459.
    [82]Egli R, Stewart N F. Chain models in computer simulation [J]. Mathematics and Computers in Simulation,2004,66(6):449-468.
    [83]Egli Richard, Stewart N F. Particle-based fluid flow visualization on meshes schemata [J]. Environment and Planning B:Planning and Design,2002,29(5): 779-788.
    [84]DjadoKhalid, egliRichard. Particle-based fluid flow visualization on meshes[C]. Proceeding AFRIGRAPH'09, New York, NY, USA:ACM,2009.
    [85]Dicarlo A, Milicchio F, Paoluzzi A, et al. Chain-Based Representations for Solid and Physical Modeling [J]. IEEE Transactions on Automation Science and Engineering,2008,6(3):454-467.
    [86]Dicarlo A, Milicchio F, Paoluzzi A, et al. Discrete physics using metrized chains[C]. New York, USA:ACM,2009.
    [87]Cardoze David E, Miller Gary L P T. Representing Topological Structures Using Cell-Chains[C].2006.
    [88]Leila De Floriani, Paola Magillo, Enrico Puppo. Multiresolution Representation of Shapes Based on Cell Complexes [J]. Lecture Notes in Computer Science, 1999,1568:3-18.
    [89]魏洪钦.基于胞腔复形的非流形几何造型平台的研究与开发[D].西安:西安交通大学,2001.
    [90]吕瑞云.基于胞腔复形的非流形拓扑数据结构的数据存储与转换机制的研究[D].西安:西安交通大学,2002.
    [91]袁正刚.工程CAD中拓扑建模与工程对象几何模型的研究[D].北京:中国科学院研究生院(计算技术研究所),2000.
    [92]贾根莲.工程CAD中设计与分析计算统一数据模型的研究与实现[D].北京:中国科学院研究生院(计算技术研究所),2001.
    [93]张金亭.基于时态胞腔复形的时空一体化对象建模[D].武汉:武汉大学,2001.
    [94]史文中,吴立新,李清泉等.三维空间信息系统模型与算法[M].北京:电子工业出版社,2007:142-143.
    [95]周培德.判定点集是否在多边形内部的算法.计算机研究与发展,1997.34(9).
    [96]O'Rourke, Joseph. Computational Geometery in C,2nd edition [M]. Cambridge, England:Cambridge University Press,1998.
    [97]Eyal Flato, Dan Halperin, Iddo Hanniel, et al. The design and implementation of panar maps in CGAL [J]. Lecture Notes in Computer Science,1999,1668: 154-168.
    [98]Kalay Y E. Determining the spatial containment of a point in general polyhedra [J]. Computer Graphics and Image Processing,1982,19(4):303-334.
    [99]William P H, Dean L T. A theorem to determine the spatial containment of a point in a planar polyhedron [J]. Computer Vision, Graphics, and Image Processing,1989,45(1):106-116.
    [100]F R Feito, J C Torres. Inclusion test for general polyhedra [J]. Computers & Graphics,1997,21(1):23-30.
    [101]Luque R G, Comba J L, Freitas C M. Broad-phase collision detection using semi-adjusting BSP-trees[C]. Proceedings of the 2005 symposium on Interactive 3D graphics and games. New York, NY, USA:ACM.2005:179-186
    [102]Moller T. A fast triangle to triangle intersection test [J]. Journal of Graphics Tools,1997,2(2):25-30.
    [103]HELD M. ERIT:a collection of efficient and reliable intersection tests [J]. Journal of Graphics Tools,1997,2(4):25-44.
    [104]TROPP O, TAL A, SHIMSHONI I. A fast triangle to triangle intersection test for collision detection [J]. Computer Animation and Virtual Worlds,2006,17(5): 527-535.
    [105]刘健鑫,崔汉国,张晶等.包围盒碰撞检测算法的优化[J].计算机工程与应用,2008,44(18):51-86.
    [106]Ganter M A, Isarankura B P. Dynamic collision detection using space partitioning [J]. Journal of Mechanical Design,1993,115(1):150-155.
    [107]邹益胜,丁国富,何邕等.空间三角形快速相交检测算法[J].计算机应用研究,2008,25(10):2906-2910.
    [108]James K, Hahn. Realistic Animation of Rigid Bodies [C]. Proceedings of SIGGRAPH'88, New York, USA:ACM,1988:299-308.
    [109]Gino van den, Bergen. Efficient Collision Detection of Complex Deformable Models using AABB Trees [J]. Journal of Graphics Tools,1999,4(2):1-13.
    [110]Gottschalk S, Lin M C, Manocha D. OBBTree:a hierarchical structure for rapid interference detection[C]. Proceedings of the 23rd annual conference on Computer graphics and interactive techniques. New Orleans, USA:ACM,1996: 171-181.
    [111]Klosowski, J T, Held Martin, Mitchell J S, et al. Efficient collision detection using bounding volume hierarchies of k-dops [J]. IEEE Transaction on Visualization and Computer Graphics,1998,4(1):21-36.
    [112]PobilA P dell, SernaM A. A new representation for robotics and artificial intelligent application [J]. International Journal of Robotics & AutoMation,1994, 9(1):11-21.
    [113]Shamos M I, Hoey D. Geometric intersection problems [C]. Proceedings of the 17th Annual Symposium on Foundations of Computer Science. Washington, USA: IEEE Computer Society,1976:208-215.
    [114]Bentley J L, Ottmann T A. Algorithms for Reporting and Counting Geometric Intersections [J]. IEEE Transactions on Computers,1979,28(9):643-647.
    [115]Domiter V, Zalik B. Sweep-line Algorithm for Constrained Delaunay Triangulation [J]. International Journal of Geographical Information Science, 2008,22(4):449-462.
    [116]Alik K R, Alik B. A sweep-line algorithm for spatial clustering [J]. Advances in Engineering Software,2009,40(6):445-451.
    [117]Tomasz Koziara, Nenad Bicanic. SWEEP-PLANE APPROACH TO BOUNDING BOX INTERSECTION [C]. Proceedings of VIII International Conference on Computational Plasticity. Barcelona, Spain:CIMNE,2005:1-4.
    [118]赵红超.空间关系的研究和实现[D].北京:中国科学院计算技术研究所,2006.
    [119]王梦晓.基于红蓝思想的空间拓扑分析算法的研究与实现[D].南京:南京航空航天大学,2005.
    [120]Mairson H, Stolfi J. Reporting and counting intersections between two sets of line segments [C]. Proceedings of Theoretical Foundations of Computer Graphics and CAD. Berlin, Germany:Springer Verlag,1988:307-325.
    [121]Julien Basch, Guibas L J, Ramkumar G D. Reporting Red-Blue Intersections between Two Sets of Connected Line Segments [J]. Algorithmica,2002,35(1): 1-20.
    [122]Palazzi L, Snoeyink J. Counting and reporting red/blue segment intersections [J]. Academic Press,1994,56(4):530-540.
    [123]Chazelle B, Edelsbrunner H. An optimal algorithm for intersecting line segments in the plane [J]. Journal of the ACM (JACM),1992,39(1):1-54.
    [124]宋超,关振群.三维约束Delaunay三角化的边界恢复和薄元消除方法[J].计算力学学报,2004,21(2):169-176,196.
    [125]Catmull E, Clark J. Recursively generated B-spline surfaces on arbitrary topological meshes [J]. Computer Aided Design,1978,10(6):350-355.
    [126]Doo D, Sabin M. Analysis of the Behavior of Recursive Division Surfaces Near Extraordinary Points [J]. Computer Aided Design,1978,10(6):356-360.
    [127]C T Loop. Smooth Subdivision Surfaces Based on Triangle [Master's Thesis] [D]. Salt Lake:The University of Utah. Department of Mathematics,1987.
    [128]Dyn N, Levine D, Gregory J A. A butterfly subdivision scheme for surface interpolation with tension control [J]. ACM Trans Graph,1990,9(2):160-169.
    [129]Zorin D, Schroder P, Sweldens W. Interpolating Subdivision for Meshes with Arbitrary Topology [C]. Proceedings of SIGGRAPH'96, New York:Association for Computing Machinery,1996:189-192.
    [130]Leif K. sqrt(3)-Subdivision [C]. Proceedings of SIGGRAPH 2000,2000: 103-112.
    [131]Zhang Hong-xin, WANG Guo-jin. Semi-Stationary Push-Back Subdivision Schemes [J]. Journal of Software,2002,13(9):1830-1839.
    [132]Peters J. and Le-Jeng S. Combining 4-and 3-direction subdivision [J]. ACM Transactions on Graphics,2004,23(4):980-1003.
    [133]杨东来,张永波,王新春.地质体三维建模方法与技术指南[M].北京:地质出版社,2007.
    [134]屈洪刚,潘懋,董攀等.基于网格细分技术的三维地质模型光滑方法研究[J].地理与地理信息科学,2007,23(6):14-17.
    [135]陈云翔,刘文杰,丁永生等.基于蝶形细分自适应算法的三维地形仿真[J].计算机仿真,2009,26(1):229-232.
    [136]Zorin D. Stationary subdivision and multiresolution surface representations [D]. Caltech,1997.
    [137]ZORIN D, Peter S. Subdivision for modeling and animation [C]. Proceedings of SIGGRAPH 2000 Course Notes,2000.
    [138]熊祖强,贺怀建,夏艳华.基于TIN的三维地层建模及可视化技术研究[J].岩土力学,2007,28(9):1954-1958.
    [139]Yonezawa G, Tatsuya N, Masumoto S, et al.3D geologic modeling and visualization of faulted structures:theory and GIS application [C]. Proceedings of the Open GIS-GRASS Users Conference, Toronto,2002:315-321.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700