用户名: 密码: 验证码:
汶川地震对周围非发震断层的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震中发震断层两侧岩体相对滑动有时会引起非发震断层的位错现象。汶川地震震后科考资料显示这次地震中也可能发生了这一现象:除了在本次地震中活动的中央断裂带映秀—北川断裂和前山断裂带安县—灌县断裂外,在前山断裂带江油—广元断裂和后山断裂带汶川—茂县断裂沿线分布有多个地表破裂点。出现这种现象是由于岩体—非发震断层系统在发震断层两侧岩体相对滑动的扰动下产生了相应的动力响应,如果这种响应过大,非发震断层两侧岩体就会沿断层面产生错动,在地面上表现为地表破裂。非发震断层的错动对场地震害分布有一定的影响,至于是否也会对场地地震动产生影响则尚无定论。
     一般认为,岩石块体沿发震断层面的粘滑过程体现了地震发生机制。基于唯象学的速率与状态依赖性摩擦本构关系(RSF本构关系)可以很好地解释发震断层面上的粘滑现象。对建立在RSF摩擦本构关系上的岩体—断层系统的摩擦滑动特性的研究为非发震断层对震害及地震动的影响提供了一个思路。
     为了分析汶川地震对附近非发震断层的影响,本文展开了以下工作:
     1.介绍了速率与状态依赖性摩擦本构关系的两种形式—滑动本构关系和慢度本构关系;利用慢度本构关系分析了微小扰动下岩体—断层系统稳定性并给出了微小扰动下岩体—断层系统摩擦滑动的稳定性条件;通过一个算例分析不同参数对系统稳定性的影响。
     2.利用鲜水河断裂两侧五个台站的汶川地震主震加速度记录、场地条件科考中的大康镇建筑物震害数据和地震应急科考中湔底地表破裂数据,初步分析了汶川地震对江油—广元断裂和对湔底山前断裂的影响。
     3.建立了大康区域和湔底区域岩体—断层二维模型,采用静力方法,考察了发震断层两侧岩体相对运动对包括江油—广元断裂和对湔底山前断裂在内的非发震断层的影响。
The sliding of rock mass on both sides of a causative fault sometimes causes thenearby non-causative faults' dislocation.This phenomenon was proved by the post-quakeinvestigation of Wenchuan earthquake,which showed that there was several surface rupturepoints along the Jiangyou-Guangyuan fault and the Wenchuan-Maoxian fault, in addition tothe Yingxiu-Beichuan fault in the Central fault zone and the Anxian-Guanxian fault in thePiedmont fault zone. Relative to a certain degree of influence on site distribution ofearthquake damage, Non-causative faults' dislocation has an inconclusive impact ongroundmotion.
     It's generally acknowledged that stick-slip process between rock mass along aseismogenic fault refects the mechanism of an earthquake. Recent research indicates thatthis process could be well explained by the rate-and state-dependent friction law(RSF law)based on phenomenological opinions.
     In order to analyze the impact of the Wenchuan earthquake on the nearby non-causative faults, the paper carries out the following work:
     1. Describes the two forms of the RSF law,the slip law and the slowness law;Deducethe stability condition of an rock-faults system under a small perturbation by using theslowness law,and then a numerical example would be provided to discuss the influence ofparametres'variation.
     2. Preliminary analyzes the Jiangyou-Guangyuan fault and the Jiandi piedmont fault'sstates caused by Wenchuang earthquake,using the data of several seismostations'acceleration records in the main shock of Wenchuan earthquake,Dakang town's buildingearthquake damage data and Jiandi area's surface rupture data.
     3. Bulids two-dimensional ABAQUS models of Dakang area and Jiandi area,and thenstudies the dislocation response of the non-causative faults caused by the sliding of rockmass on both sides of Wenchuan earthquake's causative faults.
引文
[1]1曹炳政,罗奇峰.浅层断层对场地地震动影响的有限元分析[J].地震学报,2003,25(1):96-101.
    [2]1国家重大科学工程“中国地壳运动观测网络”项目组. GPS测定的2008年汶川Ms8.0级地震的同震位移场.中国科学(D辑),38(10):1195-1206,2008.
    [3]1胡聿贤.地震工程学(第二版)[M].北京:地震出版社,2006.
    [4]1何昌荣, VERBERNE B A, SPIERS C J.龙门山断裂带沉积岩和天然断层泥的摩擦滑动性质与启示[J].岩石力学与工程学报,2011,30(1):113-131.
    [5]1何昌荣,马胜利,黄建国.断层滑动速率变化对滑动稳定性的影响[J].地震地质,1998,20(1):54-62.
    [6]1何昌荣.两种摩擦本构关系的对比研究[J].地震地质,1999,21(2):137-146.
    [7]刘必灯.断层场地对地震动影响研究[D].中国地震局工程力学研究所,2011.
    [8]1李仕栋,罗奇峰.非活动隐伏断层对结构地震反应的影响[J].自然灾害学报,2003,12(4):25-28.
    [9]3李仕栋,罗奇峰.不同倾角断层对场地动力放大效应的分析[J].地震研究,2004,27(3):283-286.
    [10]兰彩云,何昌荣,姚文明等.热水条件下角闪石断层泥的摩擦滑动性质—与斜长石断层泥的对比[J].地球物理学报,53(12):2929-2937,2010.
    [11]刘晶波,刘祥庆,赵东东.垂直断层破碎带对Rayleigh波传播与场地地震动反应的影响[J].爆炸与冲击,2008,28,(6):507-514.
    [12]刘善军,吴立新,王金庄,吴育华,李永强.遥感-岩石(Ⅵ)-岩石摩擦滑移特征及其影响因素分析[J].岩石力学与工程学报,2004,23(8):1247-1251.
    [13]廖振鹏.地震小区划理论与实践[M].北京:地震出版社,1989.
    [14]任春,罗奇峰.断层破碎带对非发震断层场地地震动的影响[J].地震研究,2005,28(2):162-166.
    [15]四川省地震局.四川省地震台站建台报告系列材料[Z].2004-2007.
    [16]孙平善.断层对地震动影响的分析方法研究(国家自然科学基金项目结题报告)[R].哈尔滨:中国地震局工程力学研究所资料室,1999.
    [17]滕吉文,白登海,杨辉,闫雅芬,张洪双,张永谦,阮小敏.2008汶川Ms8.0地震发生的深层过程和动力学响应[J].地球物理学报,5l(5):1385-1402,2008.
    [18]温瑞智,周正华,孙平善等.断层场地地震动分析[J].地震工程与工程振动,2002,22(1):21-27.
    [19]王泽利,何昌荣,周永胜等.断层摩擦实验中的应力状态及摩擦强度[J].岩石力学与工程学报,23(23):4079-4083,2004.
    [20]徐锡伟等.汶川Ms8.0地震地表破裂带及其发震构造[J].地震地质,30(3):597-629,2008.
    [21]谢新生,江娃利,冯西英等.对2008年汶川MS8.0地震沿龙门山后山出现地表破裂现象的讨论[J].地震学报,33(1):62-81.DOI:10.3969/j.issn.0253-3782.2011.01.006,2011.
    [22]徐锡伟,闻学泽.汶川Ms8.0地震地表破裂带及其发震构造[J].地震地质.30(3):597-629,2008.
    [23]杨笑梅,王海涛,杨柏坡.三维竖向断层场地对地面运动的影响[J].地震工程与工程振动,2008,28(2):1-7.
    [24]杨笑梅,王海涛,杨柏坡.竖向地裂缝附近的地面运动[J].地震工程与工程振动,2005,25(5):34-40.
    [25]殷跃平,潘桂堂等.汶川地震地质与滑坡灾害概论[M].北京:地质出版社:1-142,2009.
    [26]袁一凡.四川汶川8.0级地震损失评估[J].地震工程与工程振动,2008,28(5):10-19.
    [27]周正华,张艳梅,孙平善等.断层对震害影响的研究[J].自然灾害学报,2003,12(4):20-24.
    [28]周正华,张艳梅,孙平善等.断层场地震害研究综述[J].地震工程与工程振动,2003,23(5):38-41.
    [29]赵纪生,师黎静,吴景发等.汶川8.0级地震地表破裂迹线附近建筑物震害科考报告,2009,中国地震局工程力学研究所.
    [30]中国科学院工程力学研究所通海地震影响场调查组.通海地震的烈度分布与场地影响[A].中国科学院工程力学研究所地震工程研究报告集,第三集[C].北京:科学出版社,1977.
    [31]1Biegel, R. L., Sammis C. G.,Dieterich J. H., The frictional properties of a simulated gouge having afractal particle distribution[J], Journal of Structural Geology,11(7):827-846.1989.
    [32]1Buchanan D. J., and L. J. Jackson. Coal Geophysics. Geophysics Reprint Series, No.6, SEG,Tulsa,Oklahoma,1986.
    [33]1Ben-Zion, Y., and Y. Huang. Dynamic rupture on an interface between a compliant fault zone layerand a stiffer surrounding solid. J. Geophys. Res.,2002,107(B2):2042.
    [34] Ben-Zion, Y., and P. Malin. San Andreas fault zone head waves near Parkfield, California.Science,1991,251:1592-1594.
    [35] Ben-Zion, Y. Properties of seismic fault zone waves and their utility for imaging low velocitystructures. J. Geophys. Res.1998,103(12):567-585.
    [36]1Ben-Zion, Y., and Y. Huang. Dynamic rupture on an interface between a compliant fault zone layerand a stiffer surrounding solid. J. Geophys. Res.,2002,107(B2):2042.
    [37] Brace,W.F.,and J.D.Byerlee, Stick-slip as a mechanism for earthquakes, Science,153,990-992,1966.
    [38] Byerlee, J.D.(1978)."Friction of rocks".Pure and Applied Geophysics116(4-5):615-626.doi:10.1007/BF00876528.
    [39] Blanpied,M.L.,Lockner D.A.,Byerlee J.D., Frictional slip of granite at hydrothermal conditions[J]. Journal of Geophysical Research,100(B7):13045-13064.
    [40]3Cormier, V. F., and P. Spudich. Amplification of ground motion and waveform complexit in faultzones: examples from the San Andreas and Calaveras Faults. Geophys. J. R. Astro. Soc.,1984,79:135-152.
    [41]3Donati, S., F. Marra, and A. Rovelli. Damage and ground shaking in the town of Nocera Umbraduring Umbria-Marche, central Italy, earthquakes: the special effect of a fault zone. Bull. Seism. Soc.Am.,2001,91:511-519.
    [42] Dieterich,J.H.,Time-dependent friction and the mechanics of stickslip, Pure Appl.Geophys.,116,790-806,1978.
    [43] Dieterich,J.H., Modeling of rock friction,1, Experimental results and constitutive equations[J].Geoph-ys.Res.,84,2161-2168,1979a.
    [44] Dieterich,J.H.,Modeling of rock friction,2,Simulation of preseismic slip,J.Geophys. Res.,84,2169-2175,1979b.
    [45]1Dieterich,J.H., Experimental and model study of fault constitutive properties,in Solid EarthGeophysics and Geotechnology,AMD-vol.42,edited by S.Nemat-Nasser,21-29,American Society ofMechanical Engineers,New York,1980.
    [46]1Dieterich,J.H.,Constitutive properties of faults with simulated gouge,in Mechanical Behavior ofCrustal Rocks, Geophys.Monogr.Ser., vol.24, edited by N.L.Carter,M.Frideman,J.M.Logan,andD.W.Stearns,pp.103-120,AGU,Washington,D.C.,1981.
    [47] Dieterich,J.H.,and B.D.Kilgore,Direct cbservation of frictional contacts:new insights for statede-pendent properties[J].Pure and Applied Geophysics,1994,143(1-3):283-302.
    [48]3Dieterich,J.H.,and B.D.Kilgore, Imaging surface contacts:power law contact distributions andcontact stresses in quartz,calcite,glass and acrylic plastic[J]. Tectonophysics,1966,256(1-4):219-239.
    [49] Dieterich,J.H., Earthquake nucleation on faults with rate and state-dependent strength,Tectonophysics,211,115-134,1992.
    [50]1Galbraith,F.W.. Effect of a fault on explosion-generated ground shock spectra. Bull. Seism.Soc. Am.,1968,58(6):2033-2041.
    [51]1Hays,W.W.,J.R.Murphy. The effect of Yucca fault on seismic wave propagation. Bull.Seism. Soc.Am.,1971,61(3):697-706.
    [52]1Harris,R.A., and S. M. Day. Effects of a low-velocity zone on a dynamic rupture. Bull. Seism. Soc.Am.,1997,87:1267-1280.
    [53]1Huang,B.S., T.L.Teng, and Y.T.Yeh. Numerical Modeling of Fault-Zone Trapped Waves: AcousticCase. Bull. Seism. Soc. Am.,1995,85(6):1711-1717.
    [54]1Hammer, J.K., and C.A.Langston. Modeling the Effect of San Andreas Fault Structure on ReceiverFunctions Using Elastic3D Finite Difference. Bull. Seism. Soc. Am.,1996,86(5):1608-1622.
    [55] He,C.R.,Yao W.,Wang Z.,etal,Strength and stability of frictional sliding of gabbro gouge atelevated temperatures[J].Tectonophysics,427(1-4):217-229,2006.
    [56] He,C.R., Wang Z.,Yao W.,Frictional sliding of gabbro gouge under hydrothermal condition[J], Tectonophysics,445(3-4):353-362,2007.
    [57] Igel,H., G.Jahnke, and Y.Ben-Zion. Numerical simulation of fault zone trapped waves: accuracy and3-D effects. Pure Appl. Geophys.,2002,159:2067-2083.
    [58] Igel,H., Y.Ben-Zion, and P.C.Leary. Simulation of SH-and P-SV-wave propagation in faultzones. Geophys. J. Int.,1997,128:533-546.
    [59]1Jahnke,G., H.Igel, and Y.Ben-Zion.3D calculations of fault zone guided waves in variousirregularstructures. Geophys. J. Int.,2002,151:416-426.
    [60]1Kang,I.B., and A.M.George. Effects of viscoelasticity on seismic wave propagation in fault zonesnear-surface sediments and inclusions. Bull. Seism. Soc. Am.,1993,83(3):890-906.
    [61] Kato,N.,and T.Hirasawa,A numerical study on seismic coupling along subduction zones using a laboratory-derived friction law,Phys,Earth and Planet.Interiror,102,51-68,1997.
    [62] Kilgore,B.D.,Blanpied M.L.,Dieterich J.H..Velocity dependent friction of granite over a widerange of conditions [J].Geophysical Research Letters,20(1o):903—906,1993.
    [63]1Lei J,Zhao D, Structureheterogeneity of the Longmenshan Fault zone and the mechanism of the2008Wenchuan earthquake(Ms8.0)[J].Geochem.Geophs Geosyst,10,Q10010,doi:10.1029/2009GC002590,2009.
    [64]1Lapusta,N.,J.R.Rice,Y.Ben-Zion and G.Zheng,Elastodynamic analysis for slow tectonic loadingwith spontaneous rupture episodes on faults with rate-and state-dependent friction,J.Geophys.Res.,105,23,765-23,789,2000.
    [65]3Lapusta,N.,and J.R.Rice, Nucleation and early seismic propagation of small and large events in acrustal earthquake model, J. Geophys. Res.,108(B4), ESE8-1to8-18,2003.
    [66] Linker,M.F.,Dieterich J H, Effects of variable normal stress on rock friction:observations andconstitutive equations[J].Journal of GeophysicalResearch,97(B4):4923-4940,1992.
    [67]3Lockner, D.A.,Summer R, Byerlee J.D., Effects of temperature and sliding rate on frictional strengthof granite[J].Pure and Applied Geophysics,124(3):445-469,1986.
    [68]1Ruina,A.L., Slip instability and state variable friction laws,J. Geophys. Res.,88,10,359-10,370,1983.
    [69] Rice,J.R.,Spatio-temporal complexity of slip on a fault,JGR,98,9885-9907,1993.
    [70] Rice,J.R.,and Y.Ben-Zion,Slip complexity in earthquake fault models, Proc. Natl.Acad.Sci.,93,3811-3818,1996.
    [71]3Saffer,D.M.,Marone C.,Comparison of smectite-and illite-rich gouge frictional properties:application to the uphip limit of the seismogenic zone along subduction megathrusts[J],Earth andPlaneteray Science Letters,215(1-2):219-235,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700