用户名: 密码: 验证码:
两种鳃金龟围食膜及其结构蛋白的分离鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
围食膜(peritrophic matrix,PM)是大多数昆虫中肠内壁的一层厚薄均匀的长管状薄膜,成圆桶状把肠腔和中肠壁细胞分开,自中肠前端一直延伸至后肠。它主要由几丁质和蛋白质组成,是昆虫中肠天然的防御体系,具有保护中肠上皮细胞、阻止有害物质侵入和帮助消化等多种功能,是害虫生物防治的潜在靶标。鳃金龟是我国重要的地下害虫,其幼虫(蛴螬)在土壤中生活,取食植物的地下部分,并把周围的土壤颗粒、病原微生物等物质一同带入消化道,因此围食膜对蛴螬的生长发育具有重要的作用。本文采用生化和分子生物学技术等手段,对华北大黑鳃金龟(Holotrichia oblita)和暗黑鳃金龟(Holotrichia parallela)围食膜的形态结构和化学组成进行了研究,构建了华北大黑鳃金龟中肠cDNA表达文库,分离鉴定新的PM靶标蛋白,明确其生理功能,并研究生物防治促进因子对围食膜的作用与影响,寻找生物防治新靶标,为发展新的高效生物杀虫剂和鳃金龟的生物防治提供理论依据。
     1.通过光学显微镜和电子显微镜观察发现,鳃金龟幼虫围食膜位于中肠两端的两个“液囊环”(sac-circles)之间,是一层厚薄均匀的长管状薄膜,表面平滑致密,无孔无缝,具有一定弹性,但与鳞翅目昆虫围食膜相比,韧性较差,解剖时其围食膜易破碎。应用Bradford法和苯酚-硫酸法,测定华北大黑鳃金龟围食膜蛋白含量为36.38%,糖含量为8.84%;暗黑鳃金龟围食膜蛋白含量为38.26%,糖含量为9.08%。
     2.SDS-PAGE分析发现华北大黑鳃金龟PM蛋白至少有28条多肽,暗黑鳃金龟比较清楚的PM蛋白带有15条,而鳞翅目昆虫粉纹夜蛾、甜菜夜蛾、棉铃虫和粘虫PM蛋白分别有19、17、16和9条,与鳞翅目昆虫围食膜相比,华北大黑鳃金龟围食膜蛋白种类相对较多。肠粘蛋白(insect intestinal mucin, IIM)是昆虫围食膜中的重要蛋白,而应用TnPM-IIM特异性抗血清对华北大黑鳃金龟和暗黑鳃金龟围食膜蛋白做Western blot检测,未发现两种鳃金龟围食膜中有类似于鳞翅目昆虫的粘蛋白。
     3.应用QIAGEN公司的RNeasy Mini Kit、Oligotex mRNA Mini Kit以及Stratagene公司cDNA Synthesis Kit,成功构建了华北大黑鳃金龟3龄幼虫中肠cDNA表达文库,原始文库滴度为1.9×10~6 pfu/mL,扩增后滴度为1.4×10~9pfu/ml,文库重组率为99.97%,插入片段在0.8-2.3kb之间,平均长度为1.6kb。
     4.应用Western blot检测发现棉铃虫围食膜蛋白多克隆抗体、粉纹夜蛾围食膜蛋白多克隆抗体与华北大黑鳃金龟围食膜蛋白之间有交叉反应,并用这两种抗体免疫筛选华北大黑鳃金龟中肠cDNA文库,得到122个阳性克隆,测序及序列比对后得到Ho-Peritrophin1、Ho-Peritrophin2、Ho-Peritrophin3、Ho-Peritrophin4四个华北大黑鳃金龟围食膜蛋白基因,Genbank登录号分别是FJ393548、FJ393549、FJ393550和FJ573145,最长读码框(ORF)分别编码729、477、528和324个氨基酸,含有9、6、5和4个几丁质结合功能域(CBD),不含粘蛋白功能域,含有1-4个N-连糖基化位点,N端不含有信号肽。Ho-Peritrophin1、Ho-Peritrophin2、Ho-Peritrophin4的胰蛋白酶和胰凝乳蛋白酶的酶切位点大部分位于CBD内部,受到保护,不会被胰蛋白酶和胰凝乳蛋白酶降解。而Ho-Peritrophin3的第5个CBD下游区域富含大量的胰蛋白酶和胰凝乳蛋白酶的酶切位点。通过构建重组表达质粒,Ho-Peritrophin1、Ho-Peritrophin2和Ho-Peritrophin3在大肠杆菌中分别表达出78、51和57KD的目的蛋白,几丁质结合实验表明Ho-Peritrophin1和Ho-Peritrophin3具有几丁质结合活性。
     5.从华北大黑鳃金龟中肠cDNA表达文库中筛选得到了HoSP1和HoSP2两种华北大黑鳃金龟丝氨酸蛋白酶全长基因,在Genbank登录号分别为FJ573146和FJ573147,开放阅读框(ORF)长783和786bp,编码260和261个氨基酸,均含有3对半胱氨酸残基,与CzSP3相似性最高,分别为52.47%和51.52%,催化活性中心位于His80、Asp125、Ser215,His80、Asp125、Ser216。通过构建重组表达质粒,HoSP1和HoSP2在大肠杆菌中表达出26.7kDa和27.1kDa的蛋白。筛选得到了华北大黑鳃金龟羧酸酯酶基因HoCL,在Genbank登录号为FJ573148,开放阅读框(ORF)长1599bp,编码532个氨基酸,含有3个半胱氨酸残基,具有Ser207,Asp333和His422的催化活性中心,推导的蛋白质分子量为59.5kDa,属于B类羧酸酯酶。
     6.以棉铃虫颗粒体病毒增效蛋白和荧光增白剂FB28为先导物,测定了其对华北大黑鳃金龟和暗黑鳃金龟围食膜的作用和影响,发现棉铃虫颗粒体病毒增效蛋白在不同浓度和不同时间下均不能降解两种鳃金龟的围食膜;采用液滴法喂食华北大黑鳃金龟和暗黑鳃金龟10uL 1%的FB28,2.5h时,PM前端破损,扫描电镜观察中后段围食膜,发现围食膜上出现一些分布均匀的空洞;喂食至6h时,PM完全崩解,喂食至12h,PM基本恢复。可见,荧光增白剂FB28能够破坏鳃金龟围食膜,但破坏作用是短暂的、可修复的。为进一步研究荧光增白剂与病原微生物联合使用防治鳃金龟提供了理论依据。
Peritrophic matrix (PM) is an invertebrate unique structure that lines the digestive tract, playing important roles in facilitating food digestion and providing protection to the gut epithelium. The important physiological functions of the PM suggest that PM can be a significant structural target for insect control. In this paper, the structure and chemical composition of PMs of both Holotrichia oblita and H. parallela were studied by using the biochemistry and molecular biology; the expression library of midgut cDNA of Holotrichia oblita was constructed to screen and separate new target protein of PMs. The effects of biocontrol-promoting factors on the PMs were also studied.
     1. By light microscopy and scanning electron microscope, the studies showed that PMs of H. oblita and H. parallela, situated between two sac-circles, were tubelike matrixes with even thickness and there were no holes and crevices on the smooth and compact surface. Compared to lepidopteran insects, grub PMs had poor tenacity and were destructible when dissected. By Bradford and phenol-sulfuric acid method, the protein contents of H. oblita and H. parallela PMs were 36.38% and 38.26%, and their carbohydrate contents were 8.84% and 9.08% respectively.
     2. SDS-PAGE analysis revealed that H. oblita PM contained at least 28 clear polypeptides and H. parallela PM 15 polypeptides; and in PMs of lepdopteran insects, Trichoplusia ni, Spodoptera exigua, Helicoverpa armigera and Mythimna separata, 19, 17, 16 and 9 clear polypeptides were found respectively. Compared with PMs of four lepidopteran larvae, H. oblita contained more polypeptides. Mucin was an important kind of PM proteins. Western blot analyses did not reveal a positive interaction between the protein of grub PMs and IIM-specific polyclonal antiserum from T. ni, and no mucin similar to that of lepidopteran insects were found in the two grubs.
     3. The cDNA expression library from H. oblita larvae midgut was constructed successfully. The titer of primary and amplified library was 1.9×10~6 pfu/mL and 1.4×10~9pfu/ml respectively. The recombination rate was 99.97%, and inserted fragments ranged between 0.8-2.3kb with the average length of 1.6kb.
     4. By Western blot, the PM proteins of H. oblita produced positive interactions with two kinds of polyclonal antiserums from total PM proteins of H. armigera and T. ni on the nitrocellulose membrane. 122 positive clones were acquired from the midgut cDNA library of H. oblita by immunoscreening with the two kinds of antiserums, from which PM protein genes of Ho-Peritrophin1, Ho-Peritrophin2, Ho-Peritrophin3 and Ho-Peritrophin4 were found by sequence determination and multiple sequence alignment. Their GenBank accession numbers were FJ393548, FJ393549, FJ393550 and FJ573145, and their longest open reading frames (ORFs) coded for 729, 477, 528 and 324 amino acids respectively. The four genes contained 9, 6, 5 and 4 chitin binding domains (CBDs), 1 to 4 N-glycosylation sites and no mucin domains. Signal peptides were not found at N end of the protein. The trypsin and chymotrypsin cleavage sites were mostly located within the CBDs and protected by them, thus these PM proteins could not be degraded by the trypsin and chymotrypsin. Otherwise, it contained multiple cleavage sites of trypsin and chymotrypsin at the downstream of fifth CBDs in Ho-Peritrophin3. By construction of recombination plasmids, Ho-Peritrophin1, Ho-Peritrophin2 and Ho-Peritrophin3 were expressed 78, 51 and 57KD PM proteins in the Escherichia coli respectively. The chitin binding experiment showed that Ho-Peritrophin1 and Ho-Peritrophin3 had the chitin binding activities.
     5. Two whole length genes of serine protease of H. oblita, HoSP1 and HoSP2, were screened from the midgut cDNA library of H. oblita. GenBank accession number were FJ573146 and FJ573147 respectively, and the longest ORFs were 783bp and 786bp coding for 260 and 261 amino acids which contained three pairs of cysteine residues respectively. The similarities of HoSP1 and HoSP2 to CzSP3 were found to be highest, up to 52.47% and 51.52% respectively. The catalytic sites of HoSP1 were His80, Asp125, Ser215 and those of HoSP2 were His80, Asp125 and Ser216. By construction of recombination plasmids, HoSP1 and HoSP2 were expressed 26.7 and 27.1KD proteins in the Escherichia coli. Carboxylesterase gene of H. oblita, HoCL, was screened, and its GenBank accession number was FJ573148. The longest ORF was 1599bp coding for 532 amino acids that contained three cysteine residues. HoCL, belonging to B type carboxylesterase, had the catalytic sites of Ser207, Asp333 and His422, and its predicted preotein molecular weight was 59.5kDa.
     6. The effects of Helicoverpa armigera granulosis virus enhancin (Ha-En) and Calcoflour FB28 on the PMs of H. oblita and H. parallela were determined. The study showed that the two grub PMs were not degraded at different time and concentrations by Ha-En. After the two grubs were fed with 10uL 1% FB28, their PMs were observed at different time points. Observation revealed that the fore part of PMs was destroyed and by scanning electron microscope some evenly distributed holes appeared on the mid-and-hind gut PMs in 2.5 hours, the PMs were cracked completely 6 hours later and then restored to good state 12 hours later. Therefore, Calcoflour FB28 was able to destroy grub PMs temporarily which could be repaired by PM’s regeneration. This provided the theoretical basis to control Melolonthid larvae with Calcoflour and pathogens.
引文
1.常团结,陈蕾,路子显,陈宛新,孟昆,朱祯.棉铃虫幼虫中肠类胰蛋白酶基因的克隆及在大肠杆菌中的表达[J].动物学报, 2002, 48(6): 790-796.
    2.程道军,夏庆友,周泽扬,鲁成,向仲怀.家蚕cDNA文库构建及大规模EST测序[J].蚕业科学, 2003, 29(4): 335-339.
    3.邓塔,蔡秀玉.烟青虫感染核型多角体病毒后围食膜的病变[J].昆虫学报, 1992, 35 (1): 123 - 124.
    4.董志敏,张宝石,关荣霞,常汝镇,邱丽娟.全长cDNA文库的构建方法[J].中国农学通报, 2006, 22(2): 51-55.
    5.冯书亮,任国栋.苏云金芽孢杆菌HBF-1及其在有害金龟治理中的应用[M].中国农业科技出版社, 2005: 1 - 2.
    6.冯英,薛庆中.作物抗虫基因工程及其安全性[J].遗传, 2001, 23(6): 571-576.
    7.高贵田,陈克平,姚勤,王林玲,陈慧卿.家蚕羧酸酯酶基因克隆及差异表达[J].昆虫学报, 2006, 49(6): 930–937.
    8.高金亮,罗建勋,樊瑞泉,魏永红,李文卉,任巧云,关贵全,殷宏.青海血蜱cDNA表达文库的免疫学筛选和阳性克隆的鉴定[J].中国兽医学报, 2006, 27(6): 461-464.
    9.胡蓉,孟小林,徐进平,王健,鲁伟.棉铃虫颗粒体病毒增效蛋白基因2.6kb片段的表达[J].中国病毒学, 2001, 16(4): 364-368.
    10.金东雁,黎孟枫,侯云得等译.分子克隆实验指南[M].第二版,北京:科学出版社, 1999, 398-400.
    11.吉洪湖,袁哲明.围食膜:害虫生物防治的潜在靶标[J].昆虫学报, 2005, 48(6): 968-974.
    12.李永丹,赵朝阳,王丽英.亚洲小车蝗痘病毒增效因子的初步研究[J].中国病毒学, 2003, 18 (5): 478 - 481.
    13.刘平,孟小林,徐进平,姜小文,叶林柏,郜金荣.粉纹夜蛾颗粒体病毒增效因子C-末端片段的克隆表达及其生物活性初步测定[J].中国生物防治, 1999, 15(4): 188-189.
    14.刘强,丁翠,蔡秀玉.粘虫颗粒体病毒增效因子的分离纯化及其生化性质[J].病毒学报, 1998, 14 (4): 352 - 358.
    15.刘相国,杨恭,邱并生,张克勤,田波.棉铃虫颗粒体病毒增效蛋白基因5’端截短片段的表达及增效活性测定[J].微生物学报, 2001, 41(2): 167-172.
    16.刘志刚,黄炯烈,朱振宇,周珍文,刘玉琳,龚十妹.美洲大蠊若虫cDNA表达文库的构建和初步鉴定[J].中华微生物学和免疫学杂志, 2001, 21(增刊): 4-6.
    17.陆健等.蛋白质纯化技术及应用[M].北京:化学工业出版社, 2005: 271– 31.
    18.欧洋,孟小林,徐进平.棉铃虫颗粒体病毒增效蛋白基因2.1kb片段在大肠杆菌中的表达[J].生物工程学报, 2000, 16(5): 595-598.
    19.彭辉银,李星,张双民,陈新文,胡志红.中国棉铃虫核型多角体病毒几丁质酶基因的定位与克隆[J].中国病毒学, 1998, 13 (2): 139-143.
    20.彭宇,王荫长.昆虫几丁质酶作为生防措施促进因子的应用前景[J].世界农药, 2002, 24 (1): 27-30.
    21.石磊.抗白纹伊蚊组织抗体在蚊体内的动态分布[J].中国寄生虫病防治杂志, 2001, 14 (1): 146 - 147.
    22.宋晓伟,康健,林滢.改良的考马斯亮蓝G-250染色法简便快捷测定微量蛋白浓度[J].洛阳医专学报, 1997, (3): 150 - 152.
    23.孙秀珍,刘昀.霜天蛾cDNA表达文库的构建和初步鉴定[J].西安交通大学学报, 2005, 26 (3): 244-246, 279.
    24.滕霞,孙曼齊.羧酸酯酶研究进展[J].生命科学, 2003, 15(1): 32-35.
    25.王丙丽,王洪亮.花生田蛴螬的成灾原因及综合治理[J].河南农业科学, 2006, 7: 66-68.
    26.王华梁,龚兰生,孔宪涛,蔡伟箐,于金德,戚文航.人血小板cDNA文库的建立[J].中华血液学杂志, 1996, 17(3): 125-127.
    27.王来元,王金星,赵小凡,王来城,康翠杰.家蝇cDNA文库的构建[J].动物学研究, 2001, 22(2): 159-162.
    28.汪磊,杜冰,吴淼,周忠良.人肝癌细胞移植瘤cDNA表达文库的构建及鉴定[J].华东师范大学学报(自然科学版), 2007, 4: 137-140.
    29.汪琳,周泽扬,鲁成.龙角蚕中肠组织cDNA文库的构建[J].蚕学通讯, 2001, 21(3): 1-4.
    30.汪世华,王文勇,黄益洲,林琳,沙莉.丝氨酸蛋白酶研究进展,福建农业学报, 2007, 22(4): 453-456.
    31.王荫长主编.昆虫生物化学[M].北京:中国农业出版社, 2001.
    32.相静波,刘惠霞,吴文君.昆虫围食膜的研究进展[J].昆虫知识, 2004, 41(2): 116-122.
    33.徐光域,颜军,郭小强,刘嵬,李晓光,苟小军.硫酸-苯酚定糖法的改进与初步应用[J].食品科学, 2005, (8): 342 - 346.
    34.晏慧君,黄兴奇,程在全. cDNA文库构建策略及其分析研究进展[J].云南农业大学学报, 2006, (1): 1-6.
    35.杨成君,王军. cDNA文库的构建策略及其应用[J].生物技术通报, 2007(1) :6-9.
    36.于桂华,闻宝莲,刘钊,程政军,范文,张爱禄.东北大黑鳃金龟生物学习性及防治技术[J].林业科技, 2000, 25(3): 25-26.
    37.袁哲明,孟小林,刘树生.粉纹夜蛾颗粒体病毒增效基因3’端215kb片段在大肠杆菌中的表达[J].昆虫学报, 2001, 44(2): 155-160.
    38.张克斌,谭六谦.昆虫生理[M].西安:陕西科学技术出版社, 1985.
    39.张惟杰.糖复合物生化技术研究[M].杭州:浙江大学出版社, 1994.
    40.张霞,李国勋,郭巍.甜菜夜蛾肠粘蛋白cDNA基因的分子可隆与序列分析[J].中国农业科学, 2008, 42(11): 3898-3904.
    41.张严峻,谭军,林玉清.低温和几丁质酶处理对棉铃虫围食膜的影响[J].中国生物防治, 2000, 16 (4): 152-155.
    42.朱蓉,彭建新,洪华珠.光增白剂对甜菜夜蛾围食膜结构的作用与影响[J].昆虫学报, 2003, 46(4): 424-428.
    43.朱玉,吴茜,高越峰,徐鸿林,刘春明,周兆斓,朱祯,李向辉.雪花莲外源凝集素基因的克隆、序列分析和植物表达载体的构建[J].农业生物技术学报, 1997, 5 (4): 331-338.
    44.朱玉,朱祯,徐鸿林.雪花莲外源凝集素基因的克隆及其多态性分析.高技术通讯, 1999, 9 : 36-41.
    45. Adang M J, Spence K D. Biochemical comparisons of the peritrophic membrane formation in the lepidopterans, Orgyia pseudotsugata and Manduca Sexta [J]. Comp.Biochem. Physiol., 1982, 73B: 645-649.
    46. Baines D M. Observations on the peritrophic membrane of Locusta migratoria migratoriodes (R.and F.) nymphs [J]. Acrida, 1978, 7: 11-21.
    47. Balbiani E G. Etudes Anatomiques et histologiques sur le tube digestive des [J].Crytops. Arch. Zool. Exp. Gen., 1890, 8: 1-82.
    48. Barbehenn R.V., Martin M. M. The protect role the peritrophic membrane in the tannin-tolerant larvae of Orgyia leucostigma (Lepidoptera) [J]. J. Insect Physiol., 1992, 38: 973-980.
    49. Barbehenn R.V., Martin M. M Permeability of the peritrophic envelopes of herbivorous insects to dextraan suLfate: a test of the polyanion exclusion hypothesis [J]. J. Insect physiol., 1997, 43(3): 243-249.
    50. Bischoff D S, Slavicek J M. MolecuLar analysis of an enhancin gene in the Lymantria dispar nuclear polyhedrosis virus [J]. Virol, 1997, 71: 8133-8140.
    51. Carmbell P M, Newcomb R D, Russell R J. Two different amino acid substitutions in the ali-esterase E3 confer alternative types of organophsphorus insecticides resistance in the sheep blowfly, Lucilia Cuprina [J]. Insect Biochemistry and MolecuLar Biology, 1998, 28: 139-150.
    52. Casu R, Eisemaan C, Pearson R, Riding G, East I, Donaldson A, Cadogan L, Tellam R L. Antibody-mediated inhibition of the growth of larvae from an insect causing sutaneous myiasis in a mammalian host [J]. Proc. Natl. Acad. Sci. USA, 1997, 94: 8939-8935.
    53. Christeller, J T, Laing W A, Markwickand N P, Burgess E P J. Midgut protease activities in 12 phytophagous Lepidoptera larvae: dietary and protease inhibitor interaction. Insect Biochem. Mol. Biol. 1992, 22(7):735-746.
    54. Claudianos C, Kussel R J, Oakeshott J G. The same amino acidsubstitution in the orthologous esterases confers organophosphate resistance on the house fly and a blowfly [J]. Insect Biochemistry and MolecuLar Biology, 1999, 29: 675-686.
    55. Corsaro B G, Gijzen M, Wang P. Parasites and Pathogens of Insects [M]. London: Academic Press, 1993, 127-145.
    56. Cox RA., 1977. Structure and function of prokaryotic and eukaryotic ribosomes[J]. Prog.Biophs. Mol. Biol., 32: 193-211.
    57. Craig E., Wheelock G S, James O. Overview of Carboxylesterases and their role in the metabolism of insecticides [J]. Journal Of Pesticide Science, 2005, 30(2): 75–83.
    58. De Mets R, Jeuniaux C. Sur les substances organiques constituant la membrane peritrophique des insects [J]. Arch. Int. Physiol. Biochem., 1962, 70: 93-96.
    59. Derksen A C, Granados R R. Alteration of a lepidopteran peritrophic membrane by bacuLoviruses and enhancement of viral infectivity [J]. Viology, 1988, 167: 242-250.
    60. Devenport M, Alvarenga P H, Shao L. Identification of the Aedes aegypti peritrophic matrix protein AeIMUCI as a heme-binding protein [J]. Biochemistry, 2006, 45(31): 9540-9549.
    61. Devenport M, Fujioka H, Jacobs-Lorena M. Storage and secretion of the peritrophic matrix protein Ag-Aper1 and trypsin in the midgut of Anopheles gambiae [J]. Insect Mol. Biol., 2004, 13(4): 349-358.
    62. Dorner R, Peters W. Localization of suger components of glycoproteins in peritrophic membranes of larval of Diptera (CuLicidae, SimuLiidae) [J]. Entomol. Gen., 1988, 14: 11-24.
    63. Edwards M J, Jacobs-lorena M. Permeability and disruption of the peritrophic matrix and caecal membrane from Aedes aegypti and Anopheles gambiae mosquito larvae [J]. J. Insect physiol., 2000, 46: 1313-1320.
    64. Eisemann C H , Wijffels G, Tellam R L , Secretion of the type 2 peritrophic matrix protein , peritrophin-15, from the cardia[J]. Archives of Insect Biochemistry and Physiology, 2001, 47: 76-85.
    65. Elvin C M, Vuocolo T, Pearson R D, East I J, Riding G A, Eisemann C H, Tellam R L. Characterization of a major peritrophic membrane protein, peritrophin-44, from the larvae of Lucilia cuprina cDNA and deduced amino acid sequences [J]. J. Biol. Chem., 1996, 271(15): 8925-8935.
    66. Elvin, C M, Whanand V, Riddles P W. A family of serine protease genes expressed in aduLt buffalo fly (Haenatobia irritans exigua) [J]. Mol. Gen. Genet., 1993, 240: 132-139.
    67. Endege W O, Steinmann K E, Boardman L A. Representative cDNA libraries and theirutility in gene expression profiling [J]. Biotechniques, 1999, 26(3): 542-548, 550.
    68. Espionza-Fuentes F P, Terra W R. Physiological adaptations for digesting bacteria water fluxes and distribution of digestive enzymes in Musca domestica larval midgut [J]. Insect Biochem., 1987, 17: 809-817.
    69. Ferreira A H P, Cristofoletti P T, Lorenzini D M, Guerra L O, Paiva P B, Briones M R S, Terra W R, Ferreira C. Identification of midgut microvillar proteins from Tenebrio molitor and Spodoptera frugiperda by cDNA library screenings with antibodies [J]. J. Insect Physiol., 2007, 53: 1112-1124.
    70. Forcada C, Alcácer E, GarceráMD, Tato A, Martinez R. Differences in the midgut proteolytic activity of two Heliothis virescens strains, one susceptible and one resistant to Bacillus thuringiensis toxins [J]. Arch Insect Biochem Physiol, 1996, 31: 257-272.
    71. Gall L G, Corsro B G, Hughes R R. In vivo enhancement of bacuLovirus Infcetion by the viral enhancin factor of a granulosis virus of the cabbage looper, Trichoplusia ni [J]. J. Invertebr. Pathol., 1991, 58 (2): 203-210.
    72. Gijzen M, Roelvink P, Grnaados R R. Characterization of viral ehnnacin activity from Trichoplusia ni grnauLosis virus [J]. J. Invertebr. Pathol., 1995, 65 (3): 289-294.
    73. Glare, T R , Corbett, G E, Sadler T J. Association of a large plasmid with amber disease of the New Zealand grass grub, Costelytra zealandica, caused by Serratia entomophila and Serratia proteamacuLans. J. Invertebr. Pathol., 1993, 62: 165–170.
    74. Claudianos C, Kussel R J, Oakeshott J G. The same amino acidsubstitution in the orthologous esterases confers organophosphate resistance on the house fly and a blowfly [J]. Insect Biochemistry and MolecuLar Biology, 1999, 29: 675-686.
    75. Goto C. Euhancement of a nuclear polyhedrosis virus infection by a granulosis virus isolated from the spotted cutworm, Xestia c-nigrum L [J]. Appl. Ent. zool., 1990, 25(1): 135-137.
    76. Grkovic, S, Glare, T R , Jackson T A, Corbett G E. Genes essential for amber disease in grass grubs are located on the large plasmid found in Serratia entomophila and Serratia proteamacuLans [J]. Appl. Environ. Microbiol., 1995, 61: 2218–2223.
    77. Guo W, Li G X, Pang Y, Wang P. A novel chitin binding protein identified from theperitrophic membrane of the cabbage looper, Trichoplusia ni [J]. Insect Biochem. Mol. Biol., 2005, 35: 1224-1234.
    78. Hao Z, Aksoy S. ProventricuLus-specific cDNAs characterized from the tsetse, Glossina morsitans morsitans [J]. Insect Biochem. Mol. Biol., 2002, 32: 1663-1671.
    79. Hasmh Imoto Y, Corsaro B G, Granados R R. Location and nucleotide sequence of the gene encoding the viral enhancing factor of the Trichoplusin ni granulosis virus [J]. Gen. Virol., 1991, 72: 2645-2651.
    80. Hayakawa T, Xu J H, Hukuhara T. Cloning and sequencing of the gene for an enhancin factor from Pseudaletia separata entomopoxvirus [J]. Gene, 1996, 177: 269-270.
    81. Heckel D G. The complex genetic basis of resistance to Bacillus thuringiensis toxin insects [J]. Biocontrol Sci. Technol., 1994, 4: 405-417.
    82. Hegedus, D, Erlandson M, Gillott C, Toprak1 U. New insights into peritrophic matrix synthesis, architecture, and function [J]. Annual Review of Entomology, 2009, 54: 285-302.
    83. Hofstetter Vanden J B. Specific excision of the inserted DNA segment from hybrid plasmids constructed by the ploy (dA) Poly (dT) methods. Biochim. Biophys. Acta. 1976, 454, 587-591.
    84. Hopkins T L and Harper M S. Lepidopteran peritrophic membranes and effects of dietary wheat germ agglutinin on their formation and structure. Arch. Insect Biochem. Physiol. 2001, 47:100-109.
    85. Houk E J, Obie F, Hardy J L. Peritrophic membrane formation and the midgut barrier to arboviral infection in the mosquito, CuLex tarsalis Coquillett (Insecta, Diptera) [J]. Acra. Trop., 1979, 36: 39-45.
    86. Hukuhara T, Hayakawa T, Wijonarko A. Increased bacuLovirus susceptibility of armyworm larvae feeding on transgenic rice plants expressing an entomopoxvirus gene [J]. Nature Biotechnology, 1999,17:1122-112
    87. Hukuhara T, Zhu Y F. Enhancements to the in vitro infectivity of a nuclear polyhedrosis vius by a factor in the capsuLe of a grnauLosis virus [J]. J. Invelebr. Pathol., 1989, 54: 71-83.
    88. Hurst M R, Glare T R , Jackson T A, and Ronson C W. Plasmid-located pathogenicity determinants of Serratia entomophila, the causal agent of amber disease of grass grub, show similarity to the insecticidal toxins of Photorhabdus luminescens [J]. J. Bacteriol., 2000, 182: 5127–38.
    89. Jiang W, Bond J S. Famillies of metalloendopeptidases and their relationships [J]. FEBSLetters, 1992, 312: 110-114.
    90. Johnston, K A, Lee M J, Gatehouseand J A, Anstee J H. The partial purification and characterization of serine protease activity in midgut of larval Helicoverpa armigera [J]. Insect Biochem., 1991, 21(4): 389-397.
    91. Jackson T A, Christeller J T, McHenry J Z, Laing W A. Quantification and kinetics of the decline in grass grub endopeptidase activity during initiation of amber disease [J]. J. Invertebr. Pathol., 2004, 86: 72–76.
    92. Karunaratne S H P P, Small G J, Hemingway J. Characterization of the elevated esterase-associated insecticide resistance mechanism in Nilaparvata lugens Stal and other planthopper species [J]. International Journal of Pest Management, 1999, 45 : 225-230.
    93. Kemet D, Spence Michael, Kawata Y. Permeability characteristics of the peritrophic membranes of Manduca Sexta larvae [J]. Insect physiol., 1993, 39: 785-790.
    94. Kenchington W. The insect integument [M]. In: Hepburn H. R (ed.). Amsterdam: Esevier Science, 1976, 497-513.
    95. Krem M M and Di Cera E. Molecular markers of serine protease evolution [J]. EMBO. J. , 2001, 20: 3036-3045.
    96. Kotani E, Niwa T, Tokizane M, Suga K, Sugimura Y, Oda K, Moriand H, Furusawa T. Cloning and sequence of a cDNA for a highly basic protease from the digestive juice of the silkworm, Bombyx mori [J]. Insect Mol. Biol., 1999, 8(2): 299-304.
    97. Kramer K J, Hopkins T L, Schaefer J. Application of solids NMR to the analysis of insect sclerotized structures [J]. Insect. Biochem. Mol. Biol., 1995, 25: 1067- 1080.
    98. Lehane M J. Peritrophic matrix structure and function [J]. Annu. Rev. Entomol., 1997, 42: 525-550.
    99. Lehane, M .J. Formation and histochemical structrure of the peritrophic membrane in thestablefly, Stomoxys calcitrans [J] . J. Insect. Physiol., 1976, 22: 1551-1557.
    100.Lehane M J, Allingham P G, Weglicki P. Composition of the peritrophic matrix of the tsetse fly, Glossina morsitans morsitans [J]. Cell. Tissue. Res., 1996, 283: 375-384.
    101.Lehane S M, Assinderand S J, Lehane M L. Cloning, sequencing, temporal expression and tissue-specificity of two serine protease from the midgut of the blood-feeding fly Stomoxys calcitrans [J]. Ero. J. Biochem., 1998, 254: 290-296.
    102.Lepore L S, Roelvink P R, Granados R R. Enhancin, the granulosis virus protein that facilitates nucleopolyhedrovirus (NPV) infections, is a metalloprotease [J]. Journal of Invertebrate Pathology, 1996, 68: 131-140.
    103.Masao M, Katsuyoshi K, Satoshi S, Hideharu T, Tetsuro Y. MolecuLar cloning and characterization of a novel carboxylesterase-like protein that is physiologically present at high concentrations in the urine of domestic cats [J]. Biochemical Journal, 2003, 370(1): 101–110.
    104.Marshall S D G, Gatehouse L N, Becher S A, Christeller J T, Gatehouse H S, Hurst, M R H Boucias D G, Jackson T A. Serine proteases identified from a Costelytra zealandica (White) (Coleoptera: Scarabaeidae) midgut EST library and their expression through insect development [J]. Insect MolecuLar Biology, 2008, 17(3): 247–259.
    105.Miller N, Lehane M J. Ionic environment and the permeability properties of the peritrophic membrane of Glossina morsitans morsitans [J]. J. Insect Physiol., 1993, 39: 139-144.
    106.Moskalyk L A, Oo, M M, Jacobs-Lorena M. Peritrophic matrix proteins of Anopheles gambiae and Aedes aegypti [J]. Insect Mol. Biol., 1996, 5:261-268.
    107.Ono M, Kato S. Amino acid composition of the pertrophic membrane in the silkworm, Bombyx mori L [J]. BuLl. SericuLt. Exp. Stn. Jpn.1968, 23: 1-8.
    108.Peng J, Zhong J, Granados R R. A bacuLovirus enhancin alters the permeability of a mucosal midgut peritrophic martix from lepidopteran larvae [J]. J. Insect Physiol., 1999, 45:159-166.
    109.Peters W. Peritrophic membranes [M]. Springer, New York, 1992.
    110.Peters W, Heitmann S, Haese J D. Formation and fine structure of peritrophic membranesin the earwig, ForficuLa auricuLaria (Dermaptera: ForficuLidae) [J]. Entomol. Gen., 1979, 5: 241-254.
    111.Peters W, Laka I. Electron microscopic localisation of chitin using colloidal gold labeled wheat germ agglutinin [J]. Histochemistry, 1986, 84: 155-160.
    112.Peters W, Zimmermann U, Becker B. Investigations on the transport function and structure of peritrophic membranes.ⅣAnisotropic cross bands in peritrophic membranes of Diptera [J]. J. Insect Physio., l973, 19: 1067-77.
    113.Raymond V, Barbehenn Michanel M. Peritrophic envelops permeablility in herbivorous insects [J]. Insect physiol., 1995, 41 (4): 303-311.
    114.Richards A G, Richards P A. The origins and composition of the peritrophic membrane of the mosquito Aedes aegypti [J]. J. Insect Physiol., 1971, 17: 2253-2275.
    115.Richards A G, Richards P A. The peritrophic membranes of insects [J]. Ann. Rev. Entomol., 1997, 22: 219-240.
    116.Roelv Ink P W, Corsaro B G, Granados R R. Characterization of the Helicoverpa am igera and Pseudaletion unipuncta granulovirus enhancin genes [J]. Gen Virol, 1995, 76: 2693-2705.
    117.Rupp R A, Spence K D. Protein alterations in Manduca sexta midgut and haemolymph following treatment with a sublethal dose of Bacillus thuringiensis crystal endotoxin [J]. Insect Biochem., 1985, 15: 147-154.
    118.Santos C D, Terra W. Distribution and characterization of oligomeric digestive enzymes from Erinnyis ello larvae and inferences concerning secretory mechanisms and the permeability of the peritrophic membrane [J]. Insect biochem., 1986, 16: 691-700.
    119.Sarauer B L, Gillott C, Hegedus Dwayne. Characterization of an intestinal mucin from the peritrophic matrix of the diamondback moth, Plutella xylostella [J]. Insect. Mol. Biol., 2003, 12: 333-343.
    120.Seregni E, Botti C, Massaron S. Structure, function and gene expression of epithelial mucins [J]. Tumori, 1997, 83( 3): 625-632.
    121.Schorderet S, Pearson R D, Vuocolo T, Eisemann C, Riding G, Tellam R L. cDNA and deduced amino acid sequences of a peritrophic membrane glycoprotein,‘peritrophin-48’,from the larvae of Lucilia cuprina [J]. Insect. Biochem. Mol. Biol., 1998, 28: 99-111.
    122.Shapiro M, Robertson J L. Enhancement of gypsy moth bacuLovius activity by optical brightener [J]. J. Econ. Entomol., 1992, 85 (4): 1120-1124.
    123.Shen Z, Jacobs-Lorena M. A type I peritrophic matrix protein from the malaria vector Anopheles gambiae binds to chitin. Cloning, expression and characterization [J]. J. Biol. Chem., 1998, 273: 17665-17670.
    124.Shi, X, Chamankhah M, Visal-Shah S, Hemmingsen S M, Erlandson M, Braun L, Alting-Mees M, Khachatourians G G, O'grady M, Hegedus D D. Modeling the structure of the type I peritrophic matrix: characterization of a Mamestra configurata intestinal mucin and a novel peritrophin containing 19 chitin binding domains [J]. Insect Biochem. Mol. Biol., 2004, 34: 1101-1115.
    125.Shi X, Karkut T, Chahmanhkah M. 5'-RACEing across a bridging oligonucleotide [J]. Biotechniques, 2002, 32( 3): 480-482.
    126.Shen Z, Jacobs-Lorena M. Evolution of chitin-binding proteins in invertebrates [J]. J. Mol. Evol., 1999, 48: 341-347.
    127.Smith C J, Kaper J B, Mack D R. Intestinal mucin inhibits adhesion of human enteropathogenic Escherichia coli toHep-2 cells [J]. J. Ped. Gastroentomol. Nutr., 1995, 21: 269-276.
    128.Stamm B, D’Haese J, Peters W. SDS gel electrophoresis of proteins and glycoproteins from peritrophic membranes of some Diptera [J]. J. Insect Physiol., 1978, 24: 1-8.
    129.Streng R. Die Erzeugung eines chitinigen Kokongadens aus peritropischer Membran beider Larvae on Rhynchaenus fagi L. (Coleoptera: CurcuLionidae) [J]. Z. Morphol. Okol. Tiere., 1973, 75: 137-164.
    130.Tanada Y. Descriptions and characteristics of a nuclearpolyhedrosis virus and a granulosis virus of the armyworm, Pseudaletia unipuncta (Haworth) (Lepidoptera: Noctuidae) [J]. Journal of Insect Pathology, 1959, 1: 197-214.
    131.Tellam R L. The peritrophic matrix [M]. In:Billingsley P.F., Lehane M.J. editors. The biology of the insect midgut. London: Chapman and Hall.1996, 86-114.
    132.Tellam R L, Eisemann C, Casu R, Pearson R. The intrinsic peritrophic matrix proteinperitrophin-95 from larvae of Lucilia cuprina is synthesised in the cardia and regurgitated or excreted as a highly immunogenic protein [J]. Insect Biochem. Mol. Biol. 2000, 30: 9-17
    133.Tellam RL, Wijffels G, Willadsen P. Peritrophic matrix proteins [J]. Insect Biochem. Mol. Biol., 1999, 29( 2): 87-101.
    134.Tellam R L, Vuocolo T, Eisemann C. Identification of an immuno-protective mucin-like protein, peritrophin-55, from the peritrophic matrix of Lucilia cuprina larvae [J]. Insect Biochem. Mol. Biol., 2003, 33( 2): 239-252.
    135.Terra W R, Espinoza-Fuentes F P, Ribeiro A F, Ferreira C. The larval midgut of the housefly (Musca domestica): uLtrastructure, fluid fluxes and ion secretion in relation to the organization of digestion [J]. J. Insect physiol., 1988, 34: 463-472.
    136.Tomomi F, Masakiyo H, Tetsuo S. Synergistic role of specificity proteins and upstream stimuLatory factor 1 transactivation of the mouse carboxylesterase 2/microsomal acylcarnitine hydrolase gene promoter [J]. Biochemical Journal, 2004, 384, 101–110.
    137.Uhcima K, Egerter D E, Tanlada Y. Synergistic factor of a granuosis virus of the armyworm, Pseudaletia unipuncat: Its uptake and enhancement of virus infection in vitro [J]. J. Invertebr. Pathol., 1989, 54 (2): 156-164.
    138.Vaughan A, Hawkes N, Hemingway J. Co-amplification explains linkage disequilibrium of two mosquito esterase genes in insecticide-resistant CuLex quinquefasciatus [J]. Biochemical Journal, 1997, 325: 359-365.
    139.Wang P, Hammer D A, Granados R R. Interaction of Trichoplusia ni granulosis virus-encoded enhancin with the midgut epithelium and peritrophic membrane of four lepidopteran insects [J]. J. Gen. Virol., 1994, 66: 541-550.
    140.Wang P, Granados R R. An intestinal mucin is the target substrate for a bacuLovirus enhancin [J]. Proc. Natl. Acad. Sci. USA, 1997a, 94: 6977-6982.
    141.Wang P, Granados R R. MolecuLar cloning and sequencing of a novel invertebrate intestinal mucin cDNA [J]. J. Biol. Chem., 1997b, 272: 16663-16669.
    142.Wang P, Granados R R. MolecuLar structure of the peritrophic membrane (PM): identification of potential PM target sites for insect control [J]. Arch. Insect. Biochem.Physiol., 2001, 47: 110 - 118.
    143.Wang P, Granados R R. Observations on the presence of the peritrophic membrane in larval Trichoplusia ni and its role in limiting bacuLovirus infection [J]. J Invertebr. Pathol., 1998, 72( 1): 57-62.
    144.Wang P, Granados R R. Calcofluor disrupts the midgut defense system in insects [J]. Insect Biochem. Mol. Biol, 2000, 30: 135-143.
    145.Wang P, Li G, Granados R R. Identification of two new peritrophic membrane proteins from larval Trichoplusia ni: structural characteristics and their functions in the protease rich insect gut [J]. Insect Biochem. Mol. Biol., 2004, 34: 215-227.
    146.Wang, P., Zhang, X. and Zhang, J. MolecuLar characterization of four midgut aminopeptidase N isozymes from the cabbage looper, Trichoplusia ni [J]. Insect Biochem. Mol. Biol.. 2005, 35: 611-620.
    147.Wataru M, Hiromu K, Ritsuko M, Yutaka T, Tomoaki Si, Kazuhisa M, Sanae W. Spindles of an entomopoxvirus facilitate its infection of the host insect by disrupting the peritrophic membrane [J]. J. Virol., 2007, 81(8): 4235-4243.
    148.Waterhouse D F. The rate of production of the peritrophic membrane in some insects [J]. Aust. J. Biol. Sci., 1954, 7: 59-72.
    149.Weinstein J N, Caplan S R. Charge mosaic membranes enhanced permeability and negative osmosis with a symmetrical salt [J]. Science, 1968, 161: 70-72.
    150.Wijffels G, Eisemann C, Riding G, Pearson R, Jones A, Willadsen P, Tellam R. A novel family of chitin-binding proteins from insect type 2 peritrophic matrix. cDNA sequences, chitin binding activity, and cellular localization [J]. J. Biol. Chem., 2001, 276: 15527-15536.
    151.Xu J H, Hukuhara T. Ehanced infection of a nuclear polyhedrosis virus in larvae of the armyworm, Pseudaletia separata, by a factor in the spheroids of an entomopoxvirus [J]. J. Invertebr. Pathol., 1994, 60: 259-264.
    152.Yan B, Yang D, BuLlock P, Parkinson A. Rat serum carboxylesterase. Cloning, expression, reguLation, and evidence of secretion from liver [J]. Journal of Biological Chemistry, 1995, 270(32): 19128-19134.
    153.Yang Y J, Davies D M. The peritrophic membrane in aduLt simuLiids (Diptera) before and after feeding on blood sucrose mixtures Entomologia [J]. Exp. Appl., 1977, 22: 132-140.
    154.Yousef G M, Elliott M B, Kopolovic AD, Serry E, Diamandis E P. Sequence and evolutionary analysis of the human trypsin subfamily of serine peptidases [J]. Biochim. Biophys. Acta, 2004, 1698: 77-86.
    155.Yunovitz H, Sneh B, Schuster S, Oron U, Broza M. A new sensitive method for determining the toxicity of a highly purified fraction from delta-endotoxin produced by Bacillus thuringiensis on isolated larval midgut of Spodoptera littoralis (Lepidoptera, Noctuidae) [J]. J. Invertebr. Pathol., 1986, 48: 223-231.
    156.Zhu Y F, Hukuhara T, Tamura K. Location of a synergistic actor in the capsuLe of a granulosis virus of the armyworm, Pseudaletia unipucta [J]. J. Jnvertebr. Pathol., 1989, 54(1): 49-56.
    157.Zhuzhikov D P. Function of the peritrophic membrane in Musca domestica L. and Calliphora erythrocephala Meig [J]. J. Insect Physiol., 1964, 10: 273-278.
    158.Zimmermann D, Peters W. Comp. Fine structure and permeability of peritrophic membranes of Calliphora enythrocephala (Meigen) ( Insecta: Diptera) after inhibition of chitin and protein synthesis [J]. Biochem. Physiol., 1987, 86B (2) : 353-360.
    159.Zimmermann U, Hallstein H. Untersuchungen uber den Transport von Stoffen durch peritrophische Menbranen.Ⅱ.Regelmaassige Bandenstruktur in peritrophischen Membranen [J]. Z. Naturforsch., 1970, 25B: 1155-1157.
    160.Zimmermann U, Mehaln D, Peters W. Investigations on the transport function and structure of peritrophic membranes.V. Amino acid analysis and electron microscopic investigations of the peritrophic membranes of the blowfly Calliphora erythrocephala Mg [J]. Comp. Biochem. Physiol., 1975, 51B: 181-186.
    161.Zimoch, L, Merzendorfer, H. Immunolocalization of chitin synthase in the tobacco hornworm [J]. Cell Tissue Res., 2002, 308: 287-297.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700