用户名: 密码: 验证码:
多吡啶Pt(Ⅱ)、Cu(Ⅰ)配合物的设计、合成及光诱导电子转移研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光诱导电子转移反应是光能转换中最基本的反应,寻找有效的光诱导电子转移体系、延长电荷分离态的寿命、提高太阳能转换的效率一直以来都是科学家们研究的热点。本论文主要从金属配合物发色团与电子受体之间的光诱导电子转移反应出发,设计、合成了系列电子受体与发色团共价相连的Pt(II)和Cu(I)配合物;系统地研究了它们的光诱导电子转移,取得了一些有意义的研究结果:
     1.首次将甲基紫精基团引入Pt(II)配合物,设计、合成了四个含有三齿多吡啶配体HC~∧N~∧N(PhMV~(2+))或N~∧N~∧N(PhMV~(2+))的Pt(II)配合物[ClPt{C~∧N~∧N(PhMV~(2+))}]、[Ph3PPt{C~∧N~∧N(PhMV~(2+))}]~+、[(μ-dppm)Pt2{C~∧N~∧N (PhMV~(2+))}2]~(2+)和[ClPt{N~∧N~∧N(PhMV~(2+))}]~+;并且通过X-射线单晶衍射确定了配合物[ClPt{C~∧N~∧N(PhMV~(2+))}]的晶体结构。
     2.稳态和时间分辨光谱结果显示所合成的Pt(II)配合物二元体系能够发生分子内光诱导电子转移。由于电子受体与配合物发色团共价相连,能够减少介质对电子转移过程的影响,配合物二元体系中的电子转移比分子间的电子转移更容易发生;并且这些Pt(II)配合物具有高的光稳定性。这些结果使得合成的Pt(II)配合物二元体系在光化学能量转换方面具有重要的应用前景。
     3.设计、合成了电子受体与配合物发色团共价相连的两个Cu(I)配合物[Cu{HC~∧N~∧N(PhMV~(2+))}2]+和[Cu{HC~∧N~∧N(PhMV~(2+))}(PPh_3)_2]~+,通过X-射线单晶衍射确定了配合物[Cu{HC~∧N~∧N(PhMV~(2+))}2]~+的晶体结构。
     4.时间分辨吸收光谱结果显示这两个Cu(I)配合物受光激发后能够产生长寿命的电荷分离态,并且通过改变溶剂实现了对电荷分离态寿命的调控。特别是在二甲亚砜中,两个配合物产生的电荷分离态寿命都达到了微秒级。在强的电子给体三乙醇胺存在下,通过稳态吸收光谱就可以观察到电子转移反应产物的生成。同时,Cu(I)配合物具有廉价易得、毒性小的特点;因此,所合成的Cu(I)配合物在光催化剂方面的应用具有很好的前景。
Photoinduced electron transfer performs one of the most essential and important processes in light-to-chemical energy conversion. Therefore, it has been extensively studied for construction of systems for photoinduced electron transfer. Key goals are to achieve long-lived charge-separation states and high solar-energy conversion efficiency. In this thesis, a series of platinum(II) and copper(I) polypyridine complexes have been designed and synthesized. The photoinduced electron transfers from the complex chromphor to the electron acceptor have been systematically studied and many intersting results are obtained.
     1. The first platinum(II) chromophore-based dyads [ClPt{C~∧N~∧N(PhMV~(2+))}]、[Ph3PPt{C~∧N~∧N(PhMV~(2+))}]~+、[(μ-dppm)Pt2{C~∧N~∧N(PhMV~(2+))}2]~(2+) and [ClPt{N~∧N~∧N(PhMV~(2+))}]~+, with the electron acceptor methyl viologen group were synthesized and characterized. The crystal structure of [ClPt{C~∧N~∧N(PhMV~(2+))}] was determined by X-ray crystal analysis.
     2. Steady and time-resolved spectral investigations suggest that photoinduced intramolecular electron transfers in the platinum(II) dyads with electron acceptor covalently linked are more favorable than the bimolecular electron transfers. These dyads are integrated two-component systems and the interfacial interactions are reduced. Furthermore, no photodegradation was found during the photoinduced electron transfer process for all of these dyads. All these results show the dyads are superior photocatalysts.
     3. Two copper(I) polypyridine complexes with viologen groups covalently linked [Cu{HC~∧N~∧N(PhMV~(2+))}2]~+ and [Cu{HC~∧N~∧N(PhMV~(2+))}(PPh_3)_2]~+ were synthesized. The crystal structure of [Cu{HC~∧N~∧N(PhMV~(2+))}_2]~+ was confirmed by X-ray crystal analysis.
     4. Long-lived charge-separated states of the two copper(I) complexes were investigated due to the fifth-coordination of solvent with the Cu(II) center and the lifetime could be tuned by varying the solvent. Even steady-state spectra could monitor the production of photoinduced electron transfer with the electron donor TEOA in the systems. Moreover, copper(I) complexes are inexpensive and less toxic. So these copper(I) complexes have emerged as promising candidates for photocatalysis.
引文
1. A. M. Kuznetsov, J. Ulstrup, “Electron transfer in chemistry and biology: an introduction to the theory”, John Wiley & Sons Ltd, New York 1999.
    2. R. A. Marcus, “Chemical and electrochemical electron-transfer theory”, Annu. Rev. Phys. Chem. 1964, 15, 155-196.
    3. G. J. Kavarnos, N. J. Turro, “Photosensitization by reversible electron transfer: theories, experimental evidence, and examples”, Chem. Rev. 1986, 86, 401-449.
    4. R. A. Marcus, “Electron transfer reactions in chemistry: theory and experiment (Nobel Lecture)”, Angew. Chem. Int. Ed. 1993, 32, 1111-1121.
    5. J. W. Moore, R. G. Pearson, “Kinetics and Mechanism”, Wiley, New York 1981.
    6. N. Sutin, “Nuclear, electronic, and frequency factors in electron transfer reactions”, Acc. Chem. Res. 1982, 15, 275-282.
    7. G. J. Kavarnos, “Fundamental concepts of photoinduced electron transfer”, Top. Curr. Chem. 1990, 156, 21-58.
    8. M. R. Roest, J. W. Verhoeven, W. Schuddeboom, J. M. Warman, J. M. Lawson, M. N. Paddon-Row, “Solvent and distance dependent charge separation in rigid trichromophoric systems”, J. Am. Chem. Soc. 1996, 118, 1762-1768.
    9. A. Osuka, S. Nakajima, K. Maruyama, N. Mataga, T. Asahi, I. Yamazaki, Y. Nishimura, T. Ohno, K. Nozaki, “1,2-Phenylene-bridged diporphyrin linked with porphyrin monomer and pyromellitimide as a model for a photosynthetic reaction center: synthesis and photoinduced charge separation”, J. Am. Chem. Soc. 1993, 115, 4577-4589.
    10. M. Fujitsuka, O. Ito, T. Yamashiro, Y. Aso, T. Otsubo, “Solvent polarity dependence of photoinduced charge separation in a tetrathiophene-C60 dyad studied by pico- and nanosecond laser flash photolysis in the near-IR region”, J. Phys. Chem. A. 2000, 104, 4876-4881.
    11. M. Fushiki, M. Tachiya, “Theoretical optimization of photoinduced charge separation in the supramolecular triad system D-A1-A2 in a polar solvent”, J. Phys. Chem. 1994, 98, 10762-10766.
    12. G. P. Zanini, H. A. Montejano, C. M. Previtali, “Specific solvent effects on the chargeseparation efficiency in photoinduced electron transfer processes”, J. Photochem. Photobiol. A 2000, 132, 161-166.
    13. G. P. Zanini, H. A. Montejano, C. M. Previtali, “Photoinduced electron-transfer quenching of excited singlet states of polycyclic aromatic hydrocarbons by organic acceptors”, J. Chem. Soc., Faraday Trans. 1995, 91, 1197-1202.
    14. A. M. Kuznetsov, J. Ulstrup, “Effects of diffusion on long-range electron transfer”, Chem. Phys. Lett. 1983, 97, 285-291.
    15. D. Rehm, A. Weller, “Kinetics of fluorescence quenching by electron and H-atom transfer”, Isr. J. Chem. 1970, 8, 259-272.
    16. J. K. George, “Fundamental of photoinduced electron transfer”, 1993, Chapter 1.
    17. R. A. Marcus, “On the theory of oxidation-reduction reactions involving electron transfer. I”, J. Chem. Phys. 1956, 24, 966-978.
    18. R. A. Marcus, “On the theory of electron-transfer reactions. VI. unified treatment for homogeneous and electrode reactions”, J. Chem. Phys. 1965, 43, 679-701.
    19. A. Weller, “Electron-transfer and complex formation in the excited state”, Pure Appl. Chem. 1968, 16, 115-124.
    20. J. R. Miller, L. T. Calcaterra, G. L. Closs, “Intramolecular long-distance electron transfer in radical anions. The effects of free energy and solvent on the reaction rates”, J. Am. Chem. Soc. 1984, 106, 3047-3049.
    21. N. Mataga, M. Migita, T. Nishimura “Picosecond chemistry of some exciplex systems”, J. Mol. Struct. 1978, 47, 199-219.
    22. N. Sutin, “Light-induced electron transfer reactions”, J. Photochem. 1979, 10, 19-40.
    23. G. Whitten, “Photoinduced electron transfer reactions of metal complexes in solution”, Acc. Chem. Res. 1980, 13, 83-90.
    24. R. Huber “A structural basis of light energy and electron transfer in biology (Nobel Lecture)”, Angew. Chem., Int. Ed. 1989, 28, 848-869.
    25. M. R. Wasielewski “Photoinduced electron transfer in supramolecular systems for artificial photosynthesis”, Chem. Rev. 1992, 92, 435-461.
    26. Y. Aoyama, M. Asakawa, Y. Matsui, H. Ogoshi, “Molecular recognition. 16. Molecular recognition of quinones: two-point hydrogen-bonding strategy for the construction offace-to-face porphyrin-quinone architectures”, J. Am. Chem. Soc. 1991, 113, 6233-6240.
    27. A. J. Doig, D. H. Williams, “Binding energy of an amide-amide hydrogen bond in aqueous and nonpolar solvents”, J. Am. Chem. Soc. 1992, 114, 338-343.
    28. J. S. Connolly, J. R. Bolton, in “Photoinduced Electron Transfer. Part D”, 1988, 303.
    29. K. Tsukahara, K. Ito, M. Matsui, M. Sudo, Y. Onoue “Photophysical properties of N-alkylporphyrins and their metalloporphyrins linked with quinolinium ion in solution”, Chem. Phys. Lett. 1997, 281, 261-266.
    30. S. Kawabata, I. Yamazaki, Y. Nishimura, A. Osuka, “Singlet energy transfer in bis(phenylethynyl)phenylene-bridged zinc-free base hybrid diporphyrins”, J. Chem. Soc., Perkin Trans. 2, 1997, 479-484.
    31. D. Wróbela, J. Goca, R. M. Ionb, “Photovoltaic and spectral properties of tetraphenyloporphyrin and metallotetraphenyloporphyrin dyes”, J. Mol. Struct. 1998, 450, 239-246.
    32. J. Deisenhofer, H. Michel, “The photosynthetic reaction center from the purple bacterium rhodopseudomonas viridis (Nobel Lecture)”, Angew. Chem. Int. Ed. 1989, 28, 829-847.
    33. Y. Sakata, H. Tsue, M. P. O'Neil, G. P. Wiederrecht, M. R. Wasielewski, “Effect of donor-acceptor orientation on ultrafast photoinduced electron transfer and dark charge recombination in porphyrin-quinone molecules”, J. Am. Chem. Soc. 1994, 116, 6904-6909.
    34. T. D. M. Bell, K. A. Jolliffe, K. P. Ghiggino, A. M. Oliver, M. J. Shephard, S. J. Langford, M. N. Paddon-Row, “Remarkable conformational control of photoinduced charge separation and recombination in a giant U-shaped tetrad”, J. Am. Chem. Soc. 2000, 122, 10661-10666.
    35. K. Kamioka, R. A. Cormier, T. W. Lutton, J. S. Connolly, “Charge-transfer emission in meso-linked zinc porphyrin-anthraquinone molecules”, J. Am. Chem. Soc. 1992, 114, 4414-4415.
    36. A. Helms, D. Heiler, G. McLendon, “Electron transfer in bis-porphyrin donor-acceptor compounds with polyphenylene spacers shows a weak distance dependence”, J. Am. Chem. Soc. 1992, 114, 6227-6238.
    37. H. Oevering, M. N. Paddon-Row, M. Heppener, A. M. Oliver, E. Cotsaris, J. W. Verhoeven, N. S. Hush, “Long-range photoinduced through-bond electron transfer and radiative recombination via rigid nonconjugated bridges: distance and solvent dependence”, J. Am.Chem. Soc. 1987, 109, 3258-3269.
    38. P. Finckh, H. Heitele, M. Volk, M. E. Michel-Beyerle, “Electron donor/acceptor interaction and reorganization parameters from temperature-dependent intramolecular electron-transfer rates”, J. Phys. Chem. 1988, 92, 6584-6590.
    39. M. D. Johnson, J. R. Miller, N. S. Green, G. L. Closs, “Distance dependence of intramolecular hole and electron transfer in organic radical ions”, J. Phys. Chem. 1989, 93, 1173-1176.
    40. D. N. Beratan, J. N. Betts, J. N. Onuchic, “Protein electron transfer rates set by the bridging secondary and tertiary structure”, Science, 1991, 252, 1285-1288.
    41. D. N. Beratan, J. N Onuchic, J. R.Winkler, H. B Gray, “Electron-tunneling pathways in proteins”, Science 1992, 258, 1740-1741.
    42. H. B Gray, J. R. Winkler, “Electron transfer in proteins”, Annu. Rev. Biochem. 1996, 65, 537-561.
    43. F. D'Souza, “Molecular recognition via hydroquinone-quinone pairing: electrochemical and singlet emission behavior of [5,10,15-triphenyl-20-(2,5-dihydroxy-phenyl)porphyrinato] zinc(II)-quinone complexes”, J. Am. Chem. Soc. 1996, 118, 923-924.
    44. A. Harriman, Y. Kubo, J. L. Sessler, “Molecular recognition via base pairing: photoinduced electron transfer in hydrogen-bonded zinc porphyrin-benzoquinone conjugates”, J. Am. Chem. Soc. 1992, 114, 388-390.
    45. J. L. Sessler, B. Wang, A. Harriman, “Long-range photoinduced electron transfer in an associated but non-covalently linked photosynthetic model system”, J. Am. Chem. Soc. 1993, 115, 10418-10419.
    46. A. Berman, E. S. Izraeli, H. Levanon, B. Wang, J. L. Sessler, “Photoinduced intraensemble electron transfer in a base-paired porphyrin-quinone system. Time-resolved EPR spectroscopy”, J. Am. Chem. Soc. 1995, 117, 8252-8257.
    47. P. Tecilla, R. P. Dixon, G. Slobodkin, D. S. Alavi, D. H. Waldeck, A. D. Hamilton, “Hydrogen-bonding self-assembly of multichromophore structures”, J. Am. Chem. Soc. 1990, 112, 9408-9410.
    48. T. Arimura, C. T. Brown, S. L. Springs, J. L. Sessler, “Intracomplex electron transfer in a hydrogen-bonded calixarene-porphyrin system” Chem. Commun. 1996, 2293-2294.
    49. A. J. Myles, N. R. Branda, “Controlling photoinduced electron transfer within a hydrogen-bonded porphyrin-phenoxynaphthacenequinone photochromic system”, J. Am. Chem. Soc. 2001, 123,177-178.
    50. C. A. Hunter, R. K. Hyde, “Photoinduced energy and electron transfer in supramolecular porphyrin assemblies”, Angew. Chem. Int. Ed. 1996, 35, 1936-1939.
    51. C. Turro, C. K. Chang, G. E. Leroi, R. I. Cukier, D. G. Nocera, “Photoinduced electron transfer mediated by a hydrogen-bonded interface”, J. Am. Chem. Soc. 1992, 114, 4013-4015.
    52. J. M. Lintuluoto, V. V. Borovkov, Y. Inoue, “Synthesis and fluorescence behavior of novel Ru(bpy)3-porphyrin conjugates”, Tetrahedron Lett. 2000, 41, 4781-4786.
    53. D. M. Guldi, C. Luo, M. Prato, A. Troisi, F. Zerbetto, M. Scheloske, E. Dietel, W. Bauer, A. Hirsch, “Parallel (Face-to-Face) versus perpendicular (Edge-to-Face) alignment of electron donors and acceptors in fullerene porphyrin dyads: the importance of orientation in electron transfer”, J. Am. Chem. Soc. 2001, 123, 9166-9167.
    54. F. D'Souza, G. R. Deviprasad, M. E. El-Khouly, M. Fujitsuka, O. Ito, “Probing the donor-acceptor proximity on the physicochemical properties of porphyrin-fullerene dyads: "Tail-On" and "Tail-Off" binding approach”, J. Am. Chem. Soc. 2001, 123, 5277-5284.
    55. R. Fong II, D. I. Schuster, S. R. Wilson, “Synthesis and photophysical properties of steroid-linked porphyrin-fullerene hybrids”, Org. Lett. 1999, 1, 729-732.
    56. T. D. M. Bell, T. A. Smith, K. P. Ghiggino, M. G. Ranasinghe, M. J. Shephard, M. N. Paddon-Row, “Long-lived photoinduced charge separation in a bridged C60-porphyrin dyad”, Chem. Phys. Lett. 1997, 268, 223-228.
    57. T. Torres, A. Gouloumis, D. Sanchez-Garcia, J. Jayawickramarajah, W. Seitz, D. M. Guldi, J. L. Sessler, “Photophysical characterization of a cytidine-guanosine tethered phthalocyanine- fullerene dyad”, Chem. Commun. 2007, 292-294.
    58. B. Ballesteros, G. de la Torre, C. Ehli, G. M. A. Rahman, F. Agulló-Rueda, D. M. Guldi, T. Torres, “Single-wall carbon nanotubes bearing covalently linked phthalocyanines- photoinduced electron transfer”, J. Am. Chem. Soc. 2007, 129, 5061-5068.
    59. V. Heleg-Shabtai, T. Gabriel, I. Willner, “Vectorial photoinduced electron-transfer and charge separation in a Zn(II)-protoporphyrin-bipyridinium dyad reconstituted myoglobin”, J. Am. Chem. Soc. 1999, 121, 3220-3221.
    60. T. Hayashi, T. Takimura, H. Ogoshi, “Photoinduced singlet electron transfer in a complex formed from zinc myoglobin and methyl viologen: artificial recognition by a chemically modified porphyrin”, J. Am. Chem. Soc. 1995, 117, 11606-11607.
    61. Y. Hitomi, T. Hayashi, K. Wada, T. Mizutani, Y. Hisaeda, H. Ogoshi, “Interprotein electron transfer reaction regulated by an artificial interface”, Angew. Chem. Int. Ed. 2001, 40, 1098-1101.
    62. H. D. Gafney, A. W. Adamson, “Excited state Ru(bipyr)32+ as an electron-transfer reductant”, J. Am. Chem. Soc. 1972, 94, 8238-8239.
    63. C. R. Bock, T. J. Meyer, D. G. Whitten, “Photochemistry of transition metal complexes. Mechanism and efficiency of energy conversion by electron-transfer quenching”, J. Am. Chem. Soc. 1975, 97, 2909-2911.
    64. C. P. Anderson, D. J. Salmon, T. J. Meyer, R. C. Young, “Photochemical Generation of Ru(bpy)3+ and O2”, J. Am. Chem. Soc. 1977, 99, 1980-1982.
    65. C. R. Bock, J. A. Connor, A. R. Gutierrez, T. J. Meyer, D. G. Whitten, B. P. Sullivan, J. K. Nagle, “Estimation of excited-state redox potentials by electron-transfer quenching. Application of electron-transfer theory to excited-state redox processes”, J. Am. Chem. Soc. 1979, 101, 4815-4824.
    66. B. P. Sullivan, H. Abruna, H. O. Finklea, D. J. Salmon, J. K. Nagle, T. J. Meyer, H. Sprintschnik, “Multiple emissions from charge transfer excited states of ruthenium(II)- polypyridine complexes”, Chem. Phys. Lett. 1978, 58, 389-393.
    67. M. J. Root, E. Deutsch, J. C. Sullivan, D. Meisel, “Quencher ligand binding to luminescent complexes. Luminescent phenothiazine polypyridine Ru(II) complexes”, Chem. Phys. Lett. 1983, 101, 353-356.
    68. P. Chen, E. Danielson, T. J. Meyer, “Role of free energy change on medium effects in intramolecular electron transfer”, J. Phys. Chem. 1988, 92, 3708-3711.
    69. P. Chen, M. Curry, T. J. Meyer, “Effects of conformational change in the acceptor on intramolecular electron transfer”, Inorg. Chem. 1989, 28, 2271-2280.
    70. W. E. Jones, Jr. Carlo A. Bignozzi, P. Chen, T. J. Meyer, “Photochemical electron transfer in chromophore-quencher complexes of ruthenium(II) based on tris(1-pyrazolyl)methane”, Inorg. Chem. 1993, 32, 1167-1178.
    71. T. J. Meyer, “Excited-state electron transfer”, Prog. Inorg. Chem. 1983, 30, 389-440.
    72. T. A. Perkins, D. B. Pourreau, T. L. Netzel, K. S. Schanze, “Ligand-ligand charge-transfer excited states of osmium(II) complexes:, J. Phys. Chem. 1989, 93, 4511-4522.
    73. T. A. Perkins, W. Humer, T. L. Netzel, K. S. Schanze, “Solvent-induced excited-state quenching in a chromophore-quencher complex”, J. Phys. Chem. 1990, 94, 2229-2232.
    74. M. T. Buckner, T. G. Matthews, F. E. Lytle, D. R. McMillin, “Simultaneous emissions including intraligand emission and charge-transfer emission from [Cu(PPh3)2(phen)]+”, J. Am. Chem. Soc. 1979, 101, 5846-5848.
    75. R. A. Rader, D. R. McMillin, M. T. Buckner, T. G. Matthews, D. J. Casadonte, R. K. Lengel, S. B. Whittaker, L. M. Darmon, F. E. Lytle, “Photostudies of [Cu(bpy)(PPh3)2]+, [Cu(phen)(PPh3)2]+, and [Cu(dmp)(PPh3)2]+ in solution and in rigid, low-temperature glasses. Simultaneous multiple emissions from intraligand and charge-transfer states”, J. Am. Chem. Soc. 1981, 103, 5906-5912.
    76. D. J. Casadonte, J. R. Kirshhoff, D. R. McMillin “Hindered internal conversion in rigid media. Thermally nonequilibrated 3IL and 3CT emissions from [Cu(5-X-phen)(PPh3)2]+ and [Cu(4,7-X2-phen)(PPh3)2]+ systems in a glass at 77 K”, J. Am. Chem. Soc. 1987, 109, 331- 337.
    77. D. R. McMillin, J. R. Kirchhoff, Kevin V. Goodwin, “Exciplex quenching of photo-excited copper complexes”, Coord. Chem. Rev. 1985, 64, 83-92.
    78. C. E. A. Palmer, D. R. McMillin, C. Kirmaier, D. Holten, “Flash photolysis and quenching studies of copper(I) systems in the presence of Lewis bases: inorganic exciplexes?”, Inorg. Chem. 1987, 26, 3167-3170.
    79. M. Ruthkosky, C. A. Kelly, F. N. Castellano, G. J. Meyer, “Electron and energy transfer from CuI MLCT excited states”, Coord. Chem. Rev. 1998, 171, 309-322.
    80. N. Armaroli, “Photoactive mono- and polynuclear Cu(I)-phenanthrolines. A viable alternative to Ru(II)-polypyridines?”, Chem. Soc. Rev. 2001, 30, 113-124.
    81. M. Ruthkosky, C. A. Kelly, M. C. Zaros, G. J. Meyer, “Long-lived charge-separated states following light excitation of Cu(I) donor-acceptor compounds”, J. Am. Chem. Soc. 1997, 119, 12004-12005.
    82. E. H. Yonemoto, R. L. Riley, Y. II Kim, S. J. Atherton, R. H. Schmehl, T. E. Mallouk,“Photoinduced electron transfer in covalently linked ruthenium tris(bipyridy1)-viologen molecules: observation of back electron transfer in the Marcus inverted region”, J. Am. Chem. Soc. 1992, 114, 8081-8087.
    83. L. F. Cooley, C. E. L. Headford, C. M. Elliott, D. F. Kelley, “Intramolecular electron transfer in linked tris(2,2'-bipyridine)ruthenium(II)/diquat complexes”, J. Am. Chem. Soc. 1988, 110, 6673-6682.
    84. M. Hissler, J. E. McGarrah, W. B. Connick, D. K. Geiger, S. D. Cummings, R. Eisenberg, “Platinum diimine complexes: towards a molecular photochemical device”, Coord. Chem. Rev. 2000, 208, 115-137.
    85. V. Balzani, “Supramolecular Photochemistry”, D. Reidel Publishing Co.: Dordrecht, Holland, 1987.
    86. V. Balzani, L. Moggi, F. Scandola, “Towards a supramolecular photochemistry: assembly of molecular components to obtain photochemical molecular devices”, In Supramolecular Photochemistry, V. Balzani, Ed., D. Reidel Publishing Co.: Dordrecht, Holland, 1987, 1-28.
    87. J. E. McGarrah, Y. J. Kim, M. Hissler, R. Eisenberg, “Toward a molecular photochemical device: a triad for photoinduced charge separation based on a platinum diimine bis(acetylide) chromophore”, Inorg. Chem. 2001, 40, 4510-4511.
    88. S. Chakraborty, T. J. Wadas, H. Hester, R. Schmehl, R. Eisenberg, “Platinum chromophore- based systems for photoinduced charge separation: a molecular design approach for artificial photosynthesis”, Inorg. Chem. 2005, 44, 6865-6878.
    89. V. W. W. Yam, R. P. L. Tang, K. M. C. Wong, C. C. Ko, K. K. Cheung, “Synthesis and ion- binding studies of a platinum(II) terpyridine complex with crown ether pendant. X-ray crystal structure of [Pt(trpy)(S-benzo-15-crown-5)]PF6”, Inorg. Chem. 2001, 40, 571-574.
    90. V. W. W. Yam, R. P. L. Tang, K. M. C. Wong, K. K. Cheung, “Synthesis, luminescence, electrochemistry, and ion-binding studies of platinum(II) terpyridyl acetylide complexes”, Organometallics 2001, 20, 4476-4482.
    91. V. W. W. Yam, K. M. C. Wong, N. Zhu, “Solvent-induced aggregation through metal···metal interactions: large solvatochromism of luminescent organoplatinum(II) terpyridyl complexes”, J. Am. Chem. Soc. 2002, 124, 6506-6507.
    92. S. Chakraborty, T. J. Wadas, H. Hester, C. Flaschenreim, R. Schmehl, R. Eisenberg,“Synthesis, structure, characterization, and photophysical studies of a new platinum terpyridyl-based triad with covalently linked donor and acceptor groups”, Inorg. Chem. 2005,
    44, 6284-6293.
    93. Xiu-Yu Yi, Li-Zhu Wu, Chen-Ho Tung, “Enhencement of photoinduced charge sepatration in cyclometallted platinum(II) complex-viologen system via Nafion membrane-solution interface”, Photograph. Sci. And Photochem. 2000, 18, 97-103.
    94. M. Calvin, “Solar energy by photosynthesis”, Science 1974, 184, 375-381.
    95. D. Gust, T. A. Moore, A. L. Moore, “Mimicking photosynthetic solar energy transduction”, Acc. Chem. Res. 2001, 34, 40-48.
    96. D. Kuciauskas, P. A. Liddell, S. Lin, S. G. Stone, A. L. Moore, T. A. Moore, D. Gust, “Photoinduced electron transfer in crotenoporphyrin-fullerene triads: temperature and solvent effects”, J. Phys. Chem. B. 2000, 104, 4307-4321.
    97. D. Gust, T. A. Moore, A. L. Moore “Molecular mimicry of photosynthetic energy and electron transfer”, Acc. Chem. Res. 1993, 26, 198-205.
    98. D. Gust, T. A. Moore, A. L. Moore, S. J. Lee, E. Bitersmann, D. K. Lutrull, A .A. Rehms, J. M. DeGraziano, X. C. Ma, F. Gao, R. E. Belford, T. T. Trier, “Efficient multistep photoinitiated electron transfer in a molecular pentad”, Science, 1990, 248, 199-201.
    99. H. Imahori, K. Tamaki, Y. Araki, Y. Sekiguchi, O. Ito, Y. Sakata, S. Fukuzumi, “Stepwise charge separation and charge recombination in ferrocene-meso, meso-linked porphyrin dimer-fullerene triad”, J. Am. Chem. Soc. 2002, 124, 5165-5174.
    100. G. Steinberg-Yfrach, J. L. Rigaud, E. N. Durantini, A. L. Moore, D. Gust, T.A. Moore, “Light driven production of ATP catalyzed by FOFI-ATP synthase in an artifical photosynthetic membrane”, Nature, 1998, 392, 479-482.
    101. M. Gr?tzel, “Photoelectrochemical cells”, Nature, 2001, 414, 338-344.
    102. M. Gr?tzel, J. E. Moser, “Solar energy conversion”, in “Electron Transfer in Chemistry”, Balzani, V. Gould, L, eds. vol.V, Wiley-VCH, Weinheim, 2001, 589-644.
    103. R. Argazzi, C. A. Bignozzi, T. A. Heimer, F. N. Castellano, G. J. Meyer “Light-induced charge separation across Ru(II)-modified nanocrystalline TiO2 interfaces with phenothiazine donors”, J. Phys. Chem. B 1997, 101, 2591-2597.
    104. V. Y. Shafirovich, A. E. Shilov, “In Photochemical energy conversion”, Norris J. R., Jr,Meisel D. eds. Elsevier, New York, 1989, 173-183.
    105. J. Kiwi, M. Graetzel, “Projection, size factors, and reaction dynamics of colloidal redox catalysts mediating light induced hydrogen evolution from water”, J. Am. Chem. Soc. 1979, 101, 7214-7217.
    106. J. Kiwi, M. Gr?tzel, “Hydrogen evolution from water induced by visible light mediated by redox catalysis”, Nature 1979, 281, 657-658.
    107. E. Borgarello, J. Kiwi, E. Pelizzetti, M. Gr?tzel, “Photochemical cleavage of water by photocatalysis”, Nature 1981, 289, 158-160.
    108. J. Kiwi, In “Energy resources through photochemistry and catalysis”, M. Gr?tzel ed. Academic Press, New York, 1983, Chapter 9.
    109. R. A. Simon, T. E. Mallouk, K. A. Daube, M. S. Wrighton, “Electrochemical characterization of surface-bound redox polymers derived from 1,1'-bis[((3-(triethoxysilyl)propyl)amino) carbonyl]cobaltocenium: charge transport, anion binding, and use in photoelectrochemical hydrogen generation”, Inorg. Chem. 1985, 24, 3119-3126.
    110. D. L. Jiang, C. K. Choi, K. Honda, W. S. Li, T. Yuzawa, T. Aida, “Photosensitized hydrogen evolution from water using conjugated polymers wrapped in dendrimeric electrolytes”, J. Am. Chem. Soc. 2004, 126, 12084-12089.
    111. T. Komatsu, R. M. Wang, P. A. Zunszain, S. Curry, E. Tsuchida, “Photosensitized reduction of water to hydrogen using human serum albumin complexed with zinc-protoporphyrin IX”, J. Am. Chem. Soc. 2006, 128, 16297-16301.
    112. P. Du, J. Schneider, P. Jarosz, R. Eisenberg, “Photocatalytic generation of hydrogen from water using a platinum(II) terpyridyl acetylide chromophore”, J. Am. Chem. Soc. 2006, 128, 7726-7727.
    113. H. Ozawa, M. Haga, K. Sakai, “A photo-hydrogen-evolving molecular device driving visible-light-induced EDTA-reduction of water into molecular hydrogen”, J. Am. Chem. Soc. 2006, 128, 4926 - 4927.
    114. K. Sakai, K. Matsumoto, “Homogeneous catalysis of platinum blue related complexes in photoreduction of water into hydrogen”, J. Mol. Catal. 1992, 62, 1-14.
    115. K. Sakai, Y. Kizaki, T. Tsubomura, K. Matsumoto, “Homogeneous catalyses of mixed-valent octanuclear platinum complexes in photochemical hydrogen production from water”, J. Mol.Catal. 1993, 79, 141-152.
    116. S. Rau, B. Sch?fer, D. Gleich, E. Anders, M. Rudolph, M. Friedrich, H. G?rls, W. Henry, J. G. Vos, “A supramolecular photocatalyst for theproduction of hydrogen and the selective hydrogenation of tolane”, Angew. Chem. Int. Ed. 2006, 45, 6215-6218.
    1. N. Mataga, M. Migita, T. Nishimura, “Picosecond chemistry of some exciplex systems”, J. Mol. Struct. 1978, 47, 199-219.
    2. P. J. Hore, C. G. Joslin, K. A. McLauchlan, “The role of chemically-induced dynamic electron polarization (CIDEP) in chemistry”, Chem. Soc. Rev. 1979, 8, 29-61.
    3. A. P. Schaap, K. A. Zaklika, B. Kaskar, L. W. M. Fung, “Mechanisms of photooxygenation. 2. Formation of 1,2-dioxetanes via 9,10-dicyanoanthracene-sensitized electron-transfer processes”, J. Am. Chem. Soc. 1980, 102, 389-391.
    4. G. L. Gloss, A. D. Trifunac, “Theory of chemically induced dynamic nuclear spin polarization. VI. Polarization in radical transfer and trapping products and the dependence on nuclear relaxation times”, J. Am. Chem. Soc. 1970, 92, 7227-7229.
    5. M. R. Wasielewski, “Photoinduced electron transfer in supramolecular systems for artificial photosynthesis”, Chem. Rev. 1992, 92, 435-461.
    6. M. Ruthkosky, C. A. Kelly, M. C. Zaros, G. J. Meyer, “Long-lived charge-separated states following light excitation of Cu(I) donor-acceptor compounds”, J. Am. Chem. Soc. 1997, 119, 12004-12005.
    7. D. B. MacQueen, K. S. Schanze, “Free energy and solvent dependence of intramolecular electron transfer in donor-substituted Re(I) complexes”, J. Am. Chem. Soc. 1991, 113, 7470-7419.
    8. E. Baranoff, J. P. Collin, L. Flamigni, J. P. Sauvage, “From ruthenium(II) to iridium(III): 15 years of triads based on bis-terpyridine complexes”, Chem. Soc. Rev. 2004, 33, 147-155.
    9. E. H. Yonemoto, R. L. Riley, Y. II Kim, S. J. Atherton, R. H. Schmehl, T. E. Mallouk, “Photoinduced electron transfer in covalently linked ruthenium tris(bipyridy1)-viologen molecules: observation of back electron transfer in the Marcus inverted region”, J. Am. Chem. Soc. 1992, 114, 8081-8087.
    10. J. P. Collin, S. Guillerez, J. P. Sauvage, F. Barigelletti, L. D. Cola, L. Flamigni, V. Balzani, “Photoinduced processes in dyads and triads containing a ruthenium(II)-bis(terpyridine) photosensitizer covalently linked to electron donor and acceptor groups”, Inorg. Chem. 1991, 30, 4230-4238.
    11. E. H. Yonemoto, G. B. Saupe, R. H. Schmehl, S. M. Hubig, R. L. Riley, B. L. Iverson, T. E. Mallouk, “Electron-transfer reactions of ruthenium trisbipyridyl-viologen donor-acceptor molecules: comparison of the distance dependence of electron-transfer rates in the normal and Marcus inverted regions”, J. Am. Chem. Soc. 1994, 116, 4786-4795.
    12. J. E. McGarrah, Y. J. Kim, M. Hissler, R. Eisenberg, “Toward a molecular photochemical device: a triad for photoinduced charge separation based on a platinum diimine bis(acetylide) chromophore” Inorg. Chem. 2001, 40, 4510-4511.
    13. S. Chakraborty, T. J. Wadas, H. Hester, C. Flaschenreim, R. Schmehl, R. Eisenberg, “Synthesis, structure, characterization, and photophysical studies of a new platinum terpyridyl-based triad with covalently linked donor and acceptor groups”, Inorg. Chem. 2005, 44, 6284-6293.
    14. S. Chakraborty, T. J. Wadas, H. Hester, R. Schmehl, R. Eisenberg, “Platinum chromophore-based systems for photoinduced charge separation: a molecular design approach for artificial photosynthesis”, Inorg. Chem. 2005, 44, 6865-6878.
    15. T. C. Cheung, K. K. Cheung, S. M. Peng, C. M. Che, “Photoluminescent cyclometallated diplatinum(II,II) complexes: photophysical properties and crystal structures of [PtL(PPh3)]ClO4 and [Pt2L2(μ-dppm)][ClO4]2 (HL = 6-phenyl-2, 2'-bipyridine, dppm = Ph2PCH2PPh2)”, J. Chem. Soc., Dalton Trans. 1996, 1645-1651.
    16. L. Z. Wu, T. C. Cheung, C. M. Che, K. K. Cheung, M. H. W. Lam, “Dinuclear cyclometallated platinum(II) complex as a sensitive luminescent probe for SDS micelles”, Chem. Commun. 1998, 1127-1128.
    17. M. C. Tse, K. K. Cheung, M. C. W. Chan, C. M. Che, “Phosphinocarboxylic acids as building blocks in organometallic crystal engineering. Self-organisation of one-dimensional hotoluminescent cyclometallated platinum(II) polymeric structures”, Chem. Commun. 1998, 2295-2296.
    18. S. W. Lai, M. C. W. Chan, T. C. Cheung, S. M. Peng, C. M. Che, “Probing d8-d8 interactions in luminescent mono- and binuclear cyclometalated platinum(II) complexes of 6-phenyl-2,2'-bipyridines”, Inorg. Chem. 1999, 38, 4046-4055.
    19. N. J. Turro, “Modern molecular photochemistry”, The Benjamin/Cummings publishing company, Inc., 1978, p595.
    20. A. Weller, “Electron-transfer and complex formation in the excited state”, Pure Appl. Chem. 1968, 16, 115-124.
    21. D. J. Casadonte, Jr., D. R. McMillin, “Dual emissions from Cu(dmp)(PR3)2+ systems in a rigid glass: influence of the phosphine donor strength”. Inorg. Chem. 1987, 26, 3950-3952.
    22. 吴梓新,多吡啶铂(II)炔基配合物光物理及光限幅性质的研究,中国科学院理化技术研究所,博士研究生学位论文,2003.
    23. Z. Mao, H. Y. Chao, Z. Hui, C. M. Che, W. F. Fu, K. K. Cheung, N. Y. Zhu, “3[(dx2-y2, dxy)(pz)] Excited states of binuclear copper(I) phosphine complexes: effect of copper-ligand and copper-copper interactions on excited state properties and photocatalytic reductions of the 4,4'-dimethyl-2,2'-bipyridinium ion in alcohols”, Chem. Eur. J. 2003, 9, 2885-2897.
    24. A. Hofmann, L. Dahlenburg, R. van Eldik, “Cyclometalated analogues of platinum terpyridine complexes: kinetic study of the strong σ-donor cis and trans effects of carbon in the presence of a π-acceptor ligand backbone”, Inorg. Chem. 2003, 42, 6528-6538.
    25. M. Hissler, J. E. McGarrah, W. B. Connick, D. K. Geiger, S. D. Cummings, R. Eisenberg, “Platinum diimine complexes: towards a molecular photochemical device”, Coord. Chem. Rev. 2000, 208, 115-137.
    26. D. R. McMillin, J. J. Moore, “Luminescence that lasts from Pt(trpy)Cl+ derivatives (trpy = 2,2':6',2''-terpyridine)”, Coord. Chem. Rev. 2002, 229, 113-121.
    27. J. F. Michalec, S. A. Bejune, D. R. McMillin, “Multiple ligand-based emissions from a platinum(II) terpyridine complex attached to pyrene”, Inorg. Chem. 2000, 39, 2708-2709.
    28. J. F. Michalec, S. A. Bejune, D. G. Cuttell, G. C. Summerton, J. A. Gertenbach, J. S. Field, R. J. Haines, D. R. McMillin, “Long-lived emissions from 4'-substituted Pt(trpy)Cl+ complexes bearing aryl groups. Influence of orbital parentage”, Inorg. Chem. 2001, 40, 2193-2200.
    29. S. W. Lai, M. C. W. Chan, K. K. Cheung, C. M. Che, “Spectroscopic properties of luminescent platinum (II) complexes containing 4,4',4''-tri-tert-butyl-2,2':6',2''-terpyridinde (tbu3tpy). Crystal structures of [pt(tBu3tpy)Cl]ClO4 and [pt(tBu3tpy){CH2C(O)Me}]ClO4”, Inorg. Chem. 1999, 38, 4262-4267.
    30. V. W. W. Yam, R. P. L. Tang, K. M. C. Wong, K. K. Cheung, “Synthesis, luminescence, electrochemistry, and ion-binding studies of platinum(II) terpyridyl acetylide complexes”, Organometallics, 2001, 20, 4476-4482.
    31. V. W. W. Yam, R. P. L. Tang, K. M. C. Wong, C. C. Ko, K. K. Cheung, “Synthesis and ion-binding studies of a platinum(II) terpyridine complex with crown ether pendant. X-ray crystal structure of [Pt(trpy)(S-benzo-15-crown-5)]PF6”, Inorg. Chem. 2001, 40, 571-574.
    32. V. W. W. Yam, K. M. C. Wong, N. Zhu, “Solvent-induced aggregation through metal···metal/π···π interactions: large solvatochromism of luminescent organo-platinum(II) terpyridyl complexes”, J. Am. Chem. Soc. 2002, 124, 6506-6507.
    1. E. Danielson, C. M. Elliott, J. W. Merkert, T. J. Meyer, “Photochemically induced charge separation at the molecular level. A chromophore quencher complex containing both an electron transfer donor and an acceptor”, J. Am. Chem. Soc. 1987, 109, 2519-2520.
    2. L. F. Cooley, C. E. L. Headford, C. M. Elliott, D. F. Kelley, “Intramolecular electron transfer in linked tris(2,2'-bipyridine)ruthenium(II)/diquat complexes”, J. Am. Chem. Soc. 1988, 110, 6673-6682.
    3. E. H. Yonemoto, R. L. Riley, Y. II Kim, S. J. Atherton, R. H. Schmehl, T. E. Mallouk, “Photoinduced electron transfer in covalently linked ruthenium tris(bipyridy1)-viologen molecules: observation of back electron transfer in the Marcus inverted region”, J. Am. Chem. Soc. 1992, 114, 8081-8087.
    4. J. P. Collin, S. Guillerez, J. P. Sauvage, F. Barigelletti, L. D. Cola, L. Flamigni, V. Balzani, “Photoinduced processes in dyads and triads containing a ruthenium(II)-bis(terpyridine) photosensitizer covalently linked to electron donor and acceptor groups”, Inorg. Chem. 1991, 30, 4230-4238.
    5. E. H. Yonemoto, G. B. Saupe, R. H. Schmehl, S. M. Hubig, R. L. Riley, B. L. Iverson, T. E. Mallouk, “Electron-transfer reactions of ruthenium trisbipyridyl-viologen donor-acceptor molecules: comparison of the distance dependence of electron-transfer rates in the normal and Marcus inverted regions”, J. Am. Chem. Soc. 1994, 116, 4786-4795.
    6. D. B. MacQueen, K. S. Schanze, “Free energy and solvent dependence of intramolecular electron transfer in donor-substituted Re(I) complexes”, J. Am. Chem. Soc. 1991, 113, 7470-7419.
    7. P. Chen, R. Duesing, G. Tapolsky, T. J. Meyer, “Intramolecular electron transfer in the inverted region”, J. Am. Chem. Soc. 1989, 111, 8305-8306.
    8. M. Hissler, J. E. McGarrah, W. B. Connick, D. K. Geiger, S. D. Cummings, R. Eisenberg, “Platinum diimine complexes: towards a molecular photochemical device”, Coord. Chem. Rev. 2000, 208, 115-137.
    9. J. E. McGarrah, Y. J. Kim, M. Hissler, R. Eisenberg, “Toward a molecular photochemicaldevice: a triad for photoinduced charge separation based on a platinum diimine bis(acetylide) chromophore”, Inorg. Chem. 2001, 40, 4510-4511.
    10. S. Chakraborty, T. J. Wadas, H. Hester, C. Flaschenreim, R. Schmehl, R. Eisenberg, “Synthesis, structure, characterization, and photophysical studies of a new platinum terpyridyl-based triad with covalently linked donor and acceptor groups”, Inorg. Chem. 2005, 44, 6284-6293.
    11. S. Chakraborty, T. J. Wadas, H. Hester, R. Schmehl, R. Eisenberg, “Platinum chromophore-based systems for photoinduced charge separation: a molecular design approach for artificial photosynthesis”, Inorg. Chem. 2005, 44, 6865-6878.
    12. D. R. McMillin, M. T. Buckner, B. T. Ahn, “A light-induced redox reaction of bis(2,9-dimethyl-1,10-phenanthroline)copper(I)”, Inorg. Chem. 1977, 16, 943-945.
    13. M. Ruthkosky, C. A. Kelly, F. N. Castellano, G. J. Meyer, “Electron and energy transfer from CuI MLCT excited states”, Coord. Chem. Rev. 1998, 171, 309-322.
    14. M. Ruthkosky, C. A. Kelly, M. C. Zaros, G. J. Meyer, “Long-lived charge-separated states following light excitation of Cu(I) donor-acceptor compounds”, J. Am. Chem. Soc. 1997, 119, 12004-12005.
    15. D. A. Bardwell, A. M. W. C. Thompson, J. C. Jeffery, E. E. M. Tilley, M. D. Ward, “Partially encapsulated copper(I) complexes of mono(o-aryl)-substituted derivatives of 2,2'-bipyridine and 1,10-phenanthroline”, J. Chem. Soc., Dalton Trans. 1995, 835-841.
    16. D. A. Bardwell, J. C. Jeffery, C. A. Otter, M. D. Ward, “The crystal structure of [Cu(Ph2bipy)2][BF4]·CH2Cl2 (Ph2bipy=6,6'-diphenyl-2,2'-bipyridine)”, Polyhedron 1996, 15, 191-194.
    17. P. J. Burke, D. R. McMillin, W. R. Robinson, “Crystal and molecular structure of bis(6,6'-dimethyl-2,2'-bipyridyl)copper(I) tetrafluoroborate”, Inorg. Chem. 1980, 19, 1211-1214.
    18. S. J. Lippard, G. J. Palenik, “Factors influencing the stereochemistry of four-coordinate copper(I)-phosphine complexes”, Inorg. Chem. 1971, 10, 1322-1324.
    19. T. Garber, S. V. Wallendael, D. P. Rillema, M. Kirk, W. E. Hatfield, J. H. Welch, P. Singh, “A novel copper(II) complex containing the ligand 1,2-bis(2,2'-bipyridyl-6-yl)ethane: structural, magnetic, redox, and spectral properties”, Inorg. Chem. 1990, 29, 2863-2868.
    20. M. T. Youinou, R. Ziessel, J. M. Lehn, “Formation of dihelicate and mononuclear complexes from ethane-bridged dimeric bipyridine or phenanthroline ligands with copper(I), cobalt(II), and iron(II) cations”, Inorg. Chem. 1991, 30, 2144-2148.
    21. Y. Yao, M. W. Perkovic, D. P. Rillema, C. Woods, “Structures and properties of copper(II) and copper(I) complexes containing an ethane-bridged dimeric phenanthroline ligand”, Inorg. Chem. 1992, 31, 3956-3962.
    22. E. M. Stacy, D. R. McMillin, “Inorganic exciplexes revealed by temperature-dependent quenching studies”, Inorg. Chem. 1990, 29, 393-396.
    23. Y. Tezuka, A. Hashimoto, K. Ushizaka, K. Imai, “Generation and reactions of novel copper carbenoids through a stoichiometric reaction of copper metal with gem-dichlorides in dimethyl sulfoxide”, J. Org. Chem. 1990, 55, 329-333.
    24. A. Bencini, D. Gatteschi, C. Zanchini, “Anisotropic exchange in transition-metal dinuclear complexes. 8. Bis(μ-pyridine N-oxide)bis [dichloro(dimethyl sulfoxide)copper(II)]”, Inorg. Chem. 1986, 25, 2211-2214.
    25. I. Persson, J. E. Penner-Hahn, K. O. Hodgson, “An EXAFS spectroscopic study of solvates of copper(I) and copper(II) in acetonitrile, dimethyl sulfoxide, pyridine, and tetrahydrothiophene solutions and a large-angle X-ray scattering study of the copper(II) acetonitrile solvate in solution”, Inorg. Chem. 1993, 32, 2497-2501.
    26. H. O. Stumpf, Y. Pei, L. Ouahab, F. Le Berre, E. Codjovi, O. Kahn, “Crystal structure and metamagnetic behavior of the ferrimagnetic chain compound MnCu(opba)(H2O)2·DMSO (opba = o-phenylenebis(oxamato) and DMSO = dimethyl sulfoxide)”, Inorg. Chem. 1993, 32, 5687-5691.
    27. Z. Mao, H. Y. Chao, Z. H., C. M. Che, W. F. Fu, K. K. Cheung, N. Zhu, “3[(dx2-y2, dxy)(pz)] excited states of binuclear copper(I) phosphine complexes: effect of copper-ligand and copper-copper interactions on excited state properties and photocatalytic reductions of the 4,4'-dimethyl-2,2'-bipyridinium ion in alcohols.”, Chem. Eur. J. 2003, 9, 2885-2897.
    1. D. D. Perrin, W. L. F. Armarego, D. R. Perrin, “Purification of Laboratory Chemicals”, 2nd ed., Pergamon Press: Oxford, 1980.
    2. F. Krohnke, “The specific synthesis of pyridines and oligopyridines”, Synthesis, 1976, 1-24.
    3. S-W Lai, M. C-W Chan, T-C Cheung, S-M Peng, C-M Che, “Probing d8-d8 interactions in luminescent mono- and binuclear cyclometalated platinum(II) complexes of 6-phenyl-2,2'-bipyridines”, Inorg. Chem. 1999, 38, 4046-4055.
    4. E. C. Constable, O. Eich, C. E. Housecroft, D. C. Rees, “Metallostars containing {Ru(bpy)3} motifs”, Inorg. Chim. Acta, 2000, 300-302, 158-168.
    5. K. A. Maxwell, M. Sykora, J. M. DeSimone, T. J. Meyer, “One-pot synthesis and characterization of a chromophore-donor-acceptor assembly”, Inorg. Chem. 2000, 39, 71-75.
    6. E. H. Yonemoto, R. L. Riley, Y. I. Kim, S. J. Atherton, R. H. Schmehl, T. E. Mallouk, “Photoinduced electron transfer in covalently linked ruthenium tris(bipyridyl)-viologen molecules: observation of back electron transfer in the Marcus inverted region”, J. Am. Chem. Soc. 1992, 114, 8081-8087.
    7. J. P. Collin, S. Guillerez, J. P. Sauvage, F. Barigelletti, L. D. Cola, L. Flamigni, V. Balzani, “Photoinduced processes in dyads and triads containing a ruthenium(II)-bis(terpyridine) photosensitizer covalently linked to electron donor and acceptor groups”, Inorg. Chem. 1991, 30, 4230-4238.
    8. E. C. Constable, R. P. G. Henney, T. A. Leese, D. A. Tocher, “Cyclopalladated and cycloplatinated complexes of 6-phenyl-2,2'-bipyridine: platinum-platinum interactions in the solid state”, J. Chem Soc, Chem. Commun. 1990, 513-514.
    9. E. C. Constable, R. P. G. Henney, T. A. Leese, D. A. Tocher, “Cyclometallation reactions of 6-phenyl-2,2-bipyridine; a potential C,N,N-donor analogue of 2,2':6',2''-terpyridine. Crystal and molecular structure of dichlorobis(6-phenyl-2,2'-bipyridine)ruthenium(II)”, J. Chem. Soc., Dalton Trans. 1990, 443-449.
    10. M. Howe-Grant, S. J. Lippard, “Metallointercalation reagents: thiolato complexes of (2,2':6',2''-terpyridine)platinum”, Inorg. Synth. 1980, 20, 101-105.
    11. M. Ruthkosky, C. A. Kelly, M. C. Zaros, G. J. Meyer, “Long-lived charge-separated statesfollowing light excitation of Cu(I) donor-acceptor compounds”, J. Am. Chem. Soc. 1997, 119, 12004-12005.
    12. G. J. Kubas, “Tetrakis(acetonitrile) copper(I) hexafluorophosphate”, Inorg. Synth. 1979, 19, 90-92.
    13. T. Higashi, “ABSCOR, Empirical absorption correction based on fourier series approximation”, Rigaku Corporation, Tokyo, 1995.
    14. G. M. Sheldrick, “HELXS 97, program for the solution of crystal structure”, University of Gottingen, 1997.
    15. G. M. Sheldrick, “HELXL 97, program for the refinement of crystal structure, University of Gottingen”, 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700