用户名: 密码: 验证码:
样品前处理结合液质联用技术在生物样品分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物样品的组成复杂、基体干扰大,同时样品一般较难获得而且量少,被分析物的浓度通常又很低,因此对生物样品分离分析技术提出的要求越来越高。为了建立高灵敏度、高选择性的生物样品分析方法,可以从样品的前处理和检测技术两方面着手,其中样品的前处理最具可行性,同时也最具挑战性。
     聚合物整体柱微萃取(PMME)是以聚合物整体材料为萃取介质的新型固相微萃取的样品前处理技术,具有制备方法简单、内部结构均匀、使用寿命长、重现性好以及萃取效率高等优点。通过制备不同的萃取材料,聚合物整体柱被广泛用于药物及代谢产物、生物大分子、蛋白质和其他生物活性物质的萃取分离中。作者所在课题组在聚合物整体材料的研究和应用方面做了大量的工作,制备了以聚(甲基丙烯酸-乙二醇二甲基内烯酸酯)为代表的多种聚合物整体柱,并且已经应用于一些生物样品的检测中,取得了较好的效果。与此同时,在生物样品分析中,可将其他样品前处理技术如化学衍生与萃取相结合,以及结合PMME与色谱在线联用的方法,进一步提高生物样品的纯化和富集效果,使检测的灵敏度更高、重现性更好。
     本论文主要围绕聚合物整体柱微萃取、液-液萃取、柱前衍生等样品前处理方法,结合高效液相色谱、液相色谱与质谱联用技术,在一些生物样品分析中的应用开展了一些工作,主要内容如下:
     1.介绍了目前生物样品前处理的一些主要的方法和新的发展方向,简单介绍了脑细胞色素P450的研究情况。
     2.建立了以氯唑沙宗为底物,液-液萃取结合液质联用的方法,检测大鼠不同脑区微粒体中CYP2E1酶活性的方法。所建立的方法简单,较报道的高效液相色谱紫外检测方法灵敏度高100倍左右,所需样本量小,可以做到大鼠各脑区的个体化检测。
     3.建立了以右美沙芬为底物,以聚(甲基丙烯酸-乙二醇二甲基丙烯酸酯)(Poly (MAA-co-EGDMA))整体柱微萃取与液质联用在线联用及液-液萃取结合液质联用,检测大鼠不同脑区微粒体中CYP2D6活性的两种分析方法。
     4.建立了以2,4-二硝基苯肼为衍生试剂,聚(甲基丙烯酸-乙二醇二甲基丙烯酸酯)(Poly (MAA-co-EGDMA))整体柱微萃取与高效液相色谱联用,检测咖啡、蜂蜜、啤酒、可乐及尿液中5-羟甲基呋喃糠醛的分析方法。结果表明,该方法灵敏度高,且具有较好的精密度和准确度,适合于食品、药品及生物样品等复杂样品中微量的5-羟甲基呋喃糠醛检测。
Biological samples are characterized by the complex compositions and larger interference of substrate, meanwhile, by the subtle amount of sample and more difficulty in obtaining, as well as the lower concentration of analyte. With the development of bioscience, requirements for biological seperation and analysis techniques meet much higher standards. In order to establish a higher sensitive and selective analysis method of biological samples, the pre-treatment of samples and detection techniques are being taken into consideration, among these two aspects, pretreatment of samples is the most feasible and challenging method.
     Polymer monolith microextraction (PMME) which uses polymer monolithic material as the extraction medium, is a new-type of solid phase microextraction technique for samples pre-treatment with the advantages of simple preparation methods, well-distributed internal structure, long service life, good reproducibility and higher extraction efficiency. Via manufacturing different types of extraction materials, polymer monolith has been widely used in seperation and analysis of some bioactive substances such as drugs, metabolites, biological macromolecules, proteomics and other substances. The author's research group has done lots of work in basic research and application study of polymer monolithic materials, including creating a variety of polymer monoliths especially as the representative of poly (methacrylic acid-ethylene glycol dimethacrylate) which has been applied to the detection of biological samples and achieved preferable effectiveness. At the same time, in the analysis of biological samples, other pre-treatment techniques such as extraction combined with chemical derivatization, as well as PMME combined with chromatography online method, have further improved purification and enrichment effect of biological samples and enhance the detection sensitivity and reproducibility.
     This thesis is mainly focused on the analysis of some biological samples using pre-treatment methods such as PMME, liquid-liquid extraction, pre-column derivatization combined with HPLC, LC-MS techniques. The main research contents are as follows:
     1. Introduce some biological sample pre-treatment methods and the updated development direction, giving a brief introduction to the research of the brain cytochrome P450.
     2. Established a method, which use chlorzoxazone as substrate and combined liquid-liquid extraction with LC-MS method to detect CYP2E1enzymatic activity of microsomal in different brain regions of rats. The method is simple and much higher sensitivity than HPLC method as reported previously, which requires a small size of samples and meets individualized detection of different brain regions of rats.
     3. Established two methods to detect of CYP2D6enzymatic activity in different brain regions of rats, which uses dextromethorphan as substrate, one combined PMME with LC-MS online and another combined liquid-liquid extraction with LC-MS/MS.
     4. To establish an analysis method which uses2,4-dinitrophenylhydrazine as derivative reagent and combined Poly (MAA-co-EGDMA) monolith microextraction with HPLC to detect the concentration of5-Hydroxymethylfurfural in coffee, honey, beer, cola and urine. The method with high sensitivity and superior precision and accuracy is especially suitable for the trace detection of5-Hydroxymethylfurfural among some complex samples such as food, medicine, biological samples and so on.
引文
[1]王宇成,最新色谱分析检测方法及应用技术实用手册.吉林省出版发行集团.2004.
    [2]钟大放,李高,刘昌孝,生物样品定量分析指导原则(草案).药物评价研究.2011,34,409-415.
    [3]夏媛媛,司端运,刘昌孝,FDA生物分析方法确证的发展与动态.药物评价研究.2009,32,123-128.
    [4]P. Timmerman, S. Lowes, D. M. Fast, Request for global harmonization of the guidance for bioanalytical method validation and sample analysis. Bioanalysis. 2010,2,683.
    [5]S. K. Bansal, M. Arnold, F. Garofolo, International harmonization of bioanalytical guidance. Bioanalysis.2010,2,685-687.
    [6]H. Kataoka, Recent advances in solid-phase microextraction and related techniques for pharmaceutical and biomedical analysis. Curr. Pharm. Anal.2005, 1,65-74.
    [7]R. E. Majors, An overview of sample preparation. LC GC.1991,9,16-20.
    [8]R. E. Majors, Liquid extraction techniques for sample preparation. LC GC.1998, 1,10-15.
    [9]M. A. Jeannot, F. F. Cantwell, Solvent Microextraction into a Single Drop. Anal. Chem.1996,68,2236-2240.
    [10]H. Ebrahimzadeh, Y. Yamini, A. Gholizade, Determination of fentan in biological and water samples using single-drop liquid-liquid-liquid microextraction coupled with high-performance liquid chromatography. Anal. Chim. Acta.2008,626,193-199.
    [11]L. Zhao, H. K. Lee, Liquid-Phase Microextraction Combined with Hollow Fiber as a Sample Preparation Technique Prior to Gas Chromatography/Mass Spectrometry. Anal. Chem.2002,74,2486-2492.
    [12]S. Pedersen-Bjergaard, K. E. Rasmussen, Liquid-Liquid-Liquid Microextraction for Sample Preparation of Biological Fluids Prior to Capillary Electrophoresis. Anal. Chem.1999,71,2650-2656.
    [13]D. A. Lambropoulou, T. A. Albanis, Application of hollow fiber liquid phase microextraction for the determination of insecticides in water.J. Chromatogr. A. 2005,1072,55-61.
    [14]M. Rezaee, Y. Assadi, M.-R. Milani Hosseini, E. Aghaee, F. Ahmadi, S. Berijani, Determination of organic compounds in water using dispersive liquid-liquid microextraction. J. Chromatogr. A.2006,1116,1-9.
    [15]M.B.Melwanki, W.Sh.Chen, H.Yu.Bai, T..Lin, M.R.Fuh, Determination of 7-aminoflunitrazepam in urine by dispersive liquid-liquid microextraction with liquid chromatography-electrospray-tandem mass spectrometry. Talanta.2009. 78,618-622.
    [16]C. M. Xiong, J. L.Ruan, Y. L. Cai, Y.Tang. Extraction and determination of some psychotropic drugs in urine samples using dispersive liquid-liquid microextraction followed by high-performance liquid chromatography. J Pharm.Biomed.Anal.2009,49,572-578.
    [17]M. Cruz-Vera, R. Lucena, S. Cardenas, M. Valcarcel, One-step in-syringe ionic liquid-based dispersive liquid-liquid microextraction. J. Chromatogr. A.2009, 1216,6459-6465.
    [18]张明勇,洪战英,范国荣,分散液相微萃取技术及其在生物样品分析中的应用进展.中国新药杂志.2011,20,429-432.
    [19]A. S. Yazdi, N. Razavi, S. R. Yazdinejad, Separation and determination of amitriptyline and nortriptyline by dispersive liquid-liquid microextraction combined with gas chromatography flame ionization detection. Talanta.2008,75, 1293-1299.
    [20]H. Xu, D. D. Song, Y. F. Cui, S. Hu, Q. W. Yu, Y. Q. Feng, Analysis of hexanal and heptanal in human blood by simultaneous derivatization and dispersive liquid-liquid microextraction then LC-APCI-MS-MS. Chromatographia.2009, 70,775-781.
    [21]钟启升,胡玉斐,李攻科,胡玉玲,样品前处理-色谱分析在线联用技术的研究进展.色谱.2009,27,690-699.
    [22]E. Aguilera-Herrador, R. Lucena, S. Cardenas, and M. Valcarcel, Direct coupling of ionic liquid based single-drop microextraction and GC/MS. Anal. Chem.2008, 80,793-800.
    [23]C. James, A review on Solid-phase extraction, Principles and Practice of Bioanalysis.2000,739,28-43.
    [24]J. S. Fritz, Analytical Solid-Phase Extraction, Wiley-VCH, NewYork, USA.1999.
    [25]C. F. Poole, New trends in solid-phase extraction, Trends Anal. Chem.2003,22, 362-373.
    [26]J. Bhatt, A. Jangid, G. Venkatesh, G. Subbaiah, S. Singh, Liquid chromatography-tandem mass spectrometry (LC-MS-MS) method for simultaneous determination of venlafaxine and its active metabolite O-desmethyl venlafaxine in human plasma, J. Chromatogr. B.2005,829,75-81.
    [27]D. S. Jain, M. Sanyal, G. Subbaiah, U. C. Pander, P. Shrivastav, Rapid and sensitive method for the determination of sertraline in human plasma using liquid chromatography-tandem mass spectrometry (LC-MS/MS), J. Chromatogr. B. 2005,829,69-74.
    [28]M. C Carson, Ion-pair solid-phase extraction, J. Chromatogr. A.2000,885, 343-350.
    [29]张颖,生物样品预处理技术及应用进展.天津药学.2006,18,56-58.
    [30]C. L. Arthur, J. Pawliszyn, Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem.1990,62,2145-2148.
    [31]J. Pawliszyn, Solid phase microextraction:theory and practice. Wiley-VCH.1997.
    [32]J. Pawliszyn, Applications of Solid Phase Microextraction. RSC.1999.
    [33]F. Pragst, Application of solid-phase microextraction in analytical toxicology. Anal.Bioanal.Chem.2007,388,1393-1414.
    [34]F. M. Musteata, J. Pawliszyn, In vivo sampling with solid phase microextraction, J. Biochem. Biophys. Methods.2007,70,181-193.
    [35]F. M. Musteata, J. Pawliszyn, Bioanalytical applications of solid-phase microextraction. Trends Anal. Chem.2007,26,36-45.
    [36]D. Vuckovic, X. Zhang, E. Cudjoe, J. Pawliszyn, Solid-phase microextractionin bioanalysis:new devices and directions. J.Chromatogr.A.2010,1217, 4041-4060.
    [37]D. Vuckovic, E. Cudjoe, F. M. Musteata, J. Pawliszyn, Automated solid-phase microextraction and thin-film microextraction for high-throughput analysis of biological fluids and ligand-receptor binding studies. Nat. Protoc.2010,5, 140-161.
    [38]R. Agius, T. Nadulski, H. G. Kahl, J. Schrader, B. Dufaux, M. Yegles, F. Pragst, Validation of a headspace solid-phase microextraction-GC-MS/MS for the determination of ethyl glucuronide in hair according to forensic guidelines. Forensic Sci. Int.2010,196,3-9.
    [39]A. A. Nuhu, C. Basheer, B. Saad, Liquid-phase and dispersive liquid-liquid microextraction techniques with derivatization:recent applications in bioanalysis. J.Chromatogr.B.2011,879,1180-1188.
    [40]H. Kataoka, K. Saito, Recent advances in SPME techniques in biomedical analysis. J. Pharm. Biomed. Anal.2011,54,926-950.
    [41]B. Bojko, E. Cudjoe, J. Pawliszyn, M. Wasowicz, Solid-phase microextraction. How far are we from clinical practice? Trends in Anal. Chem.2011,30, 1505-1512.
    [42]J. M. F. Nogueira, Novel sorption-based methodologies for static microextraction analysis:A review on SBSE and related techniques. Anal.Chim.Acta.2012,757, 1-10.
    [43]A. Mehdinia, M. O. Aziz-Zanjani, Recent advances in nanomaterials utilized in fiber coatings for solid-phase microextraction. Trends in Anal.Chem.2013,42, 205-215.
    [44]R. Eisert, J. Pawliszyn, Automated In-Tube Solid-Phase Microextraction Coupled to High-Performance Liquid Chromatography. Anal. Chem.1997,69, 3140-3147.
    [45]B. Bidlingmaier, K. K. Unger, N. von Doehren, Comparative study on the column performance of microparticulate 5-p.m C18-bonded and monolithic C18-bonded reversed-phase columns in high-performance liquid chromatography. J. Chromatogr. A.1999,832,11-16.
    [46]M. Al-Bokari, D. Cherrak, G Guiochon, Determination of the porosities of monolithic columns by inverse size-exclusion chromatography. J. Chromatogr. A. 2002,975,275-284.
    [47]魏芳,林博,冯钰锜,整体柱在样品预处理中的应用.色谱,2007,2,150-156.
    [48]Y. Fan, Y.Q. Feng, S. L. Da, Z. G. Shi, Poly (methacrylic acid-ethylene glycol dimethacrylate) monolithic capillary for in-tube solid phase microextraction coupled to high performance liquid chromatography and its application to determination of basic drugs in human serum. Anal. Chim. Acta.2004,523, 251-258.
    [49]M. Zhang, F. Wei, Y. F. Zhang, J. Nie, Y. Q. Feng, Novel polymer monolith microextraction using a poly (methacrylic acid-ethylene glycol dimethacrylate) monolith and its application to simultaneous analysis of several angiotensin Ⅱ receptor antagonists in human urine by capillary zone electrophoresis. J. Chromatogr. A.2006,1102,294-301.
    [50]Y. Wen, Y. Fan, M. Zhang, Y.Q. Feng, Determination of camptothecin and 10-hydroxyl-camptothecin in human plasma using polymer monolith in-tube solid phase microextraction combined with high-performance liquid chromatography. Anal. Bioanal. Chem.2005,382,204-210.
    [51]Y. Fan, Y. Q. Feng, S. L. Da, X. P. Gao, In-tube solid-phase microextraction with poly (methacrylic acid-ethylene glycol dimethacrylate) monolithic capillary for direct high-performance liquid chromatographic determination of ketamine in urine samples. Analyst.2004,129,1065-1069.
    [52]Y. Fan, Y. Q. Feng, J. T. Zhang, S. L. Da, M. Zhang, Poly (methacrylic acid-ethylene glycol dimethacrylate) monolithic in-tube solid phase microextraction coupled to high performance liquid chromatography and analysis of amphetamines in urine samples. J. Chromatogr. A.2005,1074,9-16.
    [53]L. Xu, Z. G. Shi, Y. Q. Feng, Porous monoliths:sorbents for miniaturized extraction in biological analysis. Anal. Bioanal. Chem.2011,399,3345-3357.
    [54]J. F. Huang, B. Lin, Q. W. Yu, Y. Q. Feng, Determination of fluoroquinolones in eggs using in-tube solid-phase microextraction coupled to high-performance liquid chromatography. Anal. Bioanal. Chem.2006,384,1228-1235.
    [55]J. F. Huang, H. J. Zhang, Y. Q. Feng, Chloramphenicol Extraction from Honey, Milk, and Eggs Using Polymer Monolith Microextraction Followed by Liquid Chromatography-mass Spectrometry Determination. J. Agric. Food Chem.2006, 54,9279-9286.
    [56]J. F. Huang, H. J. Zhang, B. Lin, Q. W. Yu, Y. Q. Feng, Multiresidue analysis of beta-agonists in pork by coupling polymer monolith microextraction to electrospray quadrupole time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom.2007,21,2895-2904.
    [57]M. M. Zheng, B. Lin, Y. Q. Feng, Hybrid organic-inorganic octyl monolithic column for in-tube solid-phase microextraction coupled to capillary high-performance liquid chromatography. J. Chromatogr. A.2007,1164,48-55.
    [58]M. M. Zheng, M. Y. Zhang, G Y. Peng, Y. Q. Feng, Monitoring of sulfonamide antibacterial residues in milk and egg by polymer monolith microextraction coupled to hydrophilic interaction chromatography/mass spectrometry. Anal. Chim. Acta.2008,625,160-172.
    [59]M. M. Zheng, G. D. Ruan, Y. Q. Feng, Hybrid organic-inorganic silica monolith with hydrophobic/strong cation-exchange functional groups as a sorbent for micro-solid phase extraction. J. Chromatogr. A.2009,1216,7739-7746.
    [60]M. M. Zheng, G. D. Ruan, Y. Q. Feng, Evaluating polymer monolith in-tube solid-phase microextraction coupled to liquid chromatography/quadrupole time-of-flight mass spectrometry for reliable quantification and confirmation of quinolone antibacterials in edible animal food.J. Chromatogr. A.2009,1216, 7510-7519.
    [61]M. Zhang, F. Wei, Y. F. Zhang, J. Nie, Y. Q. Feng, Novel polymer monolith microextraction using a poly(methacrylic acid-ethylene glycol dimethacrylate) monolith and its application to simultaneous analysis of several angiotensin Ⅱ receptor antagonists in human urine by capillary zone electrophoresis. J. Chromatogr. A.2006,1102,294-301.
    [62]J. Y. Wu, Z. G. Shi, Y. Q. Feng, Determination of 5-Hydroxymethylfurfural Using Derivatization Combined with Polymer Monolith Microextraction by High Performance Liquid Chromatography. J. Agric. Food Chem.2009,57, 3981-3988.
    [63]X. Z. Hu, J. X. Wang, Y. Q. Feng, Determination of Benzimidazole Residues in Edible Animal Food by Polymer Monolith Microextraction Combined with Liquid Chromatography-Mass Spectrometry. J. Agric. Food Chem.2010,58, 112-119.
    [64]H. B. He, X. X. Lv, Q. W. Yu, Y. Q. Feng, Multiresidue determination of (fluoro)quinolone antibiotics in chicken by polymer monolith microextraction and field-amplified sample stacking procedures coupled to CE-UV. Talanta.2010, 82,1562-1570.
    [65]M. L. Chen, L. M. Li, B. F. Yuan, Q. Ma, Y Q. Feng, Preparation and characterization of methacrylate-based monolith for capillary hydrophilic interaction chromatography. J. Chromatogr. A.2012,1230,54-60.
    [66]B. Lin, M. M. Zheng, S. C. Ng, Y.Q. Feng, Development of in-tube solid-phase microextraction coupled to pressure-assisted CEC and its application to the analysis of propranolol enantiomers in human urine. Electrophoresis.2007,28, 2771-2780.
    [67]H. Kataoka, A. Ishizaki, Y. Nonaka, K. Saito, Developments and applications of capillary microextraction techniques:A review. Anal. Chim. Acta.2009,655, 8-29.
    [68]H. Kataoka, S. Narimatsu, H. L. Lord, J. Pawliszyn, Automated in-tube solid-phase microextraction coupled with liquid chromatography/electrospray ionization mass spectrometry for the determination of β-Blockers and metabolites in urine and serum samples. Anal. Chem.1999,71,4237-4244.
    [69]G. Ouyang, D. Vuckovic, J. Pawliszyn, Non-destructive sampling of living systems using in vivo solid-phase microextraction. Chem.Rev.2011,111, 2784-2814.
    [70]D. Vuckovic, S. Risticevic, J. Pawliszyn, In vivo solid-phase microextraction in metabolomics:new opportunities for direct investigation of biological systems. Agewandte Chemie.2011,50,5618-5628.
    [71]D. Vuckovic, I. Lannoy, B. Gien, R. E. Shirey, L. M. Sidisky, S. Dutta, J. Pawliszyn, In vivo Solid-Phase Microextraction:Capturing the elusive portion of metabolome. Agewandte Chemie.2011,50,5344-5348.
    [72]A. Es-haghi, X. Zhang, F. M. Musteata, H. Bagheri, J. Pawliszyn, Evaluation of bio-compatible poly(ethylene glycol)-based solid-phase microextraction fiber for in vivo pharmacokinetic studies of diazepam in dogs. Analyst.2007,132, 672-678.
    [73]X. Zhang, A. Es-haghi, F. M. Musteata, G. Ouyang, J. Pawliszyn, Quantitative in vivo microsampling for pharmacokinetic studies based on an integrated solid-phase microextraction system. Anal. Chem.2007,79,4507-4513.
    [74]F. M. Musteata, M. L. Musteata, J. Pawliszyn, Fast in vivo microextraction:a new tool for clinical analysis. Clin Chem.2006,52,708-715.
    [75]F. M. Musteata, I. Lannoy, B. Gien, J. Pawliszyn, Blood sampling without blood draws for in vivo pharmacokinetic studies in rats. J.Pharm.Biomed.Anal.2008, 47,907-912.
    [76]H. L. Lord, X. Zhang, F. M. Musteata, D. Vuckovic, J. Pawliszyn, In vivo solid-phase microextraction for monitoring intravenous concentrations of drugs and metabolites. Nat. Protoc.2011,6,896-924.
    [77]D. Vuckovic, I. Lannoy, B. Gien, Y. Yang, F. M. Musteata, R. Shirey, L. Sidisky, J. Pawliszyn, In vivo solid-phase microextraction for single rodent pharmacokinetics studies of carbamazepine and carbamazepine-10,11-epoxide in mice. J.Chromatogr. A.2011,1218,3367-3375.
    [78]X. Zhang, A. Es-Haghi, J. Cai, J. Pawliszyn, Simplified kinetic calibration of solid-phase microextraction for in vivo pharmacokinetics. J.Chromatogr.A.2009, 1216,7664-7649.
    [79]J. C. Yeung, I. Lannoy, B. Gien, D. Vuckovic, Y. Yang, B. Bojko, J. Pawliszyn, Semi-automated in vivo solid-phase microextraction sampling and the diffusion-based interface calibration model to determine the pharmacokinetics of methoxyfenoterol and fenoterol in rats. Anal. Chim. Acta.2012,742,37-44.
    [80]E.Cudjoe, J. Pawliszyn, A multi-fiber handling device for in vivo solid phase microextraction-liquid chromatography-mass spectrometry applications. J. Chromatogr. A.2012,1232,77-83.
    [81]F. M. Musteata, Recent progress in in-vivo sampling and analysis. Trends in Analytical Chemistry,2013,45,154-168.
    [82]D. Vuckovic, In vivo solid-phase microextraction sampling:a promising future? Bioanalysis,2011,3,1305-1308.
    [83]张慧娟,吴剑虹,冯钰锜,化学衍生与萃取联用技术在生物样品预处理中的应用.分析科学学报,2008,24,589-594.
    [84]C. S. Ferguson, R. F. Tyndale, Cytochrome P450 enzymes in the brain:emerging evidence of biological significance. Trends in Pharmacological Sciences,2011, 32,708-714.
    [85]毛萍,乔定君,马欣荣,细胞色素P450和医学.中国抗生素杂志,2011,36,93-101.
    [86]L. C. Wienkers, T. G. Heath, Predicting in vivo drug interactions from in vitro drug discovery data. Nat.Rev.Drug Discov.2005,4,825-33.
    [87]S. Miksys, R. F. Tyndale, Brain drug-metabolizing cytochrome P450 enzymes are active in vivo, demonstrated by mechanism-based enzyme inhibition. Neuropsychopharmacology.2009,34,634-640.
    [88]S. L. Miksys, R. F. Tyndale, Drug-metabolizing cytochrome P450s in the brain. J.Psychiatry Neurosci.2002,27,406-415.
    [89]E. E. Baulieu, Neurosteroids:a novel function of the brain. Psychoneuroendocrinology.1998,23,963-87.
    [90]G. M. Rune, M. Frotscher, Neurosteroid synthesis in the hippocampus:role in synaptic plasticity. Neuroscience.2005,136,833-842.
    [91]S. Miksys, Y. Rao, E. M. Sellers, M. Kwan, D. Mendis, R. F. Tyndale, Regional and cellular distribution of CYP2D subfamily members in rat brain. Xenobiotica.2000,30,547-564.
    [92]M. Joshi, R. F. Tyndale, Regional and cellular distribution of CYP2E1 in monkey brain and its induction by chronic nicotine. Neuropharmacology,2006,50, 568-575.
    [93]R. P. Meyer, M. Gehlhaus, R. Knoth, B. Volk, Expression and function of cytochrome P450 in brain drug metabolism. Curr. Drug Metab.2007,8, 297-306.
    [94]I. Siegle, P. Fritz, K. Eckhardt, U. M. Zanger, Cellular localization and regional distribution of CYP2D6 mRNA and protein expression in human brain. Pharmacogenetics.2001,11,237-245.
    [95]S. Miksys, R. F. Tyndale, Cytochrome P450-mediated drug metabolism in the brain.J.Psychiatry Neurosci.2012,37,120133.
    [96]F. Dutheil, S. Dauchy, M. Diry, V. Sazdovitch, Xenobiotic-metabolizing enzymes and transporters in the normal human brain:regional and cellular mapping as a basis for putative roles in cerebral function. Drug Metab.Dispos.2009,37, 1528-1538.
    [97]N. Mast, C. Charvet, I. A. Pikuleva, C. D. Stout, Structural basis of drug binding to CYP46A1, an enzyme that controls cholesterol turnover in the brain. J.Biol.Chem.2010,285,31783-31795.
    [1]F. J. Gonzalez, A. M. Yu, Cytochrome P450 and xenobiotic receptor humanized mice. Annu. Rev. Pharmacol. Toxicol.2006,46,41-64.
    [2]D. S. Riddick, C. Lee, A. Bhathena, Y. E. Timsit, P. Y. Cheng, E. T. Morgan, R. A. Prough, S. L. Ripp, K. K. Miller, A. Jahan, J. Y. Chiang, Transcriptional suppression of cytochrome P450 genes by endogenous and exogenous chemicals. Drug Metab. Dispos.2004,32,367-375.
    [3]P. R. Porubsky, K. M. Meneely, E. E. Scott, Structures of human cytochrome P-450 2E1. Insights into the binding of inhibitors and both small molecular weight and fatty acid substrates. J. Biol. Chem.2008,283,33698-33707.
    [4]A. A. Caro, A. I. Cederbaum, Annu, Oxidative stress, toxicology, and pharmacology of CYP2El.Rev. Pharmacol. Toxicol.2004,44,27-42.
    [5]S. S. Lee, J. T. Buters, T. Pineau, P. Fernandez-Salguero, F.J. Gonzalez, Role of CYP2E1 in the hepatotoxicity of acetaminophen. J. Biol. Chem.1996,271, 12063-12067.
    [6]F. J. Gonzalez, Role of cytochromes P450 in chemical toxicity and oxidative stress: studies with CYP2E1. Mutation Research.2005,207,70-76.
    [7]T. Hansson, N. Tindberg, M. Ingelman-Sundberg, C. Kohler, Regional distribution of ethanol-inducible cytochrome P450 IIE1 in the rat central nervous system.Neuroscience.1990,34,451-463.
    [8]L. A. Howard, S. Miksys, E. Hoffmann, D. Mash, R.F. Tyndale, Brain CYP2E1 is induced by nicotine and ethanol in rat and is higher in smokers and alcoholics. Br. J. Pharmacol.2003,138,1376-1386.
    [9]N. Kapoor, A. B. Pant, A. Dhawan, U. N. Dwievedi, Y. K. Gupta, P. K. Seth, D. Parmar, Differences in sensitivity of cultured rat brain neuronal and glial cytochrome P450 2E1 to ethanol. Life Sci.2006,79,1514-1522.
    [10]B. J. Roberts, S. E. Shoaf, K. S. Jeong, B. J. Song, Induction of CYP2E1 in liver, kidney, brain and intestine during chronic ethanol administration and withdrawal: evidence that CYP2E1 possesses a rapid phase half-life of 6 hours or less. Biochem. Biophys. Res. Commun.1994,205,1064-1071.
    [11]N. Tindberg, M. Ingelman-Sundberg, Expression, catalytic activity, and inducibility of cytochrome P450 2E1 (CYP2E1) in the rat central nervous system. J. Neurochem.1996,67,2066-2073.
    [12]M. Warner, J. A. Gustafsson, Effect of ethanol on cytochrome P450 in the rat brain. Proc. Natl. Acad. Sci. USA.1994,91,1019-1023.
    [13]J. Y. Park, D. Harris, Construction and assessment of models of CYP2E1: predictions of metabolism from docking, molecular dynamics, and density functional theoretical calculations. J. Med. Chem.2003,46,1645-1660.
    [14]D. R. Koop, Oxidative and reductive metabolism by cytochrome P450 2E1. Fed. Am. Soc. Exp. Biol.1992,6,724-730.
    [15]L. Ernstgard, M. Warholm, G. Johanson, Robustness of chlorzoxazone as an in vivo measure of cytochrome P450 2E1 activity. Brit. J. Clin. Pharmacol.2004, 58,190-200.
    [16]A. J. Draper, A. Madan, J. Latham, A. Parkinson, Development of a non-high pressure liquid chromatography assay to determine [14C]chlorzoxazone 6-hydroxylase (CYP2E1) activity in human liver microsomes. Drug Metab. Dispos.1998,26,305-312.
    [17]M. H. Court, L. L. Von Moltke, R. I. Shader, D. J. Greenblatt, Biotransformation of chlorzoxazone by hepatic microsomes from humans and ten other mammalian species. Biopharm. Drug Dispos.1997,18,213-226.
    [18]J. T. Stewart, C. W. Chan, Fluorometric determination of chlorzoxazone in tablets and biological fluids. J. Pharm. Sci.1979,68,910-912.
    [19]R. K. Desiraju, N. L. J. Renzi, R. K. Nayak, K. T. Ng, Pharmacokinetics of chlorzoxazone in humans. J. Pharm. Sci.1983,72,991-994.
    [20]C. B. Eap, C. Schnyder, L. Savary, Determination of chlorzoxazone and 6-hydroxychlorzoxazone in plasma by gas chromatography-mass spectrometry.J. Chromatogr. B.1998,705,139-144.
    [21]D. D. Stiff, R. F. Frye, R. A. Branch, Sensitive high-performance liquid chromatographic determination of chlorzoxazone and 6-hydroxychlorzoxazone in plasma. J. Chromatogr.1993,613,127-131.
    [22]A. Haque, J. T. Stewartw, Direct injection analysis of chlorzoxazone and its major metabolite 6-hydroxychlorzoxazone in human serum using a semipermeable surface (SPS) HPLC column. Biomed. Chromatogr.1997,11, 236-239.
    [23]E. Tanaka, Simultaneous determination of chlorzoxazone, indicator of CYP2E1, and its metabolite in human serum using a new reversed-phase chromatographic column of 2-microm porous microspherical silica-gel. J. Pharm. Biomed. Anal. 1998,16,899-904.
    [24]S. K. Cox, T. Hamner, J. Bartges, Determination of 6-hydroxychlorzoxazone and chlorzoxazone in porcine microsome samples. J. Chromatogr. B.2003,784, 111-116.
    [25]I. Leclercq, Y. Horsmans, J.P. Desager, Estimation of chlorzoxazone hydroxylase activity in liver microsomes and of the plasma pharmacokinetics of chlorzoxazone by the same high-performance liquid chromatographic method. J. Chromatogr. A.1998,828,291-296.
    [26]S. V. Chittur, T. S. Tracy, Rapid and sensitive high-performance liquid chromatographic assay for 6-hydroxychlorzoxazone and chlorzoxazone in liver microsomes. J. Chromatogr. B.1997,693,479-483.
    [27]C. Y. Ahn, S. K. Bae, Y. S. Jung, I. Lee, Y. C. Kim, M. G Lee, W. G Shin, Pharmacokinetic parameters of chlorzoxazone and its main metabolite, 6-hydroxychlorzoxazone, after intravenous and oral administration to liver cirrhotic rats with diabetes mellitus. Drug Metab. Dispos.2008,36,1233-1241.
    [28]E. S. M. Lutz, M. E. Markling, C. M. Masimirembwa, Monolithic silica rod liquid chromatography with ultraviolet or fluorescence detection for metabolite analysis of cytochrome P450 marker reactions. J. Chromatogr. B.2002,780, 205-215.
    [29]Y. Liu, J. J. Jiao, C. L. Zhang, J. S. Lou, A simplified method to determine five cytochrome p450 probe drugs by HPLC in a single run. Biol. Pharm. Bull.2009, 32,717-720.
    [30]R. F. Frye, D. D. Stiff, Determination of chlorzoxazone and 6-hydroxychlorzoxazone in human plasma and urine by high-performance liquid chromatography. J. Chromatogr. B.1996,686,291-296.
    [31]A. Petsalo, M. Turpeinen, O. Pelkonen, A. Tolonen, Analysis of nine drugs and their cytochrome P450-specific probe metabolites from urine by liquid chromatography-tandem mass spectrometry utilizing sub 2 microm particle size column. J. Chromatogr. A.2008,1215,107-115.
    [32]M. R. Anari, R. Bakhtiar, R. B. Franklin, P. G. Pearson, T. A. Baillie, Study of the fragmentation mechanism of protonated 6-hydroxychlorzoxazone:application in simultaneous analysis of CYP2E1 activity with major human cytochrome P450s. Anal. Chem.2003,75,469-478.
    [33]X. Y. Li, X. Y. Chen, Q. Li, L. L. Wang, D. F. Zhong, Validated method for rapid inhibition screening of six cytochrome P450 enzymes by liquid chromatography-tandem mass spectrometry. J. Chromatogr. B.2007,852, 128-137.
    [34]A. Tolonen, A. Petsalo, M. Turpeinen, J. Uusitalo, O. Pelkonen, In vitro interaction cocktail assay for nine major cytochrome P450 enzymes with 13 probe reactions and a single LC/MSMS run:analytical validation and testing with monoclonal anti-CYP antibodies. J. Mass Spectrom.2007,42,960-966.
    [35]M. J. Kim, H. Kim, I. J. Cha, J. S. Park, J. H. Shon, K. H. Liu, J. G. Shin, High-throughput screening of inhibitory potential of nine cytochrome P450 enzymes in vitro using liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom.2005,19,2651-2658.
    [36]R. J. Scott, J. Palmer, I. A. S. Lewis, S. Pleasance, Determination of a'GW cocktail'of cytochrome P450 probe substrates and their metabolites in plasma and urine using automated solid phase extraction and fast gradient liquid chromatography tandem mass spectrometry. Rapid Commun. Mass Spectrom. 1999,13,2305-2319.
    [37]G. Paxinos, C. Watson, The Rat Brain in Stereotaxic Coordinates.Third Edition. Academic Press, San Diego, California, USA,1997.
    [38]A. M. Lee, S. Miksys, R. Palmour, R. F. Tyndale, CYP2B6 is expressed in African Green monkey brain and is induced by chronic nicotine treatment. Neuropharmacology.2006,50,441-450.
    [39]M. M. Bradford, A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem.1976,72,248-254.
    [40]L. Li, T. D. Porter, Chlorzoxazone hydroxylation in microsomes and hepatocytes from cytochrome P450 oxidoreductase-null mice. J. Biochem. Mol. Toxic.2009, 23,357-363.
    [41]FDA, CDER, Guidance for industry:Bioanalytical method validation, U.S. Department of Health and Human Services,2001.5.
    [42]H.W. Baek, S.K. Bae, M.G. Lee, Y.T. Shon, Pharmacokinetics of chlorzoxazone in rats with diabetes:induction of CYP2E1 on 6-hydroxychlorzoxazone formation. J. Pharm. Sci.2006,95,2452-2462.
    [43]L. A. Howard, A. L. Micu, E. M. Sellers, R. F. Tyndale, Low Doses of Nicotine and Ethanol Induce CYP2E1 and Chlorzoxazone Metabolism in Rat Liver. J. Pharmacol. Exp. Then 2001,299,542-550.
    [44]S. C. Upadhya, P. S. Tirumalai, M. R. Boyd, T. Mori, V. Ravindranath, Cytochrome P4502E (CYP2E) in brain:constitutive expression, induction by ethanol and localization by fluorescence in situ hybridization. Arch. Biochem. Biophys.2000,373,23-34.
    [45]P. S. Tirumalai, S. Bhamre, S. C. Upadhya, M. R. Boyd, V. Ravindranath, Expression of multiple forms of cytochrome P450 and associated mono-oxygenase activities in rat brain regions. Biochem. Pharmacol.1998,56, 371-375.
    [1]A. M. Yu, J. R. Idle, F. J. Gonzalez, Polymorphic cytochrome P450 2D6: humanized mouse model and endogenous substrates. Drug Metab. Rev.2004,36, 243-277.
    [2]M. Ingelman-Sundberg. Genetic polymorphisms of cytochrome P450 2D6 (CYP2D6):clinical consequences, evolutionary aspects and functional diversity. Pharmacogenomics.2005,5,6-13.
    [3]U. M. Zanger, S. Raimundo, M. Eichelbaum, Cytochrome P450 2D6:overview and update on pharmacology, genetics, biochemistry. Naunyn-Schmiedeberg's Arch Pharmacol.2004,369,23-37.
    [4]U. Lutz, W. Volkel, R. W. Lutz, W. K. Lutz, LC-MS/MS analysis of dextromethorphan metabolism in human saliva and urine to determine CYP2D6 phenotype and individual variability in N-demethylation and glucuronidation. J. Chromatogr. B.2004,813,217-225.
    [5]R. A. Manap, C. E. Wright, A. Gregory, A. Rostami-Hodjegan, S. T. Meller, G. R. Kelm, M. S. Lennard, G. T. Tucker, A. H. Morice, The antitussive effect of dextromethorphan in relation to CYP2D6 activity. Br.J.Clin.Pharmacol.1999,48, 382-387.
    [6]U. Lutz, N. Bittner, R. W. Lutz, W. K. Lutz, Metabolite profiling in human urine by LC-MS/MS:Method optimization and application for glucuronides from dextromethorphan metabolism.J. Chromatogr. B.2008,871,349-356.
    [7]M. Spanakis, I. S. Vizirianakis, M. Mironidou-Tzouveleki, I. Niopas, A validated SIM GC/MS method for the simultaneous determination of dextromethorphan and its metabolites dextrorphan,3-methoxymorphinan and 3-hydroxymorphinan in biological matrices and its application to in vitro CYP2D6 and CYP3A4 inhibition study. Biomed. Chromatogr.2009,23,1131-1137.
    [8]W. J. Loos, A. J. Graan, P. Bruijn, R. H. Schaik, M. A. Fessem, M. H. Lam, R. H. Mathijssen, E. A. Wiemer, Simultaneous quantification of dextromethorphan and its metabolites dextrorphan,3-methoxymorphinan and 3-hydroxymorphinan in human plasma by ultra performance liquid chromatography/tandem triple-quadrupole mass spectrometry. J. Pharm. Biomed. Anal.2011,54,387-394.
    [9]T. M. Dodgen, A. D. Cromarty, M. S. Pepper, Quantitative plasma analysis using automated online solid-phase extraction with column switching LC-MS/MS for characterising cytochrome P450 2D6 and 2C19 metabolism. J.Sep.Sci.2011,34, 1102-1110.
    [10]Y. Daali, S. Cherkaoui, F. Doffey-Lazeyras, P. Dayer, J. A. Desmeules, Development and validation of a chemical hydrolysis method for dextromethorphan and dextrophan determination in urine samples:Application to the assessment of CYP2D6 activity in fibromyalgia patients. J. Chromatogr. B. 2008,861,56-63.
    [11]H. T. Kristensen, Simultaneous determination of dextromethorphan and its metabolites in human plasma by capillary electrophoresis. J. Pharm. Biomed. Anal. 1998,18,827-838.
    [12]Q. H. Tao, D. J. Stone, M. R. Borenstein, V. Jean-Bart, E. E. Codd, T. P. Coogan, D. Desai-Krieger, S. Liao, R. B. Raffa, Gas chromatographic method using nitrogen-phosphorus detection for the measurement of tramadol and its O-desmethyl metabolite in plasma and brain tissue of mice and rats. J. Chromatogr. B.2001,763,165-171.
    [13]B. Rege, C. March, M. A. Sarkar, Development of a rapid and sensitive high-performance liquid chromatographic method to determine CYP2D6 phenotype in human liver microsomes. Biomed. Chromatogr.2002,16,31-40.
    [14]H. P. Hendrickson, B. J. Gurley, W. D. Wessinger, Determination of dextromethorphan and its metabolites in rat serum by liquid-liquid extraction and liquid chromatography with fluorescence detection.J. Chromatogr. B.2003,788, 261-268.
    [15]Y. H. Park, M. P. Kullberg, O. N. Hinsvark, Quantitative determination of dextromethorphan and three metabolites in urine by reverse-phase high-performance liquid chromatography. J. Pharm. Sci.1984,73,24-29.
    [16]张虹,方昱,李英,反相高效液相色谱法测定人尿中右美沙芬及去甲右美沙芬的含量.第二军医大学学报.2010,31,310-312.
    [17]S. S. Vengurlekar, J. Heitkamp, F. McCush, P. R. Velagaleti, J. H. Brisson, S. L. Bramer, A sensitive LC-MS/MS assay for the determination of dextromethorphan and metabolites in human urine-application for drug interaction studies assessing potential CYP3A and CYP2D6 inhibition. J. Pharm. Biomed. Anal.2002,30,113-124.
    [18]A. Kumar, H. J. Mann, R. P. Remmel, Simultaneous analysis of cytochrome P450 probes-dextromethorphan, flurbiprofen and midazolam and their major metabolites by HPLC-mass-spectrometry/fluorescence after single-step extraction from plasma. J. Chromatogr. B.2007,853,287-293.
    [19]S. Y. Zhang, N. N. Song, Q. S. Li, H. R. Fan, C. X. Liu, Liquid chromatography/tandem mass spectrometry method for simultaneous evaluation of activities of five cytochrome P450s using a five-drug cocktail and application to cytochrome P450 phenotyping studies in rats. J. Chromatogr. B.871,78-89.
    [20]L. M. Van, S. Sarda, J. A. Hargreaves, A. Rostami-Hodjegan, Metabolism of Dextrorphan by CYP2D6 in Different Recombinantly Expressed Systems and Its Implications for the In Vitro Assessment of Dextromethorphan Metabolism. J. Pharm. Sci.2009,98,763-771.
    [21]H. J. Zhang, J. F. Huang, H. Wang, Y. Q. Feng, Determination of low-aliphatic aldehyde derivatizatives in human saliva using polymer monolith microextraction coupled to high-performance liquid chromatography. Anal. Chim. Acta.2006,565,129-135.
    [22]J. F. Huang, B. Lin, Q. W. Yu, Y. Q. Feng, Determination of fluoroquinolones in eggs using in-tube solid-phase microextraction coupled to high-performance liquid chromatography. Anal.Bioanal. Chem.2006,384,1228-1235.
    [23]Y. Fan, Y. Q. Feng, S. L. Da, Z. G. Shi, Poly (methacrylic acid-ethylene glycol dimethacrylate) monolithic capillary for in-tube solid phase microextraction coupled to high performance liquid chromatography and its application to determination of basic drugs in human serum. Anal. Chim. Acta.2004,523, 251-258.
    [24]J. Flores-Perez, C. Flores-Perez, H. Juarez-Olguin, I. Lares-Asseff, M. Sosa-Macias, Determination of dextromethorphan and dextrorphan in human urine by high performance liquid chromatography for pharmacogenetic investigations. Chromatographia.2004,59,481-485.
    [25]T. H. Eichhold, D. L. McCauley-Myers, D. A. Khambe, G. A. Thompson, S. H. Hoke, Simultaneous determination of dextromethorphan, dextrorphan, and guaifenesin in human plasma using semi-automated liquid/liquid extraction and gradient liquid chromatography tandem mass spectrometry. J.Pharm.Biomed.Anal.2007 43,586-600.
    [26]S. Y. Lin, C. H. Chen, H. O. Ho, H. H. Chen, M. T. Sheu, Simultaneous analysis of dextromethorphan and its three metabolites in human plasma using an improved IIPLC method with fluorometric detection. J.Chromatogr. B.2007, 859,141-146.
    [27]S. Li, K. Fried, I. W. Wainer, D. K. Lloyd, Determination of dextromethorphan and dextrorphan in urine by capillary zone electrophoresis:Application to the determination of debrisoquin-oxidation metabolic phenotype. Chromatographia. 1993,35,216-222.
    [28]R. A. Bartoletti, F. M. Belpaire, M. T. Rosseel, High performance liquid chromatography determination of dextromethorphan and its metabolites in urine using solid-phase extraction. J.Pharm.Biomed.Anal.1996,14,1281-1286.
    [29]T. H. Eichhold, L. J. Greenfield, S. H. Hoke II, K. R. Wehmeyer, Determination of dextromethorphan and dextrorphan in human plasma by liquid chromatography/Tandem mass spectrometry. J.Mass.Spectrom.1997,32, 1205-1211.
    [1]F. J. Morales, S. Jimenez-Perez, Study of hydroxymethylfurfural formation from acid degradation of the amadori product in milk-resembling systems. J. Agric. Food Chem.1998,46,3885-3890.
    [2]C. Perez Locas, V. A. Yaylayan, Isotope labeling studies on the formation of 5-(Hydroxymethyl)-2-furaldehyde (HMF) from sucrose by pyrolysis-GC/MS. J. Agric. Food Chem.2008,56,6717-6723.
    [3]R. J. Ulbricht, S. J. Northup, J. A. Thomas, A review of 5-hydroxymethylfurfural (HMF) in parenteral solutions. Fundam. Appl. Toxicol.1984,4,843-853.
    [4]C. Janzowski, V. Glaab, E. Samimi, J. Schlatter, G. Eisenbrand, 5-Hydroxymethylfurfural:assessment of mutagenicity, DNA-damaging potential and reactivity towards cellular glutathione. Food Chem.Toxicol.2000,38, 801-809.
    [5]H. Glatt, H. Schneider, Y. Liu, V79-hCYP2El-hSULTlAl, a cell line for the sensitive detection of genotoxic effects induced by carbohydrate pyrolysis products and other food-borne chemicals. Mutat. Res.2005,580,41-52.
    [6]Y. J. Surh, A. Liem, J. A. Miller, S. R. Tannenbaum,5-Sulfooxymethylfurfural as a possible ultimate mutagenic and carcinogenic metabolite of the Mailllard reaction product,5-hydroxymethylfurfural. Carcinogenesis.1994,15,2375-2377.
    [7]Y. Sommer, H. Hollnagel, H. Schneider, H. R. Glatt, Metabolism of 5-hydroxymethyl-2-furfural (HMF) to the mutagen,5-sulfoxymethyl-2-furfural (SMF) by individual human sulfotransferases. Naunyn-Schmiedeberg's Arch. Pharmacol.2003,367,166.
    [8]C. Svendsen, T. Husoy, H. Glatt, H. M.Haugen, J. Alexander, 5-Sulfooxymethylfurfural (SMF), the metabolite of 5-hydroxymethylfurfural (HMF), increases the numbers of adenoma and aberrant crypt foci in the intestine of min-mice. Toxicol. Lett.2007,172,202.
    [9]Council Directive 2001/110/EC of 20 December 2001 relating to honey. Off. J. Eur. Commun.2002,10, L 47-52.
    [10]Codex Alimentarius 2001:Revised standard for honey. Codex standard 12-1981. Rev 1 (1987), Rev 2 (2001), Rome:FAO.
    [11]D. N. Tu, S. F. Xue, C. Y. Meng, A. Espionsa-Mansilla, A. M. De La Pena, F. Salinas Lopez, Simultaneous determination of 2-Furfuraldehyde and 5-(Hydroxymethyl)-2-furfuraldehyde by derivative spectrophotometry. J. Agric. Food Chem.1992,40,1022-1025.
    [12]D. Corradini, C. Corradini, Separation and determination of 5-hydroxymethyl-2-furfuraldehyde and 2-furaldehyde in fruit juices by micellar electrokinetic capillary chromatography with direct sample injection. J. Chromatogr. A.1992, 624,503-509.
    [13]F. J. Morales, S. Jimenez-Perez, Hydroxymethylfurfural determination in infant milk-based formulas by micellar electrokinetic capillary chromatography. Food Chem.2001,72,525-531.
    [14]E. Teixido, F. J. Santos, L. Puignou, M. T. Galceran, Analysis of 5-hydroxymethylfurfural in foods by gas chromatography-mass spectrometry.J. Chromatogr. A.2006,1135,85-90.
    [15]E. M. S. M.Gaspar, J. F.Lopes, Simple gas chromatographic method for furfural analysis. J. Chromatogr. A.2009,1216,2762-2767.
    [16]M. J. Nozal, J. L. Bernal, L. Toribio, J. J. Jimenez, Martin, M. T. High-performance liquid chromatographic determination of methyl anthranilate, hydroxymethylfurfural and related compounds in honey. J. Chromatogr. A.2001, 917,95-103.
    [17]E. Ferrer, A. Alegra, R. Farre, P. Abellan, F. Romero, High-performance liquid chromatographic determination of furfural compounds in infant formulas: Changes during heat treatment and storage. J. Chromatogr. A.2002,947,85-89.
    [18]L. A. Ameur, G. Trystram, I. Birlouez-Aragon, Accumulation of 5-hydroxymethyl-2-furfural in cookies during the backing process:Validation of an extraction method. Food Chem.2006,98,790-796.
    [19]F. LoCoco, C. Valentini, V. Novelli, L. Ceccon, Liquid chromatographic determination of 2-furaldehyde and 5-hydroxymethyl-2-furaldehyde in beer. Anal. Chim. Acta.1995,306,57-64.
    [20]F. Lo Coco, C. Valentini, V. Novelli, L. Ceccon, High-performance liquid chromatographic determination of 2-furaldehyde and 5-hydroxymethyl-2-furaldehyde in honey. J. Chromatogr. A.1996,749,95-102.
    [21]K. Michail, H. Juan, A. Maier, V. Matzi, J. Greilberger, R. Wintersteiger, Development and validation of a liquid chromatographic method for the determination of hydroxymethylfurfural and alpha-ketoglutaric acid in human plasma. Anal. Chim. Acta.2007,581,287-297.
    [22]K. Michail, V. Matzi, A. Maier, R. Herwig, J. Greilberger, H. Juan, O. Kunert, R. Wintersteiger, Hydroxymethylfurfural:an enemy or a friendly xenobiotic? A bioanalytical approach. Anal. Bioanal. Chem.2007,387,2801-2814.
    [23]M. Murkovic, N. Pichler, Analysis of 5 hydroxymethylfurfual in coffee, dried fruits and urine. Mol. Nutr. Food Res.2006,50,842-846.
    [24]E. Teixido, E. Moyano, F. J.Santos, M.T.Galceran, Liquid chromatography multi-stage mass spectrometry for the analysis of 5-hydroxymethylfurfural in foods.J. Chromatogr. A.2008,1185,102-108.
    [25]M. Palma, L. T. Taylor, Supercritical fluid extraction of 5-Hydroxymethyl-2-furaldehyde from raisins. J. Agric. Food Chem.2001,49,628-632.
    [26]L. Giordano, R. Calabrese, E. Davoli, D. Rotilio, Quantitative analysis of 2-furfural and 5-methylfurfural in different Italian vinegars by headspace solid-phase microextraction coupled to gas chromatography-mass spectrometry using isotope dilution. J. Chromatogr. A.2003,1017,141-149.
    [27]Y. Fan, Y. Q. Feng, S. L. Da, Z. G. Shi, Poly (methacrylic acid-ethylene glycol dimethacrylate) monolithic capillary for intube solid-phase microextraction coupled to high performance liquid chromatography and its application to determination of basic drugs in human serum. Anal. Chim. Acta.2004,523, 251-258.
    [28]M. Zhang, W. Fang, Y. F. Zhang, J. Nie, Y. Q. Feng, Novel polymer monolith microextraction using a poly (methacrylic acidethylene glycol dimethacrylate) monolith and its application to simultaneous analysis of several angiotensin Ⅱ receptor antagonists in human urine by capillary zone electrophoresis. J. Chromatogr. A.2006,1102,294-301.
    [29]J. F. Huang, H. J. Zhang, Y. Q. Feng, Chloramphenicol extraction from honey, milk and eggs using polymer monolith microextraction followed by liquid chromatography mass spectrometry. J. Agric. Food Chem.2006,54,9279-9286.
    [30]H. J. Zhang, J. F. Huang, H. Wang, Y. Q. Feng, Determination of low-aliphatic aldehyde derivatizatives in human saliva using polymer monolith microextraction coupled to high-performance liquid chromatography. Anal. Chim. Acta.2006,565,129-135.
    [31]H. J. Zhang, J. F. Huang, B. Lin, Y. Q. Feng, Polymer monolith microextraction with in situ derivatization and its application to high-performance liquid chromatography determination of hexanal and heptanal in plasma. J. Chromatogr. A.2007,1160,114-119.
    [32]S. Uchiyama, T. Kaneko, H. Tokunaga, M. Ando, Y. Otsubo, Acid-catalyzed isomerization and decomposition of ketone-2,4-dinitrophenylhydrazones. Anal. Chim. Acta.2007,605,198-204.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700