用户名: 密码: 验证码:
毛竹林生态型模式施肥应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国毛竹(Phyllostachys edulis)面积386.83万hm2,占全国竹林总面积的71.89%、森林总面积的2.13%,对于南方集体林区的生态建设和“三农"增收有重要的意义,施肥作为毛竹林培育的重要技术措施得到更广泛应用。为探索科学合理的毛竹林施肥技术方法,以浙江安吉、龙泉、遂昌等毛竹主要分布县(市)和福建永安为研究地点,通过外业试验和农户调查的方法,对近年来浙江广泛实践的模式施肥方式开展形态生理和培育的生态效应的研究,并基于浙江毛竹林经营和土壤养分的现状,研究提出经济产出高效、水土保持、土壤质量等主要生态功能优良的毛竹林测土推荐施肥技术方案,验证效果良好。研究取得的主要结论是:
     (1)模式施肥后单株叶片数量比对照增加24.0%,并显著提高毛竹林叶面积指数。竹林叶面积指数在稳定状态下,模式施肥处理达到7.67,比对照增加了1.48。模式施肥对毛竹的单叶面积、千叶重和冠层叶片的分布重心无显著影响。叶面积指数增加为通过光合能力增加有机物积累,提高毛竹经济产量奠定了基础。
     (2)模式施肥后毛竹竹秆的主要经济性状特征总体变化较小,模式施肥后立竹量提高,胸径增加,因此生物量和经济产量增加。模式施肥对毛竹的秆高、节间数、节间长、尖削度、壁厚影响不显著,对秆重、枝下高的影响显著。模式施肥后秆重下降6.8%,枝下高下降17.3%,同时平均立竹密度提高45.6%,平均胸径增加4.59%,新竹量提高43%。
     (3)模式施肥有助于维护土壤生物群落的多样性,从而维持立地生态质量。分析对比长期模式施肥(OM)、按传统施氮肥(CM)、不施肥(UM)三种土地利用方式的土壤养分水平,模式施肥处于总体较高水平。对土壤平板计数的菌群数量的分析表明,土壤细菌数量OM>UM>CM;建立了土壤微生物总DNA的16S rDNA文库,文库的酶切类型多样性顺序是:OM>UM>CM。考察三者Shannon-Wienner指数、Simpson指数、丰富度、均匀度等分析文库的多样性指数结果,模式施肥指标优于另外两个样本。
     (4)毛竹林有较好的水土保持能力,模式施肥产生的毛竹林地径流养分流失总量不大,对区域环境不构成影响,但长期施肥经营对区域环境的压力仍然存在。研究表明,不同降雨量、降雨强度、毛竹林密度下产生的林地地表径流有差异,模式施肥的沟施方式产生的养分水土流失大于蔸施,其中,毛竹林径流系数在0.0007-0.001之间,氮的流失量在0.106-0.153kg/hm2之间,磷为0.001-0.002kg/hm2,均处于较低的水平。
     (5)浙江毛竹经营技术以经济收入为导向,竹林生态系统负载大。对主要毛竹产区毛竹林土壤养分状况的分析表明,毛竹林土壤pH值处于4.66到5.03之间,有机质、全氮、碱解氮、有效磷、有机质和速效钾的含量,各地间差异大,大部分样区土壤需要补充氮和磷,而速效钾的含量普遍较高。同时,对10-30年集约经营毛竹林土壤的养分变异分析表明,施肥时间、施肥量和竹林经营类型等人为经营活动减低了土壤养分的相关性,且因经营活动的不同造成样区内竹林土壤相关性减低程度的不同,但随着经营时间的增加,样区内土壤养分含量的分布趋于均质。
     (6)在区域层面实施毛竹林规模化测土推荐施肥,是个标准化、信息化的过程,本文制定了毛竹林测土推荐施肥的原则和技术方案流程,并引入农民参与技术发展途径,以实现提高经济效益并保护地力和环境的目的。经对遂昌县多样点实证研究表明,毛竹测土推荐施肥实施参与发展、综合经营措施,经济收入、化肥减量效益明显,其中,测土推荐施肥和对照相比,投入产出比从1:2.3降低到1:2.99,化肥主要元素(N、P、K)使用量至少降低4-23%,这表明,测土推荐施肥是一种有利于实现毛竹林可持续经营的施肥方式。
ABSTRACT
     With the acreage of 3,868,300 hectares making up 71.89% of the national total bamboo forest area or 2.13% of the total national forest acreage, Moso bamboo (Phyllostachys edulis) has been a significant forest species for the ecological construction and farmer income addition polices in the collective forest areas of southern China and fertilization as a key technical measure of forest management has been practiced on growing scale. To explore improved scientific Moso bamboo fertilization method, field experiments and household surveys were designed in Anji, Longquan, Suichang etc of Zhejiang Province and Yong'an of Fujian Province to study the morphological and silviculture ecology responses of Moso Bamboo to the widely practiced model fertilization methodology to put forward and verify the economically viable and soil ecological performance assured Moso bamboo soil-testing recommended fertilization methodology. The research had the following main conclusions.
     (1) After the model fertilization the amount of single-culm leaves of the Moso bamboo forest increased by 24% and the leaf area index (LAI) increased significantly. During the stabilized period, the model fertilization stands had the LAI of 7.67 which was 1.48 higher than the control. Model fertilization did not have significant impact on the single-leaf area, the thousand-leaf weight and the gravity center of the leaf canopy leaves. The added LAI strengthened the photosynthetic capability for higher organic matter accumulation for raised biological output and economic production of Moso bamboo forest.
     (2) After the model fertilization, the economic morphological features of Moso bamboo culm changed slightly and the biological output and economic production increased as the result of the raised bamboo stands DBH and density. Model fertilization had insignificant impacts on the morphological features of the culm length, amount of culm inter-node sections, the culm inter-node length, the taper degree and culm wall thickness, and had significant impact on the culm weight and below-branch culm height. Specifically, after the model fertilization, the culm weight decreased by 6.8%, the below-branch culm height decreased by 17.3% while the average bamboo stands density, the average DBH and the young bamboo culm quantity increased significantly by 45.6%,4.59% and 43% respectively.
     (3) The model fertilization was helpful for the maintenance of soil biological communities, and thus contributive to maintaining forest land ecological quality. By contrasting the soil nutrient level of three land use types namely the long-term model fertilization (OM), traditional style N fertilization (CM) and no fertilization (UM), the OM was the highest. In addition, the enumerated bacterium quantification of plain plate indicated that the soil bacteria community quantity OM>UM>CM. The established 16S rDNA genomic library of soil microorganism indicated the total DNA enzyme cutting variation levels OM>UM>CM. The study of Shannon-Wienner index, Simpson index, abundance degree and uniformity levels of the total DNA genomic library all showed that the OM was superior in general to other two samples.
     (4) The Moso bamboo forest has comparatively higher capability of soil and water conservation. The model fertilization runoff and nutrient of Moso bamboo forest produced an acceptably high runoff amount which did not form regional level negative environmental impact. However, the long-term pressure of applying fertilizer for good regional environment existed. The study showed that the rainfall, rainfall intensity, bamboo forest density affect runoff levels and the ditch style fertilization mode had higher erosion than the hole type fertilization mode by the model fertilization. The measured Moso bamboo forest runoff coefficient was between 0.0007-0.001,with the nitrogen runoff was between 0.106-0.153 kg/hm2;the P between 0.001-0.002 kg/hm2 which were both at comparatively low levels.
     (5) The Zhejiang Moso bamboo management technology were economic revenue oriented, which brought about immense ecological pressure to the forest ecosystem. The nutrient condition of bamboo forest soil needed to be improved. The average pH value of Moso bamboo land of the province ranged from 4.66 to 5.03 while the soil nutrients of organic matter, whole nitrogen, available nitrogen, available phosphorus and available potassium had high discrepancies. For most areas, the soil needs supplementation of P and N while the available potassium is generally higher. Meanwhile, by nutrient variation analysis to 10a-30a managed Moso bamboo forest soil, it showed that applying fertilizer as far as the applying time, dosage and operation manners etc were concerned, reduced the correlation of soil nutrient and the reduction degree differed among the forest management activities. Nevertheless, as the managed time went on, the distribution of soil nutrient contents tended to be more uniform.
     (6) Application of Moso bamboo soil-testing formulation recommendation fertilization on large scale was a process of technical standardization and informationization. Such technology should have explicit principles, simplified operational procedures and farmer technology development participation arrangements to raise fertilization efficiency preserve land quality and mitigate the environmental risks. The pilot program of soil-testing formulation recommendation fertilization in Suichang County incorporated such participation and integrated management measures. Consequently, the cost-benefit ratio dropped from 1:2.3 to 1:2.99 and the used fertilizer quantity decreased by 4-23%, which proved that the fertilization of the soil-testing formulation fertilization was contributive to social, economic and environmental coordinated sustainable Moso bamboo forest management.
引文
1.白由路,金继运.农田土壤养分变异与施肥推荐[J].植物营养与肥料学报,2001,7(2):129-133
    2.白由路,杨俐苹.我国农业中的测土配方施肥[J].土壤肥料,2006,(2):3-7
    3.曹慧,杨浩,赵其国.太湖丘陵地区典型坡面土壤侵蚀与养分流失[J].湖泊科学,2002,(3):242-246
    4.曹群根.毛竹林水文效应的初步研究[J].竹类研究,1989,8(2):24-45
    5.曹群根.毛竹林冠层对降水的截留作用[J].福建林学院学报,1991,11(1):37-43
    6.陈存及.竹木混交林的科学经营[J].竹子研究汇刊,2001,(20)1:5-9
    7.陈存及.毛竹林的生态培育[J].福建林学院学报,1996,(2):188-192
    8.陈存及.毛竹林分密度效应的初步研究[J].福建林学院学报,1992,12(1):98-10
    9.陈存及.竹木专用肥的试验研制[J].竹子研究汇刊,2002,21(2):1-4
    10.陈乾富.毛竹林不同经营措施对林地土壤肥力的影响[J].竹子研究汇刊,1999,(3):19-24
    11.陈建华,何正安,李定盈.毛竹施肥效果研究[J].竹子研究汇刊,2000,(02):30-35
    12.陈嵘.中国森林史料[M],北京:中国林业出版社,1983
    13.陈天霞,周骋,陈建寅,等.无公害竹笋标准技术研究和制定[J].浙江林业科技,2004,24(2):12-15.
    14.崔键,马友华,赵艳萍,等.农业面源污染的特性及防治对策[J].中国农学通报,2006,22(1):335-340.
    15.陈双林,吴柏林,张德明,等.笋材两用毛竹林冠层结构及其生产力功能研究[J].林业科学研究,2001,14(4):349-355
    16.陈双林,萧江华.现代竹业栽培的土壤生态管理[J].林业科学研究,2005,18(3):351-355
    17.陈新平,李志宏.土壤、植株快速测试推荐施肥技术体系的建立与应用[J].土壤肥料,1999,(2): 6-10.
    18.陈兴福.毛竹林培育与利用[M],北京:中国林业出版社,1986
    19.陈雄搜,李贻铨,杨承拣.中国林术施肥与营养诊断研究现状[J].世界林业研究,1998,8(3):58-65
    20.董文渊.二十一世纪中国竹产业发展的历史机遇[J].世界林业研究,2003,16(1):4245
    21.窦营,余学军.世界竹产业的发展与比较[J].世界农业,2008,(7):18-21
    22.樊景凤,张兰,明红霞.北戴河近岸沉积物中微生物16SrDNA的PCR—RFLP分析[J].海洋环境科学,2008,(5):409-413
    23.方伟,何钧溯,卢学可.雷竹早产高效栽培技术[J].浙江林学院学报,1994,11(2):121-128
    24.方敏瑜,傅懋毅,谢锦忠.竹林养分循环规律研究——Ⅲ.毛竹纯林竹秆流及其养分输入[J].竹子研究汇刊,1998,(2):59-64
    25.樊景凤,张兰,明红霞.北戴河近岸沉积物中微生物16SrDNA的PCR-RFLP分析[J].海洋环境科学,2008,(5):409-413
    26.冯万富,汪志强,单燕祥,等.豫南山区典型森林类型径流变化规律研究[J],河南林业科技,2009,(29)4:16-20
    27.福建中化智胜化肥有限公司,浙江林学院竹类研究所,福建永安竹业.毛竹笋用林经营技术手册[M].2001
    28.福建省地方志编纂委员会.福建省志(物价志)[M].北京:中国社会科学出版社,1999
    29.傅懋毅,谢锦忠.不同用途毛竹林施肥研究Ⅱ毛竹笋用林丰产经营技术[J].林业科学研究,1991,(03):238-245
    30.傅懋毅,楼一平.竹林的分类经营与竹业的可持续发展,面向二十一世纪的林业[M],中国农业科技出版社,1998
    31.傅懋毅.当前世界竹子研究的动态与对策[J].林业科技通讯,1997,322(3):34-35
    32.傅懋毅,谢锦忠,方敏瑜.不同用途毛竹林的施肥研究[J].Ⅰ毛竹材用林的施肥,林业科学研究,1988,1(5):541-546
    33.傅懋毅,曹群根.竹林养分循环,Ⅱ毛竹林内降水的养分输入及其林地径流的养分输出[J].林业科学研究,1992,5(5):497-505
    34.傅懋毅.依靠科学技术加速我国竹林的优质培育[J].竹子研究汇刊,2000,19(3):9-12
    35.傅懋毅.雪灾后的思考[J].林业科学,2008,(3):4-5
    36.高祥照,马常宝,杜森.测土配方施肥技术[M].北京:中国农业出版社,2005
    37.高志勤.生态型毛竹林土壤地力维持技术[J].浙江林业科技,2009,29(5):73-77
    38.高志勤,傅懋毅.毛竹林等不同森林类型枯落物水文特性的研究[J].林业科学研究,2005,(3):274-279
    39.高志勤,傅懋毅.不同毛竹林土壤碳氮养分的季节变化特征[J].浙江林学院学报,2006(3):248-254
    40.耿伯介.中国植物志第九卷第1分册[M].北京:科学出版社,1996
    41.顾小平.竹林肥培理论与技术研究[D].中国林业科学研究院博士论文.2000
    42.顾小平,吴晓丽,汪阳东,等.毛竹材用林高产优化施肥与结构模型的建立[J].林业科学,2004,(3):96-101
    43.顾仲阳.竹产业转变发展方式述评(上)[N].人民日报,2010-07-14(4)
    44.顾仲阳.竹产业转变发展方式述评(下)[N].人民日报,2010-07-15(3)
    45.关君蔚.水土保持原理[M],中国林业出版社,1998
    46.国家林业局.中国森林资源报告—第七次全国森林资源清查[M].北京:中国林业出版社,2009
    47.国家环境保护总局.水和废水监测分析方法[M].北京:中国环境科学出版社,2002
    48.郭晓敏.毛竹林平衡施肥及营养管理研究[D].南京林业大学博士论文.2003
    49.郭晓敏,牛德奎,张斌.集约经营毛竹林平衡施肥效应研究[J].西南林学院学报,2005,25(4):84-88
    50.郭晓敏,牛德奎,郭熙.奉新毛竹林土壤养分空间变异性研究[J].植物营养与肥料学报,2006,12(3):420-425
    51.郭晓敏,陈广生.平衡施肥对毛竹笋产量的影响效应研究[J].江西农业大学学报,2003,25(1):48-53
    52.何振立.土壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤,1997,(2):61-69
    53.何林,何小勇.毛竹笋用林合理竹龄结构及其笋期生长规律[J].竹子研究汇刊,1993,12(3):52-56
    54.洪顺山,胡炳堂,江业根.毛竹营养诊断研究[J].林业科学研究,1989,(1):15-24
    55.洪顺山.毛竹林施肥效应研究[J].林业科学研究,1992,(4):371-378
    56.洪顺山.毛竹配方施肥研究初报[J].竹子研究汇刊,1987,(1):35-41
    57.洪顺山.胡炳堂.毛竹土壤肥力与竹子粗度生长的关系[J].亚热带林业科技,1987,15(1): 42-44
    58.洪伟.闽北毛竹生物量与生产力的研究[J].林业科学,1998,(5):28-36
    59.洪伟.毛竹丰产林密度效应研究[J].林业科学,1998,34(1):1-4
    60.侯彦林.生态平衡施肥的理论基础和技术体系[J].生态学报,2000,20(4):653-658
    61.胡集瑞.施肥对毛竹笋产量和出笋规律的影响[J].福建林业科技,2000,(1):33-34,52
    62.侯俊发,王喜春.利用肥料效应函数法进行配方施肥研究[J].黑龙江农业科学,1995,(6):11-14
    63.胡冬南;陈立新;李发凯.配方施肥对毛竹笋材的影响[J].江西农业大学学报(自然科学版),2004,(2):196-199
    64.黄当亮.毛竹施肥试验研究[J].福建林业科技,1998,25(4):52-55
    65.黄绍文,金继运.农田土壤养分平衡状况及其评价的试点研究[J].土壤肥料,2000,(6):14-19.
    66.黄漪平.太湖水环境及其污染控[M].北京:科学出版社,2001
    67.黄衍串,曾宪伟.毛竹天然混交林的经营及效益[J].竹子研究汇刊,1993,12(4):16-23.
    68.贾良良,张朝春,江荣风,等.国外测土施肥技术的发展与应用[J].世界农业,2008,(5):60-63
    69.姜培坤,徐秋芳.土壤生物学性质对毛竹粗生长影响的研究[J].生态学杂志,2001,(6):25-28
    70.姜城,杨俐苹,金继运.土壤养分变异与合理取样数量[J].植物营养与肥料学报,2001,(3):262-270
    71.姜云奎.农业化学之父—李比希的科学思想探究[J].中国科技信息,2006,(6):111-112
    72.江泽慧.世界竹藤[M].沈阳:辽宁科学技术出版社,2002
    73.金爱武.现代毛竹培育技术及其传播:问题与方法[M].北京:中国农业出版社,2006
    74.金爱武,傅秋华,方伟.毛竹笋用林高效益经营技术及其传播效果分析[J].浙江林学院学报,2003,20(3):254-258
    75.金爱武,王安国.笋干竹林地退化机理与改造技术研究[J].中国林副特产,1999,(3):2-4
    76.金爱武,浙闽山区毛竹高效经营技术与参与式发展模式研究[D].南京林业大学博士论文,2004
    77.金爱武,吕玉龙,潘春霞等.竹林土壤特性空间变异的研究综述[J].林业科技开发,2007,21(5): 5-8
    78.金晓春.施肥对毛竹林形态结构及光和功能的影响[D].浙江林学院硕士论文,2009.
    79.林业部林业区划办公室,林业部中南林业调查规划设计院,中国毛竹区划协作组.中国毛竹生态经济区划与发展战略研究[M].北京:中国林业出版社,1992
    80.李方敏.提高DRIS诊断准确性的几种改进方法[J].湖北农学院学报,1996,16(3):231-236.
    81.李德志,臧润国.森林冠层结构与功能及其时空变化研究进展[J].世界林业研究,2004,(3):12-16
    82.李慧,黄文芳.阻碍我国有机肥推广的经济成因分析[J].中国环保产业,2010,(3):25-28
    83.李睿,M.J.A.维尔格,钟章成.施肥对毛竹竹笋生长的影响[J].植物生态学报,1997,21(1)19-26
    84.李智勇,王登举,樊宝敏.中国竹产业发展现状及其政策分析[J].北京林业大学学报(社科版),2005,4(4):50-54
    85.李贻铨.林木施肥与营养[J].林业科学研究(增刊),1995,(1):209
    86.李秀英,赵秉强,李絮花,等.不同施肥制度对土壤微生物的影响及其与土壤肥力的关系[J].中国农业科学,2005,38(8):1591-1599
    87.刘广路,范少辉,官凤英,等.不同年龄毛竹营养器官主要养分元素分布及与土壤环境的关系[J].林业科学研究,2010,2(2):52-258
    88.刘金和.测土配方施肥与农业可持续发展[J].牡丹江师范学院学报,2010,(2):41-42
    89.刘辉强.林木施肥研究综述[J].安徽农学通报(下半月刊),2010,(10):139-141
    90.刘勇,宋廷茂,翟明普.用系统科学指导和丰富森林培育学[J].林业科学,2008,44(7):1-5
    91.刘永敏,王彦辉.毛竹林林内雨,冠层截留与降水的关系研究[J].竹子研究汇刊,1993,(2):55-62
    92.刘学胜.2006-2008年农资价格及农业收益对比[J].中国农资,2008,(12):16-19
    93.刘杏梅 徐建民 章明奎,等.太湖流域土壤养分空间变异特征分析—以浙江省平湖市为例[J].浙江大学学报(农业与生命科学版),2003,29(1):76-82
    94.楼一平,盛炜彤,萧江华.我国毛竹林长期立地生产力研究问题的评述[J].林业科学研究,1999,12(2)
    95.楼一平.我国毛竹林长期立地生产力问题及其研究展望[C].中国青年绿色论坛,中国林学会第四届青年学术年会论文选集,林业资源管理特刊,1998
    96.楼一平,吴良如,刘耀荣.微肥、激素对竹鞭笋芽萌发的影响[J].林业科学研究,1997,(5):541-545
    97.楼一平,吴良如.毛竹纯林长期经营对林地土壤肥力的影响[J].林业科学研究,1997,10(2):125-129
    98.骆永明,郑茂坤,赵其国,等.DPSIR体系及其在土壤环境管理中的意义[J].土壤,1994,(38):658-660
    99.鲁如坤,刘鸿翔,闻大中.我国典型地区农业生态系统养分循环和平衡研究[J].Ⅳ.农田养分平衡的评价方法和原则.土壤通报,1996,27(5):197-199
    100.吕祖善.浙江省人民政府2010年政府工作报告(2010年1月26日在浙江省第十一届人民代表大会第三次会议上).http://baike.baidu.com/view/3247398.htm.
    101.吕玉龙.毛竹笋竹林土壤营养空间变异与分区式施肥推荐[D].浙江林学院硕士论文,2007
    102.马乃训,张文燕,楼一平,等.竹林丰产栽培技术[M],中国林业出版社,1996
    103.马雪华,杨茂瑞.杉木马尾松人工林径流特征的研究[J].林业科学研究,1992,(3):284-289
    104.马祥庆,刘爱琴,俞立亘.抚育方式对杉木人工林生态系统的影响[J].水土保持学报,1999(3):11-17
    105.毛志忠.浙江林业志[M],北京:中华书局,2001
    106.彭玉蓉,胡日利,吴晓芙.林木施肥研究——施肥模型在毛竹林中的应用[J].湖北农学院学报,2000,(3):200-212
    107.秦国峰.马尾松有林地水土流失的研究[J].林业科学,1999,35(1):29-33
    108.邱尔发.麻竹山地笋用林生态系统特征及丰产培育技术研究[D].南京林业大学博士论文,2002
    109.邱建丽,李意德,陈德祥.森林冠层结构的生态学研究现状与展望[J].广东林业科技,2008,(1):75-80
    110.裘福庚.用示踪原子法研究毛竹伐桩内腔施肥的初步结果[J].竹子研究汇刊,1986,(2)
    111.秦华,徐秋芳,曹志洪.长期集约经营条件下雷竹林土壤微生物量的变化[J].浙江林学院学报,2010,(1):1-7
    112.邵青还.“你们的森林已经生病”—从德国造林史看中国的人工林工程[J].中国发展观察, 2005,(6):41-45
    113.宋唯真,张翠芳.浙江省竹林冰雪灾情分析与更新复壮措施[J].世界竹藤通讯,2008,(4):38-40
    114.宋家永,李英涛,宋宇.农业面源污染的研究进展[J].中国农学通报,2010,(11):362-365
    115.施昆山.世界森林经营思想的演变及其对我们的启示[J].世界林业研究,2004,(5):1-3
    116.盛炜彤.人工林地力衰退研究[M],北京:中国科学技术出版社,1992
    117.盛炜彤.我国人工用材林发展中的生态问题及治理对策[C].森环持续发展学术讨论会论文集,中国林业出版社,1994
    118.盛炜彤,范少辉.人工林长期生产力保持机制研究的背景、现状和趋势[J].林业科学研究,2004,17(1):106-115
    119.沈国舫.森林培育学[M]北京:中国林业出版社,2003
    120..孙长忠,沈国舫.影响我国人工林生产力的人为因素与社会因素探讨:我国人工林生产力问题的研究(Ⅱ)[J].林业科学,2001,(4):26-34
    121.孙长忠,沈国舫.影响我国人工林生产力的自然因素评价—我国人工林生产力问题的研究(Ⅰ)[J].林业科学,2001,(3):72-77
    122.孙向阳.土壤学[M].北京:中国林业出版社,2005
    123.孙志虎,王庆成.采用地统计学方法对水曲柳人工纯林表层根量的估计[J].生态学报,2005,(4):924-929
    124.苏英吾,李向阳.华南土壤肥力特征与桉树施肥[J].中南林业调查规划,1997,(3):35-38
    125.陶康华,周国祺.上海城乡风貌的自然与历史基因评论推荐[J].现代城市,2007,(2):37-39
    126.唐守正.中国森林资源及其对环境的影响[J].科学对社会的影响,2001,(3):26-31
    127.田耀华,冯玉龙.微生物研究在土壤质量评估中的应用[J]应用与环境生物学报,2008,(1):132-137
    128.王彩绒,吕家珑,胡正义,等.太湖流域典型蔬菜地土壤氮及pH空间变异特征[J].水土保持学报,2005,19(3):17-20
    129.王宏.从竹乡安吉看我国南方竹产业的发展[J].绿色中国(理论版),2004,(11):60-61
    130.王宏.安吉县的植被建设评价[C],第八届森林培育学术研讨会论文集,2007:358-365
    131.王宏.竹林生态培育技术发展探析[M]∥浙江现代林业的指导与实践[M],陈蓬等.浙江大学出版社,2005:177-187
    132.王宏.欧洲投资银行林业项目评估政策及在中国的运用[J],世界林业研究,2010,(4):5-8
    133.王宏.世界银行贷款贫困地区林业发展项目竣工文件[J],北京:中国林业出版社,2006
    134.王继红:刘景双,于君宝,等.氮磷肥对黑土玉米农田生态系统土壤微生物量碳、氮的影响[J].水土保持学报,2004,(1):35-38
    135.王莹.土壤有机质与氮磷钾的相关性[J].农业科技与信息,2008,(17):32-33
    136.王国兵;阮宏华,唐燕飞,等.森林土壤微生物生物量动态变化研究进展[J].安徽农业大学学报,2009,36(1):100-104
    137.王希群,马履一,贾忠奎,等.叶面积指数的研究和应用进展[J].生态学杂志,2005,24(5):537-541
    138.王彦辉.人工毛竹林土壤的水文生态效应[J].竹子研究汇刊,1990,9(4):40-49
    139.汪阳东.人工经营对毛竹秆形结构变异的影响[J].林业科学研究,2001,14(3):245-250
    140.汪奎宏.毛竹施肥技术经济效果研究[J].竹子研究汇刊,1996,15(1):21-29
    141.汪奎宏.竹与笋[M].杭州:浙江科学技术出版社,1991
    142.魏红旭,徐程扬,马履一,等.不同指数施肥方法下长白落叶松播种苗的需肥规律[J].生态学报,2010,30(3):0685-0690
    143.吴柏林,陈双林,虞敏之,等.毛竹纯林与竹杉混交林竹材形态质量的比较研究[J].浙江林业科技,2007,(4):47-50,56
    144.吴立潮.毛竹计量施肥研究进展[J].广西林业科学,1997,26(4):164-167
    145.吴炳生,谭淑.毛竹林群落类型水源涵养功能的初步研究[J].竹子研究汇刊,1992,20(3):18-22
    146.吴炳生.竹类资源利用与发展趋势[J].山地农业生物学报,1999,(5):351-356
    147.伍宏业,许秀成,林葆.关于发展化肥工业,提高我国粮食增产潜力的建议[J].化学工业,2009,(8):13-18,30
    148.翁甫金.浙江领跑中国竹产业[J].中国林业产业,2007,(3):38-41
    149.翁甫金,汪奎宏,何奇江等.毛竹伐桩快速腐烂技术试验研究[J].竹子研究汇刊,2001,(4):47-51
    150.熊文愈.世界竹子的分布生产和研究[J].竹类研究,1983,2(2):6-16
    151.熊文愈,张献义.毛竹林丰产培育施肥试验[J].南京林业大学学报,1959,2(2):17-23
    152.萧江华.竹林分类经营与定向培育[J].林业科技开发,1997,(1):8-10
    153.萧江华.重视发挥竹林的生态功能效益[J].林业经济,2001,(1):31-34
    154.谢锦忠,傅懋毅,肖基浒.丛生竹林生态系统的水文效应研究Ⅰ.麻竹人工林地表径流规律的初探[J].竹子研究汇刊,2000,(4):18-24
    155.许传德.面向21世纪的中国竹业[J]].竹子研究汇刊,2000,(3):20-25
    156.徐秋芳,钱新标.毛竹根际土壤的化学性质[J].浙江林学院学报,1998,(3):240-243
    157.徐秋芳,姜培坤.有机肥对毛竹林间及根区土壤生物化学性质的影响[J].浙江林学院学报,2000,(4):364-368
    158.徐秋芳,姜培坤,俞益武,等.不同林用地土壤抗蚀性能研究[J].浙江林学院学报,2001,(4):362-365
    159.徐秋芳,张许昌,王绪南,等.毛竹林与马尾松林土壤生物学性质及微生物功能多样性比较[J].浙江林业科技,2008,(28)3:8-12
    160.徐秋芳,俞益武,姜培坤.商品林地土壤养分贫瘠化评价[J].水土保持学报,2002,16(2):99-102
    161.徐秋芳,俞益武,钱新标.湖州市材用笋用毛竹林土壤理化性质比较分析[J].浙江林学院学报,2003,(1):102-105
    162.叶诚业.安吉林业志[M].杭州:浙江人民出版社,1993
    163.叶敬忠.农民视角的新农村建设[M].北京:社会科学文献出版社,2006
    164.叶仲节,柴锡周.浙江林业土壤[M].杭州:浙江科学技术出版社,1986
    165.于天一,李玉义,逢焕成,等.长期不施磷肥对旱地红壤养分比例及玉米产量的影响[J].中国土壤与肥料,2010,(2):25-29
    166.于金花.浅谈永安竹业发展[J].内蒙古农业科技,2004,(12):61-63
    167.于兴修,杨桂山.典型流域土地利用/覆被变化及对水质的影响—以太湖上游浙江西苕溪流域为例[J].长江流域资源与环境,2003,(3):211-217
    168.俞元春,赵永艳,曾曙才.苏南丘陵不同林分类型土壤养分的动态特性[J].浙江林学院学 报,1998,(2):32-36
    169.余志华.龙游竹海春潮涌[J].浙江林业,1995,(4):13
    170.余素林,吴晓磊,钱易.环境微生物群落分析的T-RFLP技术及其优化措施[J].应用与环境生物学报,2006,(6):861-868
    171.易泽夫,荣湘民,彭建伟.微生物变量作为土壤质量评价指标的探讨[J].湖南农业科学,2006,(6):64-65,69
    172.曾艳,张杨珠.地统计学在土壤性状空间变异性研究中的应用[J].湖南农业科学,2008,(6):51-53,75
    173.张龙华,詹祖仁,罗盛健.尤溪县毛竹主要害虫的综合治理对策[J].中国林副特产,2007,(86)1:87-88
    174.张刚华,聂洁珠,萧江华.毛竹种群空间格局的地统计学分析[J].中国农学通报,2007,23(12):136-141
    175.张国防,缪碧华.毛竹经营管理的研究进展[J].福建林学院学报,2000,20(4):375-379
    176.张慧文,马剑英,张自文.地统计学在土壤科学中的应用[J].兰州大学学报:自然科学版.2009,45(6):14-20,27
    177.张建国,李贻铨.林木营养与施肥研究[M].北京:中国林业出版社,2001
    178.张慧文,马剑英,张自文.地统计学在土壤科学中的应用[J].兰州大学学报(自然科学版),2009,45(6):14-27
    179.张齐生,蒋身学.中国竹材加工业面临的机遇与挑战[J].世界竹藤通讯,2003,(2):1-5
    180.张智峰,张卫峰.我国化肥施用现状及趋势[J].磷肥与复肥,2008,(6):9-12
    181.郑郁善,洪伟.毛竹经营学[M],厦门大学出版社,1998
    182.郑郁善,洪伟,郑功雕.材用毛竹丰产林密度效应模型研究[J].福建林学院学报,1996,16(4):343-345
    183.郑郁善.面向21世纪毛竹林生态经营战略[J].林业经济问题,2000,20(4):203-206
    184.郑兆飞.EM有机生物肥对毛竹林地土壤性质的影响[J].竹子研究汇刊,2008,(2):38-41
    185.鄢振武,汪传佳,秦国峰.生态经济性林业经营技术[M].北京:中国农业出版社,2002
    186.翟明普,郭素娟.关于提高我国造林质量的若干意见[J].世界林业研究,2003,(1):51-54
    187.浙江省地方标准(DB33/T 261—-2005)笋竹两用毛竹林[S].浙江省质量技术监督局2005年1月发布
    188.佚名.浙江竹业迅猛发展[J].人造板通讯,2004,(11):39
    189.尹兰香.同安区耕地土壤化学性质空间变异特征及插值模型效果的研究[D].福建农林大学硕士论文,2006.
    190.中央党校林业部班赴浙江调查组[J].浙江竹业调查.中国林业,1992,(3):11-12
    191.周国模,吴家森,姜培坤.不同管理模式对毛竹林碳贮量的影响[J].北京林业大学学报,2006,(6):51-55
    192.周芳纯.国内外竹业开发利用现状及对策[J].竹类研究,1991,(2):19-29
    193.周芳纯.日本国竹林生产和利用情况考察报告[J].竹类研究,1984,(2):1-8
    194.周芳纯.毛竹林结构理论研究总结报告[J].竹类研究,1987,(1):1-11
    195.周芳纯.竹林培育学[M],北京:中国林业出版社,1998
    196.周芳纯.竹林培育和利用[J].竹类研究:1998,17(1):1-5
    197.周文伟华锡奇等.毛竹林地土壤水土流失的初步研究[J].浙江林业科技.2004,(3):20-23,36
    198.周慧珍,龚子同.土壤空间变异性研究[J].土壤学报,1996,(03):232-241
    199.祝列克.森林可持续经营[J],北京:中国林业出版社,2001
    200.祝列克.全国森林培育技术标准(造林经营卷,用材林卷)[S],北京:中国标准出版社,2003
    201.朱渝芬.毛竹林水文生态功能及其土壤肥力变化研究[D].南京林业大学硕士论文,2007
    202.周俊,朱江.合肥近郊旱地土壤养分径流流失途径的研究[J].应用生态学报,2001,(3):391-394
    203.赵其国,土壤科学发展的战略思考[J].土壤.2009,41(5):681-688
    204.竺肇华.中国热带地区竹藤发展[M],北京:中国林业出版社,2001
    205.中华人民共和国水利部.侵蚀分类分级标准[S].北京:水利水电出版社,1996
    206.中华人民共和国行业标准.全国耕地类型区、地力等级划分(NY-T309-1996)[S].北京:中国标准出版社,1997
    207.中华人民共和国国家标准(GB/T20391-2006):毛竹林丰产林技术[S].中国标准出版社,2006
    208.中国土壤学会农业化学专业委员会.土壤农业化学常规分析方法[M].北京:科学出版社,1984:257-282
    209.中华人民共和国林业行业标准(LY/T 1210-1215/1999):森林土壤分析方法[S].中国标准出版社,2000
    210.钟伟伟.水土保持经济植物毛竹的形态结构及虚拟研究[D].西南大学水土保持与荒漠化防治专业硕士论文,2007
    211.Baubus J, Khanna P K. Carbon and nitrogen turnover in two acid forest soils of southeast Australia as affected by phosphorus addition and drying and rewetting [J]. Biology and Fertility of soils,1994, 17:212-218
    212.Binkley D., Senock R., Bird S. et al Twenty years of stand development in pure and mixed stands of Eucalyptus saligna and nitrogen-fixing, FOREST ECOLOGY AND MANAGEMENT,2003, (182)1-3:93-102
    213. Bi Huiquan, John T. Long-term effects of superphosphate fertilization on stem form, taper and stem volume estimation of Pinus radiate, Forest Ecology and Management,1994,70(1-3):285-297
    214. Bonilla S. H., Rodrigo L., Almeida C. et al. Sustainability assessment of a giant bamboo plantation in Brazil:exploring the influence of labour, time and space. Journal of Cleaner Production,2010, 18(1):83-91
    215.Borja A, Ibon G, Oihana S et al. The European Water Framework Directive and the DPSIR, a methodological approach to assess the risk of failing to achieve good ecological status, Estuarine, Coastal and Shelf Science,2006,66 (1-2):84-96
    216. Bouma J and Drogers P.. Translating soil science into environmental policy:A case study on implementing the EU soil protection strategy in The Netherlands. Environmental Science & Policy Volume 10, Issue 5, August 2007, Pages 454-463
    217.Brandao, L G.1984, "The New Eucalypt Forest" Marcus Wallenberg Foundation Symposia Proc., Falun, Sweden,3-15
    218.BREMNER J. M. and BLACKMER A. M.. Nitrous Oxide:Emission from Soils During Nitrification of Fertilizer Nitrogen, Science,1978,199(4326):295-296
    219. Brewer, R.,1976. Fabric and Mineral Analysis of Soils. Huntington, New York:E. Krieger Publ. Comp., p.482.
    220. Bruulsema T and Belanger G. Forage Fertilier Decisions in an Uncertain Market [J]. Better Crops With Plant Food (official publication of the International Plant Nutrition Institute), Vol.92, Issue No.2,2008
    221. Burgess T M, Webster R. Optimal interpolation and isarthmic mapping of soil properties:the semivariogram and punctual Kriging [J]. Soil Science.1980,31:315-341
    222. Burkhard B., Muller F.. Driver-Pressure-State-Impact-Response, Encyclopedia of Ecology,2008, Pages 967-970
    223. Chen XG, Zhang XQ; Zhang YP et al. Changes of carbon stocks in bamboo stands in China during 100 years. Forest ecology and management.2009,258(7):1489-1496.
    224. Colin J, Sudarshan B. Mathema P et al. Soil fertility management in the mid-hills of Nepal: Practice and perceptions, Agriculture and Human Values,2005 (22):243-258
    225. COSTA W.D, SANGAKKARA UR. Agronomic regeneration of soil fertility in tropical Asia smallholder uplands for sustainable food production, Journal of Agricultrual Research,2006 (144): 111-133
    226.Crisanta S. Bueno. J. K. Ladha. Comparison of soil properties between continuously cultivated and adjacent uncultivated soils in rice-based systems, Boil Fertil Soils,2009 (45):499-509
    227. Daniel T. W., Helms J. A., Baker F. S. et al, Principles of Silviculture (2nd Edition,1979), McGraw-Hill Book Company)
    228. Dunn M. A., Farrish K.W. and Adams J.C. Fertilization response in a natural bottomland hardwood stand in north-central Louisiana, Forest Ecology and Management,1999,114(2-3):261-264
    229. Edwards I, Gillespie A. Chen J; et al. Spatial distribution of Ammonium and Calcium in Optimally Fertilized Pine Plantation Soils, Soil Science of America Journal 2005,69:1813
    230. Embaye K., Weih M., Ledin S., et al. Biomass and nutrient distribution in a highland bamboo forest in southwest Ethiopia:implications for management. Forest Ecology and Management,2005, 204(2-3):159-169
    231.Emdtsson R B, Bahri A et al. Spatial dependence of geochemical elements in a semi-aird agricultural field II Geostatistical properties. Soil Sci Soc Am J.1993(57):1323-1329.
    232. Evans J. Plantation Forestry in the Tropics:Tree Planting for Industrial, Social, Environmental, and Agroforestry Purposes. Oxford University Press, USA; 2 edition (July 2,1992)
    233. Fertilizer Best Management Practices:General Principle, Strategy for their adoption and Voluntary Initiatives vs Regulations, IFA International Workshop on Fertilizer Best Management Practices, 7-9 March 2007 Brussels, Belgium
    234. Fife D. N., Nambiar E. K. S.. Changes in the canopy and growth of Pinus radiata in response to nitrogen supply, Forest Ecology and Management,1997,93(1-2):137-152
    235.Filip Z. International approach to assessing soil quality by ecologically-related biological parameters. Agriculture, ecosystems & environment. Feb 2002.88(2) p.169-174.
    236. Fox T. R and Allen H.L. Forest Fertilizaiton in Southern Pine Plantations. Better Crops.2006,90(3): 12-15
    237. Garrison M., Moore J. A., Terry M et al. Foliar nutrient and tree growth response of mixed-conifer stands to three fertilization treatments in northeast Oregon and north central Washington, Forest Ecology and Management,2010,132 (2-3):183-198
    238.Geypens M. and Vandendriessche H. Advisory system for nitrogen fertilizer recommendations, Plant and soil,1996(181)31-38
    239. Ghosh N, Reducing dependence on chemical fertilizers and its financial implications for fanners in India, Ecological Economics,2004,49 (2):149-162
    240. Hu L.Y., Chugunova T. Multiple-point geostatistics for modeling subsurface heterogeneity:A comprehensive review. Water resources research.2008 Nov.44 (11) p. W11413
    241. Hvistendahl M. China's Push to Add by Subtracting Fertilizer. Science,2010,327(5967):801
    242.Isagi Y., Kawahara T., K Kamo. et al. Net production and carbon cycling in a bamboo Phyllostachys pubescens stand. Plant ecology. May 1997.130(1) p.41-52.
    243. Jason E., Dampier E., Luckai N, et al. Does tree-level monoculture develop following Canadian boreal silviculture? Tree-level diversity tested using a new method, Biodivers Conserv 2007 (16): 2933-2948
    244. Jean M. Impact of Eucalyptus PF1 and Pinus caribaea on soil properties, and potential for silvopastoral systems in southern Congo [dissertation], Ph.D, University of Idaho,USA 1996
    245.Kimmins J P. Evaluaiton of consequences for future tree productivity of the loss of nutrients in whole-tree harvesting. Forest Ecology and Management,1977(1):169-183
    246. Komatsu H, Onozawa Y. et al. Stand-scale transpiration estimates in a Moso bamboo forest:Ⅱ. Comparison with coniferous forests, Forest Ecology and Management (online edition),3 August 2010
    247. Kongshaug G, Energy Consumption and Greenhouse Gas Emissions In Fertilier Production, Marrakech, Morocco,28 September 1998
    248. Kristina A, Effects of forest fertilization on soil microorganisms, Dr. Lunds Universitet (Sweden), 1991
    249.Laclau, J P, Almeida J C R., Golcalves J.L.M, et al. Influence of nitrogen and potassium fertilization on leaf lifespan and allocation of above-ground growth in Eucalyptus plantations. Tree physiology.2009,29(1):111-124.
    250.Liese W. Advances in Bamboo Research. Journal of Nanjing University (Natural Sciences Edition), 2001,25 (4):1-6 Lou yipping, Li Yanxia, Buckinghan K. et al. Bamboo and Climate Change Mitigation:a comparative analysis of carbon sequestration. Technical report No 32, NABAR,2010
    251.Lugt P.V.D, Dobbelsteen A.A.J.F. van den and Janssen J.J.A. An environmental, economic and practical assessment of bamboo as a building material for supporting structures, Construction and Building Materials,2006,20(9):648-656
    252. Mertensa B, Liu Huab, Belcherc B. et al. Spatial patterns and processes of bamboo expansion in Southern China. Applied Geography.2008,28(1):16-31
    253. Maltby E.. Ecosystem management:Questions for science and society.[英]马尔特比,著.康乐、韩兴国等译.生态系统管理—科学与社会问题.北京:科学出版社,2004
    254. Matson, P.A.; Naylor, R.; Ortiz-Monasterio, I. P. A. Matson, et al, Integration of Environmental, Agronomic, and Economic Aspects of Fertilizer Management. Science,1998,280 (5360):112-115
    255. Matthew D. W, McNulty S, Fernandez, Ivan J et al, Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments. Forest Ecology and Management, 2006,222 (1-3):459-468
    256. Muhammed N, Koike M, Haque F et al. Quantitative assessment of people-oriented forestry in Bangladesh:A case study in the Tangail forest division, JOURNAL OF ENVIRONMENTAL MANAGEMENT,2008,88(1):83-92
    257.Nath A J, Das G and Das A.K et al. Above ground standing biomass and carbon storage in village bamboos in North East India, Biomass and Bioenergy,2009,33(9):1188-1196
    258. Ozolincius R., Varnagiryte-Kabasinskiene I., Stakenasa V., et al. Effects of wood ash and nitrogen fertilization on Scots pine crown biomass, Biomass and Bioenergy,2007,31(10):700-709
    259. Paul R. Gagnon, Platt W J. and Barry M. E.. Response of a native bamboo [Arundinaria gigantea (Walt.) Muhl.] in a wind-disturbed forest. Forest Ecology and Management,2007,241(1-3): 288-294
    260. Proceedings of Workshop on Bamboo Cultivation, Processing and Production Technologies (Hangzhou). CBRC and CBTC,2003
    261.Roberts T.L.2007. Right product, right rate, right time, and right place...the foundation of best management practices for fertilizer. pp.29-32.In Fertilizer Best Management Practices. IFA International Workshop on Fertilizer Best Management Practices (FBMPs).7-9 March,2007. Brussels, Belgium.
    262. Sarathchandra SU, Ghani A, Yeates GW, et al.2001. Effect of notrogen and phosphate fertilizers on microbial and nematode diversity in pasture soils. Soil Biology and Ciochemistry,33(7):953-964
    263. Scurlock J., Daytonb D. C. and Hamesb B.. Bamboo:an overlooked biomass resource? Biomass and Bioenergy.2000,19(4):229-244
    264. ShanmughavelP.竹子生长过程中在不同年龄期营养物的平衡和转换,Biol Fertil Soil,1997, 25(1)
    265. Shanmughavel P. and Francis K.. Above ground biomass production and nutrient distribution in growing bamboo (Bambusa bambos (L.) Voss). Biomass and Bioenergy.1996,10(5-6):383-391
    266. Scott D. Andrew; Messina, Michael G. Soil properties in 35 y old pine and hardwood plantations after conversion from mixed pine-hardwood forest, America Midland Naturalist.2010 (163):197-211
    267. Sidle R, Ziegler A., Negishi J. et al. Erosion processes in steep terrain-Truths, myths, and uncertainties related to forest management in Southeast Asia, FOREST ECOLOGY AND MANAGEMENT,2006,224(1-2):199-225
    268. Staddon W.J., Duchesne L.C. Trevors J.T. The role of microbial indicators of soil quality in ecological forest management. Forestry chronicle.1999,75(1):81-86
    269. Thomas A.D., Walsh R. and Shakesby R. Nutrient losses in eroded sediment after fire in eucalyptus and pine forests in the wet Mediterranean environment of northern Portugal. CATENA,1999(4): 283-302
    270.Thorup J.T.and Stewart J.W.B, Optimum fertilizer use with differing management practices and changing government polices [C]. Advance of fertilizer technology and use:proceedings of the 25th anniversary symposium of division S-8, Soil Science Society of America in Anaheim of Califonia in novemebr 1988
    271.Toshiyuki O., Mo Wenhong, Takami S. et al. Biometric Based Carbon Flux Measurements and Net Ecosystem Production (NEP) in a Temperate Deciduous Broad-Leaved Forest Beneath a Flux Tower. Ecosystems.2007 Mar.10(2) p.324-334.
    272. Vitousek P. Nutrient Imbalances in Agricultural Development. Science, Vol.324, page(s) 1519-1520. June 19,2009
    273. Vogtlander J., Lugt P. v d.,, Brezet H.. The sustainability of bamboo products for local and Western European applications. Journal of Cleaner Production,2010.18(13):1260-1269
    274. Warrick A. W.& Nielsen D. R. Spatial variability of soil physical properties in the field. Applications of Soil Physics (ed. by D. HUM),319-344. Academic Press, New York,1980.
    275. Wang Hong. Government' Role in Bamboo Cultivation of Anji County[C]. Proceedings for Workshop on Bamboo Cultivation, INBAR in Hangzhou,2003
    276. WILD A.. NITRATE LEACHING UNDER BARE FALLOW AT A SITE IN NORTHERN NIGERIA. European Journal of Soil Science.1972,23(3):315-324
    277. Wollenhaupt N.C. and Wolkowski R.P.,网格土壤取样法,威斯康星大学土壤科学系美国Madison市
    278. World Bank report. Water Pollution Emergencies In China-Prevention and Response, Sustainable Development Department, East Asia and Pacific Region, the World Bank,Washington, D.C., June 2007 available online at www.worldbank.org/eapenvironment.
    279. Wu Z Y and Raven P H. Flora of China:Poaceae. Vol.22. Science Press, Beijing; MBG Press, St. Louis,2006
    280. Xu Q.F, Jiang PK and Xu ZH et al. Soil microbial functional diversity under intensively managed bamboo plantations in southern China. Journal of soils and sediments,2008,8(3):177-183.
    281. Yevdokimov I, Gattinger A, Buegger F. et al. Changes in microbial community structure in soil as a result of different amounts of nitrogen fertilization. Biology and Fertility of Soils, 2008,44(8):1103-1106.
    282. Yipa J, Chena M, Szeto Y.S., et al. Comparative study of liquefaction process and liquefied products from bamboo using different organic solvents. Bioresource technology.2009 Dec.100(24) p.6674-6678
    283. Young I.M, Crawford J.W, Rappoilt C.. New Methds and models for characterizing structural heterogeneity of soil. Soil and Tillage Research.2001(61):33-45
    284.ZENG David. Evolution of Fertilizer Distribution In China[C],2008 IFA Crossroads Asia-Pacific in Melbourne
    285. Zhang Q.C, Wang G.H., Yao H.Y et al. Influnce of different fertilizers on paddy soil microbial community structure analyzed by PLFA pattern [J]. Journal of Environmental Science.2007,19(1): 55-59

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700