用户名: 密码: 验证码:
混凝土超声波层析成像的理论方法和试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土结构由于设计、施工、荷载以及材料等方面的原因,在建造和使用过程中,不可避免地存在一些宏观损伤和缺陷,严重影响结构物的安全性和耐久性。新近引入的混凝土超声波层析成像技术,可用“图像”的方式定量化地反映层析面上混凝土的内部缺陷,是混凝土超声波探伤由无损检测阶段向无损诊断阶段发展的必然趋势。目前这一前沿课题尚处于研究的初步阶段,为此本文结合国家自然科学基金项目“混凝土超声波层析成像方法的基础研究”(No. 50678066),从混凝土超声波层析成像的理论基础、反演算法、反演策略、不完全射线反演和反演图像处理等五个方面进行较深入系统的研究,主要的工作内容如下:
     (1)广泛搜集整理国内外相关文献,扼要阐述层析成像数学基础,系统总结混凝土超声波层析成像的相关理论方法,为后续的研究工作奠定基础。
     (2)针对混凝土超声波层析成像的不适定性,提出了基于自然权的加权广义逆与杨文采正则化方法相结合的反演算法(NWGI算法),以适应混凝土超声波层析成像的特点。通过数值试验和混凝土试件试验,比较了本文NWGI算法与常规SIRT算法和CGLS算法的反演图像。对比结果表明,NWGI算法要优于常规算法,具有更高的分辨率和可靠性。通过2组共8个内部存在模拟缺陷的混凝土试件模型的成像试验,检验NWGI算法的有效性。成像结果表明,NWGI算法的反演结果能够较好地反映各个混凝土试件内部缺陷的位置和分布。
     (3)为获得与实际情况相吻合的真实解,研究了混凝土超声波层析成像的反演策略。①提出了定性反演方法,实现声阴影重叠法判别缺陷的计算机处理。数值模型和混凝土试件模型的试验表明,定性反演可以大致识别对象内部声速偏高、偏低和声速正常区域的位置和分布。②在获取定性反演先验信息的基础上,提出了两阶段反演的方法:第一阶段,区分优质像元和非优质像元,合理确定像元声速的迭代初值;第二阶段,区别对待优质像元和非优质像元的约束权重,定量反演最终的速度分布。2个混凝土试件的模型试验表明,两阶段反演能有效抑制伪像,具有比常规的一阶段反演更好的缺陷识别效果。③为了改善射线路径矩阵的数学性质,提出了自适应网格技术。通过合并那些只有少数射线甚至没有射线穿越的网格像元,使更新后的离散像元具有相对均衡的射线穿越长度,自主适应射线路径的几何分布,从根源上提高混凝土超声波层析成像的稳定性。数值试验表明,与常规的固定网格相比,基于自适应网格技术的层析成像表现出更好的抗噪能力和缺陷识别能力。
     (4)采用均匀试验设计方法布置不完全射线,研究了不完全射线布置的混凝土超声波层析成像的可行性。数值试验表明,在保证射线数量和射线代表性的前提下,不完全射线布置的层析成像可以达到甚至超过完全射线布置层析成像的缺陷识别效果。在不完全射线反演的基础上,还可以发展新的研究思路。对于布置不完全射线的试验设计方法进行了相关研究:①通过平衡深度搜索与广度搜索,改进了随机进化寻优算法,能够节省30~70%左右的计算时间。②提出了分步试验设计方法,通过化整为零地减小搜索空间,可比常规的一步试验设计方法节省40~60%左右的计算时间。对3个测试函数建立RBF神经网络替代模型,其误差分析表明,分步试验设计方法对于需要大规模试验样本点的替代模型是非常实用的。
     (5)研究了混凝土超声波层析成像的图像处理方法,增强缺陷识别能力。①采用中值滤波和基于SOFM神经网络的聚类分析进行反演图像的后处理。应用实例表明,这两种方法的联合使用可以有效地抑制伪像,凸显缺陷,提高层析图像的分辨率、可靠性和可读性。②采用基于小波变换的图像融合技术对不同反演参数下的层析图像进行信息融合。应用实例表明,图像融合可以有效综合被融合图像的信息,使融合后的层析图像具有较小的背景噪音和较好的缺陷识别效果。
There exist inevitably some macroscopical injuries and defects in concrete structure in the process of building and using, because of the reasons in design, construction, loads and materials so on. These defects should affect the safety and durability of structures seriously. Ultrasonic computerized tomography for concrete introduced recently, might reflect the inner defects of concrete by images in tomography. That is to be inevitable development tendency in ultrasonic test for concrete from non-destructive test to non-destructive diagnosis. At present, the theoretical research in this field is still on its early stage. Under the supports of the program of National Natural Science Foundation“method study on ultrasonic computerized tomography for concrete”(No. 50678066), this dissertation has made a relatively deeply and systematically researches from several aspects of theoretical basis, inversion algorithm, inversion strategy, incomplete rays inversion and procession of inversion images. The main content is as follows.
     (1) The domestic and international literature concerned was extensively collected and summarized, and the mathematical basis of computerized tomography was described briefly. The relative theories and methods on ultrasonic computerized tomography for concrete were systematically summarized. These works have established a good basis for future research.
     (2) According to the ill-posed nature of ultrasonic computerized tomography for concrete, a inversion algorithm is put forward, which combined the weighted generalized inverses based nature weight matrix with regularization methods of Yang Wencai. The algorithm meets the characteristics of ultrasonic computerized tomography for concrete. The inversion images of NWGI algorithm, conventional SIRT algorithm and CGLS algorithm are compared in terms of numerical models and concrete specimen models. The results show that NWGI algorithm is more excellent than conventional algorithm and has higher resolution and reliability. The efficiency of this algorithm is verified through two groups with a total of 8 concrete specimens which simulated different inner defects. The images results indicate that NWGI algorithm and its inversion images can reflect the location and distribution of inner defects in concrete specimens very well.
     (3) In order to obtain the real solution coincident with practical case, the inversion strategy of ultrasonic computerized tomography for concrete was studied.
     ①Qualitative inversion method was proposed to realize computer processing of defect identification by acoustic shadow overlapping method. The results of numerical models and concrete specimen models show that qualitative inversion can identify the location and distribution of regions in which interior sound velocity is high, low or normal approximately.②Based on the prior information obtained by qualitative inversion, the two stages inversion method was put forward. That is, the first stage is that distinguishing the high-quality element and non- high-quality element, and determining the initial iteration value of element sound velocity reasonably. The second stage is that treating differentially the constraint weights of the high-quality element and non- high-quality element, and then quantitatively inversing the final sound velocity distribution. The results of two concrete specimens indicate that the two stages inversion method can inhibit artifacts effectively and has better defect identification effect than normal one stage inversion.③The self- adaptability grid technique was proposed to improve the mathematical property of ray path matrix. The grids which traversed by a few or few rays were merged, and then the updated grids had equilibrium length of ray traversing relatively. That might self-adapt the geometric distribution of ray paths and improve the stability of ultrasonic computerized tomography for concrete from origin. The results of numerical models show that the computerized tomography used self- adaptability grid technique has strong anti-noise ability and capability of defect identification compared with the conventional stationary grids.
     (4) Adopting the uniform experiment design distributes the incomplete rays, and the feasibility of ultrasonic computerized tomography for concrete by incomplete rays distribution was studied. The results of numerical models show that on the premise of ensuring quantity and representativeness of rays, the defect identification capability of the computerized tomography by incomplete rays distribution can reach or be superior to the computerized tomography by complete rays distribution. This has brought new thinking to the research of computerized tomography. The experiment design methods of distributing incomplete rays were researched as followed.①The stochastic evolution and optimizztion algorithm was improved by means of balancing depth search and width search. The calculation time can be saved about 30~70%.②The fractional steps experiment design method was proposed. With decreasing the search space by the " break up the whole into parts " method, the calculation time of this method can be saved about 40~60% compared with the conventional one step experiment design method. The substitution model of RBF neural network was made respectively by 3 different test functions. The error analyses indicate that the fractional steps experiment design method is very practical for the substitution model needed large scale test sample points.
     (5) The image processing method of ultrasonic computerized tomography for concrete was studied also.①The median filtering and clustering analysis based on SOFM neural network were introduced to the post-procession of inversion images. The application examples show that both of the two methods can inhibit artifacts effectively, explain the defects and improve the resolution, reliability and readability of tomography images.②Image fusion technology based on wavelet transform was used to fuse information of tomography images in different inversion parameters. The application examples show that this method can integrate information of fused images effectively and make the tomography images fused have less background noise and better defect identification effect.
引文
[1]吴科如.混凝土破坏机理概论.混凝土与水泥制品, 1985, (1): 2-8
    [2]国家建筑工程质量监督检测中心.混凝土无损检测技术.北京:中国建材工业出版社, 1996, 1-48
    [3]吴慧敏.结构混凝土现场检测新技术—混凝土非破损检测.第二版.湖南长沙:湖南大学出版社, 1998, 1-69
    [4]胡建恺,张谦琳.超声检测原理和方法.安徽合肥:中国科学技术大学出版社, 1993, 11-50
    [5]赵永辉,吴健生.高频雷达在混凝土无损检测中的应用及关键技术. CT理论与应用研究, 2002, 9(2): 9-13
    [6] Sadowska Boczar. Application of acoustic emission to investigate the mechanical strength of ceramic materials. Journal of Ceramic Society of Japan, 1984, 12 (8): 639- 642
    [7] Tonolini F, Sala A, V illa G. General review of developments in acoustic emission methods. International Journal Pressure Vessels and Piping, 1987, 28 (2): 179-201
    [8] Ohtsu M. The history and development of acoustic emission in concrete engineering. Magazine of Concrete Research, 1996, 48 (177): 321- 328
    [9]陈兵,姚武,吴科如.声发射技术在混凝土研究中的应用.无损检测, 2000, 22(9): 387-390
    [10] Chen H L, Cheng C T, Chen S E. Determination of fracture parameters of mortar and concrete beams by using acoustic emission. Materials Evaluation, 1992, 1: 888- 894
    [11]罗骐先.混凝土无损检测方法的评价.冶金建筑技术与管理, 1993, (2): 1-9
    [12]张家骏.无损检测技术发展的新动向:第13届世界无损检测大会论文综述.中国机械工程, 1993, 4(1): 44-46
    [13]吴慧敏,吴新璇.建筑工程无损检测技术在我国的发展.工程质量, 1999, (5): 22-23
    [14]陈祥森.混凝土缺陷无损检测技术发展现状综述.福建建材, 2007, 96(1): 36-37
    [15] Martin J, Hardy M S A, Usmani A S, Forde M C. Accuracy of NDT in bridge assessment. Engineering Structure, 1998, 32(6): 979– 984
    [16] Dennis A S, Larry D O. Advanced NDT methods for evaluating concrete bridges and other structures. International Journal of Nondestructive Test and Engineering, 1995, 28(16): 349-357
    [17]陕西省建筑科学研究设计院,同济大学,等.超声法检测混凝土缺陷技术规程(CECS21: 2000).北京:中国工程建设标准化委员会, 2001, 1-26
    [18]张治泰.《超声法检测混凝土缺陷技术规程》修订.施工技术, 2000, 26(10): 48-48
    [19]郭成彬.智能超声探伤仪的现状和前景.无损检测, 1991, 13(1): 1-4
    [20]蒋危平.无损检测仪器的计算机化.无损检测, 1992, 14(1): 1-3
    [21]李沛然.超声波探伤仪的发展趋势.设备管理与维修, 2002, (5): 41-42
    [22]蒋危平,田建新,王子诚.数字化超声波探伤仪十五年技术进展.无损检测, 2004, 26(3): 145-148
    [23]黄政宇.土木工程材料.北京:高等教育出版社, 2003, 22-87
    [24] Popovics, S. Concrete Materials - Properties, Specifications and Testing. 2nd Edition. Noyes: William Andrew Publishing, 1992, 36-48
    [25]罗骐先,宋人心,傅翔.根据超声波探测结果判断混凝土内部缺陷的方法.水利水电技术, 1988, (2): 25-28
    [26]缪仑. CT技术在混凝土超声探伤中的应用: [湖南大学硕士学位论文].湖南长沙:湖南大学土木工程学院, 2001, 1-56
    [27]朱金颖,陈龙珠.混凝土受力状态下超声波传播特性研究.工程力学, 1998, 15(3): 111-117
    [28]赵明阶.结构砼损伤的超声成像模型研究.重庆交通学院学报, 2001, 20(B11): 86-90
    [29]罗松南,程红梅,童桦.混凝土结构中钢筋对波传播的影响分析.振动与冲击, 2005, 24(4): 66-68
    [30] Moser T J. Shortest path calculation of seismic rays. Geophysics Journal International, 1991, 56(1): 59~67
    [31]杜红阳,周群建.超声波无损检测在混凝土工程桩上的应用.岩土工程界, 2001, 4(8): 57-59
    [32]林军志,赵明阶,许锡宾,等.混凝土声学参数与应力相关性的试验研究. (第九届全国岩石动力学学术会议论文).岩石力学与工程学报, 2005, 24(A01): 4988-4996
    [33]董毓利.混凝土非线性力学基础.北京:中国建筑工业出版社, 1997, 34-75
    [34]夏纪真.超声检测技术中的缺陷定性方法.无损探伤, 1988, (4): 57-59
    [35]胡天明.超声探伤.北京:中国水利水电出版社, 1992, 44-61
    [36]王云昌,江波.超声波检测中对缺陷的定性分析.国外金属热处理, 2004, 25(6): 40-41
    [37]吴慧敏.混凝土缺陷探测的数值判据.混凝土及加筋混凝土, 1986, (2): 12-14
    [38]陈卫红,吴慧敏.混凝土桩内部缺陷的判据软件的开发.施工技术, 1998, (11): 35-36
    [39]南金生,马建军.超声波CT成像技术在桩基检测中的应用.地震学刊, 1999, (4): 43-46
    [40]邓万福.测斜原理在声波透射法中的应用.广东公路交通, 2000, 66(增刊): 258-259
    [41]杨世如.超声波透射法在钻孔灌注桩检测中的应用.上海地质, 2003, (4): 47-51
    [42]程睿,佴磊.声波透射法在松花江某特大桥钻孔灌注桩桩身完整性检测中的应用.岩土工程界, 2006, 9(10): 69-70
    [43]李亚平.采用模糊综合评判法判定混凝土缺陷的研究.工业安全与防尘, 1998, (1): 38-41
    [44]巫英凯,黄永莱.基桩混凝土无损检测—超声波脉冲NFP法.冶金建筑技术与管理, 1993, (2): 10-14
    [45]卢明良.混凝土缺陷的模糊综合评判.无损检测, 1991, 13(11): 301-303
    [46]袁群,李斌,耿晔,等.超声波检测桩基质量的模糊综合分析.郑州工业大学学报, 1999, 20(3): 35-38
    [47]罗南星.测量误差及数据处理.北京:中国计量出版社, 1987, 37-52
    [48]田社平.采用数字滤波技术的数据采集误差分析.计量技术, 1994, (5): 32-32
    [49]杜鹤亭,高林奎,樊戈平.数字滤波技术在轨道检测中的应用.中国铁道科学, 1997, 18(1): 79-91
    [50] N. A. Muncy. Noise susceptibility in analog and digital signal processing system. Journal of Audio Engineering Society, 1995, 43: 435-453
    [51]陈长忠,陈忠.过速采样和数字滤波技术及其应用.国外分析仪器技术与应用, 1998, (4): 25-28
    [52]王克模,严朝晖.消除神经信号采样中噪声的数字滤波技术及其比较.科学通报, 1993, 9(3): 182-186
    [53] Marble A E, Zayezdny A M. Adaptive numerical smoothing: an efficient method of conditioning physiological signals. Medical and Biological Engineering and Computing, 1989, 27(2): 171-180
    [54] Christov I I, Dotsinsky I A. New approach to the digital elimination of 50 Hz interference from the electrocar-diogram. Medical and Biological Engineering and Computing, 1988, 26(4): 431-434
    [55] N. M. Bilgutay, et a1. Analysis of a non-linear frequency diverse clutter suppression algorithm. Ultrasonics, 1990, 28(3): 90-96
    [56]苏建峰,吴海涛,边玉敬.自适应滤波技术的研究.飞行器测控学报, 2006, 25(2): 71-74
    [57]杨克己.基于神经网络的自适应滤波技术及其在超声检测中的应用.仪器仪表学报, 2005, 26(8): 813-817
    [58] Yong Zhu, et a1. Ultrasonic nondestructive evaluation of highly scattering materials using adaptive filtering and detection. IEEE Transaction on Ultrasonics, Ferroelectrics, and Frequency Control, 1994, 41(1): 26-33
    [59] I. Wang, B. Xie, S. I. Rokhlin. Determination of embedded layer properties using adaptive time-frequency domain analysis. Journal Acoustical Society America, 2002, 111(6): 2644-2653
    [60]杨克己.基于神经网络的检测声学信号处理理论与实践: [浙江大学博士学位论文].浙江杭州:浙江大学, 1997, 1-124
    [61]吴淼,张海燕,孙智,等.超声检测缺陷分类的小波分析与神经网络方法.中国矿业大学学报, 2000, 29(3): 239-243
    [62] Newland D E. An introduction to random vibrations, spectral & wavelet analysis. London: Longman Scientific and Technical, 1993, 12-35
    [63] Wieling L M. Ultrasonic characterization of detects in steel using stress perturbing waves and probe waves. International Journal of Nondestructive Test and Engineering, 1993, 26(3): 127-134
    [64]吴淼.现代工程信号处理及应用.江苏徐州:中国矿业大学出版社, 1997, 56-79
    [65] Thomsen J J, lund K. Quality control of composite material by neural network analysis of ultrasonic power spectral. Material Evaluation, 1991, 49(5): 594-600
    [66]陈彦华,李明轩.利用人工神经网络实现缺陷类型识别.应用声学, 1998, 17 (2): 1-4
    [67]张根昌,吴并臻,刘跃峰.小波分析技术在地震信号噪声处理中的应用.矿冶, 2003, 12(1): 89-92
    [68]彭玉华.小波变换与工程应用.北京:科学出版社, 1999, 23-57
    [69]金元,靳海水.小波分析方法在混凝土检测中的应用.无损检测, 2003,25(12): 616-619
    [70]向阳.基于小波变换的混凝土缺陷特征抽取研究.武汉理工大学学报(交通科学与工程版), 2002, 26(2): 147-150
    [71]卢结成,孙宏越.基于多分辨率分析的砼内缺陷超声检测.中国科学技术大学学报, 2001, 31(4):470-475
    [72] Legendre S, Goyette J, Massicotte D. Ultrasonic NDE of composite material structures using wavelet coefficient. International Journal of Nondestructive Test and Engineering, 2001, 34: 31-37
    [73] Sansalone M J, Streett W B. Impact-echo: Nondestructive evaluation of concrete and masonry. Ithaca, New York: Bullbrier press, 1997, 66-89
    [74]纪洪广,王基才,等.混凝土材料声发射过程分形特征及其在断裂分析中的应用.岩石力学与工程学报, 2001, 20(6): 801-804
    [75]宋世谦,徐立克,辛宏玉.分形几何在混凝土研究中的应用及其前景.青岛建筑工程学院学报, 2005, 26(2): 34-38
    [76]谢和平,陈至达.分形几何与混凝土断裂.力学学报, 1988, 20(3): 264-271
    [77]唐明,李晓.混凝土分形特征研究的现状与进展.混凝土, 2004, 20(12): 8-11
    [78] V. S. Ramachandran, R. F. Feldman, J. J. Beaudoin. Concrete science, a treatise on current research. London: Heyden and Son Limited., 1981, 110-126
    [79] D. A. Lange, et al. Relationship between fracture surface roughness and fracture behavior of cement paste and mortar. Journal of the American Ceramic Society. 1993, 76 (3): 589-597
    [80] M. B. Brunetto. Scaling phenomena due to fractal contact in concrete and rock fractures. International Journal of Fracture. 1999, (95): 221-238
    [81]王振宇,刘国华.混凝土构件层析成像的试验研究.土木工程学报, 2005, 38(6): 110-115
    [82]董清华.混凝土无损检测中的层析成像技术.无损检测, 2006, 28(1): 31-33
    [83] G. T.赫尔曼.由投影重建图像-CT的理论基础.北京:科学出版社, 1985, 89-102
    [84]孙景鳌,蔡安妮,何拥军. CT图像重建的快速算法.北京邮电大学学报, 1995, 18(3): 5-15
    [85] Martina J, Broughton K J, Giannopolous A, et a1. Ultrasonic Tomography of Grouted Duct Post-tensioned Reinforced Concrete Bridge Beams. International Journal of Nondestructive Test and Engineering, 2001, 34(2): 107-113
    [86]陈立成.层析成像的数学方法与应用.四川成都:西南交通大学出版社, 1994, 45-57
    [87]应金品,孙威,吴峰,等.生物组织光学层析成像技术的理论研究.中国生物医学工程学报, 1998, 17(3): 265-272
    [88] Oleary M A, et al. Tomographic imaging of absorption and scattering in bio logical models. Proceedings of SPIE, 1995, 2389-2427
    [89]龚秀芬,章东.非线性声参量成像及其在医学诊断中应用.应用声学, 2005, 24(4): 208-215
    [90]杨文采.地球物理反演的理论与方法.北京:地质出版社, 1997, 49-73
    [91]王五平,宋人心,傅翔,等.用超声波CT探测混凝土内部缺陷.水利水运工程学报, 2003, (2): 56-60
    [92]李张明,练继建,戚蓝.地震波层析成像技术探测复杂岩体结构应用研究.岩石力学与工程学报, 2004, 23 (1): 107-111
    [93] Peterson J E, Paulson N P, Mcevilly T V. Applications of algebraic reconstruction techniques to crosshole seismic data. Geophysics, 1985, 50(10): 1556-1580
    [94]高星.地震层析成像研究的回顾与展望.地球物理学进展, 2000, 15(4): 41-45
    [95] Somerstein. Radio-frequency geotomography for remotely probing the interior of operating mini and commercial-sized oil-shale retorts. Geophysics, 1984, 49: 1288-1300
    [96]许永忠,张爱敏,周明,等.深部开采地应力异常及陷落柱最小走时层析成像研究.中国矿业大学学报, 2003, 32(5): 575-578
    [97]刘国华,王振宇,孙坚.弹性波层析成像及其在土木工程中的应用.土木工程学报, 2003, 36(5): 76-81
    [98]陈立成,许帮保,王大为,等.隧道施工掌子面前方层界面层析成象预报.计算物理, 1994, 11(1): 68-74
    [99] W. H. Oldendorf. Isolated flying spot detection of radio density discontinuities displaying the internal structural pattern of a complex object. IRE Transaction on Biomedical Engineering, 1961, 8: 68-72
    [100] A M Cormack. Representation of function by its line integrals with some radiological applications. Journal of Applied Physics, 1963, 34: 2722-2727
    [101] Jin A, Aki K. Temporal change in Qc before the Tangshan earthquake of 1976 and Haicheng earthquake of 1975. Journal of Geophysical Research, 1986, 91: 665-673
    [102] Jin A, Aki K. Spatial and temporal correlation between and seismicity and its physical mechanism. Journal of Geophysical Research, 1989, 94: 14041-14059
    [103] Cerveny V, Molotkov A, Psencik I.地震学中的射线方法.刘福田,等译.北京:地质出版社, 1986, 74-96
    [104] Vidale J E. Finite-difference calculation of traveltimes. Bulletin of the Seismological Society of America, 1988, 78(6): 2062-2076
    [105] Vidale J E. Finite-difference calculation of traveltimes in three dimension. Geophysics, 1990, 55: 521-526
    [106] Vidale J E, Houston H. Rapid calculation of seismic amplitude. Geophysics, 1990, 55: 1504-1507
    [107]黄联捷,李幼铭,吴如山.用于图像重建的波前法射线追踪.地球物理学报, 1992, 35: 223-232
    [108]张建南.地震射线追踪法的模型研究与应用.物探与化探, 2006, 30(4): 319-321
    [109]杨文采.应用地震层析成像.北京:地质出版社, 1993, 101-119
    [110]张钋,刘洪,李幼铭.射线追踪方法的发展现状.地球物理学进展, 2000, 15(1): 36-45
    [111] Langan,R. T., I. Lerche, R. T. Cutler. Tracing of rays through heterogeneous media: an accurate and efficient procedure. Geophysics, 1985, 50,1456-1465
    [112] Asakawa E, Kawanaka T. Seismic ray tracing using linear traveltime interpolation. Geophysics Prospecting, 1993, 41(1): 99-111
    [113]赵改善,郝守玲.基于旅行时线性插值的地震射线追踪算法.石油物探, 1998, 37(2): 14-24
    [114]许琨,吴律.改进Moser法射线追踪.地球物理学进展, 1998, 13(4): 60-66
    [115]王辉,常旭.基于图形结构的三维射线追踪方法.地球物理学报, 2000, 43(4): 534-541
    [116]赵爱华,张中杰.非均匀介质中地震波走时与射线路径快速计算技术.地震学报, 2000, 22(2): 151-157
    [117]黄联捷,李幼铭.用于图像重建的波前法射线追踪.地球物理学报, 1992, 35(2): 223-232
    [118] Moser T. Shortest path calculation of seismic rays. Geophysics, 1991, 56: 59-67
    [119]刘洪,孟凡林,李幼铭.计算最小走时和射线路径的界面网全局方法.地球物理学报, 1995, 38(1): 823-831
    [120] Sava P, Fomel S. Huygens wavefront tracing:A robust alternative to ray tracing. 68th Annual. International Meeting of Society Exploration Geophysics, 1998, 1961-1964
    [121] Symes W W. A slowness matching finite difference method for traveltimesbeyond transmission caustics. 68th Annual. International Meeting of Society Exploration Geophysics, 1998, 1945-1948
    [122] Carrion P. Dual tomography for imaging complex structures. Geophysics, 1991, 56: 1395-1404
    [123]杨文采,杜剑渊.层析成像新算法及其在工程检测上的应用.地球物理学报, 1994, 37(2): 239-244
    [124]朱介寿,严忠琼.井间地球物理层析成象软件系统研究.物探化探计算技术, 1994, 16(4): 310-320
    [125]牛彦良,杨文采.跨孔地震CT中的逐次线性化方法.地球物理学报, 1995, 38(3): 378-386
    [126]曹俊兴,严忠琼.地震波跨孔旅行时层析成象分辨率的估计.成都理工学院学报, 1995, 22(4): 95-101
    [127] Nolet G, et al. Seismic Tomography with application to global seismology and exploration geophysics. Dordrecht: D. Reidel Publishing Company, 1987, 28-76
    [128] Singh R P, Singh Y P. RAYPT - A new inversion technique for geotomographic data. Geophysics, 1991, 56: 1215-1227
    [129] Phillips W S, Fehler M C. Traveltime tomography: A comparison of popular methods. Geophysics, 1991, 56(10): 1639-1649
    [130] Boschetti F, Dentith M D, List R D A. Fractal-based algorithm for detecting first arrivals on seismic traces. Geophysics, 1996, 61(4):1095-1102
    [131]王辉,常旭,高峰.井间地震波衰减成像的几种方法.地球物理学进展, 2001, 16(1): 104-109
    [132] Vasco D W, et al. Nonuniquess in traveltime tomography: Ensemble inference and cluster analysis. Geophysics, 1996, 61(4): 1209-1227
    [133]宋常瑜,裴正林,狄帮让,等.小波多尺度井间地震衰减层析成像.石油地球物理勘探, 2007, 42(1): 30-33
    [134] M Leggett, et al. Study of traveltime and amplitude time-lapse tomograpgy using physical model data. Geophysical Prospecting, 1993, 41(4): 599-691
    [135] P Tarif, T Bourbie. Experimental comparison between spectral ratio and rise time techniques for attenuation measurement. Geophysical Prospecting, 1987, 35: 668-680
    [136] Ward R W, Toksoz M N. Causes of regional variation of magnitudes. Bulletin of the Seismological Society of America, 1979, 44: 1-690
    [137] Youli Quan, Jerry M Harris. Seismic attenuation tomography using the frequency shift method. Geophysics, 1997, 62(3): 895-905
    [138]何良军.层析成像(CT)技术在桥墩灌浆加固质量检测中的应用.岩土工程界, 2001, (10): 55-57
    [139]梁国钱,李波,等.层析成像技术(CT)在拱坝质量检测中的应用.水力发电, 2002, (5): 20-21
    [140]周黎明,王法刚,等.超声波层析成像技术在三峡工程混凝土质量检测中的应用.无损检测, 2004, 26(10): 517-519
    [141]张震夏,张进平,等.混凝土大坝声波层析检测系统.大坝与安全, 2003, (2): 39-43
    [142] Bond L J, Kepler W F, Frangopol D M. Improved assessment of mass concrete dams using acoustic travel time tomography(I-theory). Construction and Building Materials, 2000, 14(3): 133-146
    [143] Kepler W F, Bond L J , Frangopol D M. Improved assessment of mass concrete dams using acoustic travel time tomography(II-application). Construction and Building Materials, 2000, 14(3): 147-156
    [144] Karastathis V K, Karmis R N, Drakatos G, et al. Assessment of the dynamic properties of highly saturated concrete using one-side acoustic tomography:application in the Marathon dam. Construction and Building Materials, 2002, 166(5): 261-270
    [145]李庆扬,关治,白峰杉.数值计算原理.北京:清华大学出版社, 2000, 27-54
    [146]黄靓,黄政宇.线性插值射线追踪的改进方法.湘潭大学自然科学学报, 2002, 24(4): 105-108
    [147] Best A I, Mc Cam C, Sothcott J. The relationships between the velocities, attenuation, and petrophysical properties of reservoir sediment rocks. Geophysical Prospecting, 1994, 42(1): 151-178
    [148] Gladwin M T, Stacey F D. An elastic degradation of acoustic pulses in rock. Physics of the Earth and Planetary Interiors, 1974, 8: 332-336
    [149] D P Blair, A T Spathis. Attenuation of explosion-generated pulse in rock masses. Journal of Geophysical Research, 1982, 87: 3885-3892
    [150] D P Blair, A T Spathis. Seismic source influence in pulse attenuation studies. Journal of Geophysical Research, 1984, 89: 9253-9258
    [151] E Kjartansson. Constant Q-wave propagation and attenuation. Journal of Geophysical Research, 1979, 82: 4737-4748
    [152]胡家赣.线性代数方程组的迭代解法.北京:科学出版社, 1991, 1-97
    [153] A Bjorck. SSOR preconditioning methods for sparse least squares problems. In Proceedings of the Computer Science and Statistics: 12-th Annual Symposiumon the Interface, 1979, 21-25
    [154] A N Tikhonov, V Y Arsenini. Solution of Ill—Posed Problems. Washington: V H Winston & Sons, 1977, 39-94
    [155] Per Christian Hansen. Truncated singular value decomposition solutions to discrete ill-posed problems with ill-determined numerical rank. SIAM Journal on Scientific and Statistical Computing, 1990, 11(3): 503-518
    [156] Gene H Golub, Charles F Van Loan. Matrix computations. Baltimore, Maryland, U S A: The Press of Johns Hopkins University, 1983, 65-251
    [157]刘伊克,常旭.地震层析成像反演中解的定量评价及其应用.地球物理学报, 2000, 43(2): 251-256
    [158] Berryman J G. Fermat’s principle and nonlinear traveltime tomography, Physical Review Letter, 1989, 62(25): 2953-2956
    [159]阎生存,李珍照,等.大坝CT中ART算法及其改进探讨.武汉大学学报(工学版), 2001, 34(4): 29-35
    [160]石林珂,孙懿斐.声波层析成像技术.岩石力学与工程学报, 2003, 22(1): 122-126
    [161]王振宇,刘国华,梁国钱.基于广义逆的层析成像反演方法研究.浙江大学学报(工学版), 2005, 39(1): 1-6
    [162]黄政宇,黄靓,缪仑.混凝土超声波幅值衰减层析成像研究.铁道科学与工程学报, 2004, 1(2): 35-39
    [163]李才明,王良书,钟锴.电磁波层析成像在钻孔灌注桩质量检测中的应用.高校地质学报, 2003, 9(3): 467-474
    [164]宋显辉,吕泳,等.机敏混凝土电阻率层析成像的实验研究.测控技术, 2005, 24(1): 11-14
    [165] Martin J, Broughton K J, Giannopolous A, Hardy M S A,Fordeb M C. Ultrasonic tomography of grouted duct post-tensioned reinforced concrete bridge beams. International Journal of Nondestructive Test and Engineering, 2001, 34: 107-113
    [166] R. Muldoon, A. Chalker, M.C. Forde, M. Ohtsu, F. Kunisue. Identifying voids in plastic ducts in post-tensioning prestressed concrete members by resonant frequency of impact–echo, SIBIE and tomography. Construction and Building Materials, 2007, 21: 527-537
    [167]王振宇.土木工程的层析成像与广义反演研究.浙江杭州:浙江大学建筑工程学院, 2003, 1-142
    [168] McKay M D, Beckman R J, Conover W J. A comparison of three methods forselecting values of input ables in the analysis of out put from a computer code. Technometrics, 1979, 21: 239-245
    [169] Johnson M E, L M Moore, D. Ylvisaker. Minimax and maxmin distance design . Journal of Statistical Planning and Inference, 1990, 26: 131-148
    [170] Saab Y G, Rao Y B. Combinatorial optimization by stochastic evolution. Computer-Aided Design, 1991, 10: 525-535
    [171] Ruichen Jin, Wei Chen, Agus Sudjianto. An efficient algorithm for constructing optimal design of computer experiments. Journal of Statistical Planning and Inference, 2005, 134: 268-287
    [172]黄靓,易伟建,汪优.计算机试验的分步优化设计研究,湖南大学学报(自然科学版), 2007, 34(8): 65-69
    [173]程乾生.数字信号处理.北京:北京大学出版社, 2003, 1-125
    [174]边肇祺,张学工,等.模式识别.北京:清华大学出版社, 2002, 43-132
    [175]海金.神经网络原理.北京:机械工业出版社, 2004, 12-241
    [176]韩崇昭,朱洪艳,等.多源信息融合.北京:清华大学出版社, 2006, 54-174
    [177] P J Burt, E H Adelson. The Laplacian pyramid as a compact image code. IEEE Transactions on Communications, 1983, 31(4): 532-540
    [178] E H Adelson, P J Burt. Image data compression with Laplacian pyramid. Proceedings of the Pattern Recognition and Information Processing Conference, Dallas,1981, 218-223
    [179]吴艳,杨万海.基于小波分解和进化策略的图像融合方法,光学学报, 2003, 23(6): 671-676
    [180]向阳,史习智.混凝土结构缺陷的融合识别研究.振动工程学报, 2001, 14(1): 36-41
    [181] Gros X, Strachan P, Lowden D. Fusion of multiprobe NDT data for ROV Inspection. MTS/IEEE OCEANS, San Diego, CA, 1995, 9-12
    [182]王婷,李杰,赵鸣.图像融合在探测混凝土内部损伤中的应用研究.建筑结构学报, 2006, 27(2): 107-115
    [183] Jaffard S,等著.科学技术分析中的小波分析.李建平,等译.北京:国防工业出版社, 2006, 1-67
    [184]程正兴.小波分析算法与应用.陕西西安:西安交通大学出版社, 1998, 1-87
    [185] Stephane Mallat, Wen Liang Hwang. Singularity detection and processing with wavelets. IEEE Transaction on IT,1992, 38(2): 617-643
    [186] Li H, Manjunath B S, Mitra S K. Multisensor image fusion using the wavelet transform. Graphical Models and Image Processing, 1995, 57(3): 235-245

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700