用户名: 密码: 验证码:
铜包钢双金属复合导线的界面结合及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以双铜带压接法生产的铜包钢线为研究对象,制备不同拉拔变形量的铜包钢线试样,通过改变其热处理制度,测定导线横、纵截面的α-Fe相晶粒尺寸、扩散层厚度、界面结合强度、扩散层硬度、铜-钢基体硬度以及导线的抗拉强度、延伸率和电阻率,研究铜包钢线的界面结合及性能,最终得到铜包钢线拉拔变形量和退火处理对其组织及性能的影响规律。
     研究结果表明,铜包钢线钢芯横截面的α-Fe相晶粒尺寸随着其变形量的增加不断减小,纵截面的晶粒延拉拔方向的长径比增加。铜包钢线横截面的α-Fe相晶粒尺寸随着其退火温度的升高和保温时间的延长而增大,其纵截面的α-Fe相长径比减小。当退火温度升高至750℃,退火时间延长至2h时,经拉拔变形后的铜包钢线纵截面的α-Fe相晶粒趋于等轴状,即完成了回复再结晶过程。继续升高温度,其横截面和纵截面的α-Fe相晶粒尺寸和长径比变化较小。通过实验数据分析,得到了铜包钢线的退火温度和保温时间分别与其钢芯横截面的α-Fe相晶粒尺寸和纵截面晶粒长径比关系的回归方程。
     根据原始纯铜和钢丝的抗拉强度值,应用复合材料强度的混合法则,计算了不同拉拔变形的铜包钢线抗拉强度。经实验验证,与实测结果接近。铜包钢线的抗拉强度随其变形量的增加而升高,延伸率则降低。随着铜包钢线退火温度的升高和保温时间的延长,其抗拉强度降低,延伸率升高。当达到铜包钢线的再结晶温度后,其抗拉强度和延伸率变化较小。根据Hollomon关系式,通过实验计算得出铜包钢线的应变硬化指数n=0.4。
     铜包钢线的电阻率随其形变量的增加而升高。根据纯铜和钢丝原材料的电阻率,计算了经过不同拉拔变形的导线电阻率。随着铜包钢线退火温度的升高和退火时间的延长,其电阻率降低。通过实验数据分析,得到了铜包钢线的退火温度和保温时间分别与其电阻率关系的回归方程。随着退火温度的升高和时间的延长,距离界面同一位置处的铜侧、扩散层和钢侧的硬度均降低。与铜侧相比,钢侧的硬度降低较明显。
     在传统的测试方法基础之上,结合日本的复合钢测试标准,提出了一种新的铜-钢复合导线的界面结合强度测试方法。经过实验验证,该方法科学可靠。结果表明,随着铜包钢线退火温度的升高和时间的延长,扩散层厚度增加,结合强度提高。与保温时间相比,退火温度对其影响较大。当达到铜包钢线的再结晶温度后,继续升高温度和延长时间,扩散层厚度和界面结合强度变化较小。利用扩散方程计算Fe和Cu原子的扩散激活能和扩散的常数,确定了扩散常数与退火温度的关系。综合考虑铜包钢线扩散层厚度与结合强度的关系及生产实际要求,得到铜包钢线的最佳退火工艺为750℃保温2h。
The method adopted to manufacture copper clad steel (short for CCS) wire in this study is double copper strip pressure welding and then drawing and annealing it. The grain size of a-Fe phase in cross and longitudinal section, the thickness of diffusion layer, interface bonding strength, interface hardness and its tensile strength, elongation, resistivity were test. The interface bonding and its performance were studied. The effects of drawing deformation and annealing treatment on its microscopic structure and performance were obtained.
     Experimental results show that the grain size in cross section of a-Fe phase is decreased with the increase of the drawing deformation. Its length diameter ratio in longitudinal section is enhanced toward the drawing direction. The grain size in cross-section of α-Fe phase is enhanced with the increase of the annealing time and annealing temperature, its length diameter ratio in longitudinal section is decreased oppositely.
     The grain in longitudinal section of a-Fe phase after deformation tends to be equiaxial, the recrystallization processes is thus finished at750℃for2h. The grain size in cross section and length diameter ratio in longitudinal section are almost invariant when continuing to raise the temperature. Through the experimental data analysis, the regression equation about the relation of annealing temperature and annealing time of CCS wire with the grain size in cross section and length diameter ratio in longitudinal section are obtained.
     According to the tensile strength of primitive pure copper and steel wire, applying the mixed rules of composite material strength, the tensile strength of the copper clad steel wire with different drawing the deformation can be calculated. Through the experimental results, they are closed to measured ones. The tensile strength of CCS wire is decreased with the increase of the drawing deformation, the elongation is increased oppositely. The tensile strength of CCS wire is decreased with the increase of the annealing temperature and time, the elongation is increased oppositely. When the annealing temperature is850℃, annealing time is2h, its tensile strength and elongation are invariable. According to the relationship of Hollomon, through the certification of experiment, the copper clad steel wire's strain hardening exponent of drawing deformation of50%(n) is0.4.
     The resistivity of CCS wire is increased with the increase of the drawing deformation. According to the resistivity of primitive pure copper and steel wire, the resistivity of the copper clad steel wire with different drawing the deformation can be calculated. The resistivity of CCS wire is decreased with the increase of the annealing temperature and time. Through the experimental data analysis, the regression equation about the relation of annealing temperature and annealing time of CCS wire with the resistivity are obtained. The hardness of copper matrix, diffusion layer and steel matrix with the same deformation are decreased when continuing to increase the temperature and extend the time. Compared with the hardness in copper side, it is reduced obviously in steel side.
     In the foundation of traditional test methods, combined with the steel composite testing standards in Japan, this paper presents a new test method of steel composite copper wire-interface bonding strength. After the verification of test, the method in this paper is scientific and reliability. The results show that the diffusion thickness and bonding strength are increased with the increase of annealing temperature and time. Compared with annealing time, annealing temperature has more effect on it. After recrystallization temperature is reached, the interface diffusion layer thickness and bonding strength are invariable when continuing to increase the temperature and extend the time. Calculate the diffusion activation energy of Fe and Cu atoms and diffusion constant by diffusion equation, the relationship of diffusion constant and annealing temperature is conformed. According to the relation of diffusion layer thickness and bonding strength and the requirement of actual producing, the best annealing process is750℃for2h.
引文
[1]吴云忠.包覆拉拔法铜包铝、铜包钢双金属导线的研究[D].大连海事大学博士论文.2007:p.1-2,p.7-10,p.78-79,p.91-92,p.116-117
    [2]孙德勤,吴春京,谢建新.金属复合线材成形工艺的研究开发概况[J].材料导报.2003,17(5):p.65-68
    [3]李宝绵,李兴刚,许光明等.铜/钢复合材料的研究及应用[J].材料导报.2002,2(16):p.22-25
    [4]贺飞,刘利梅,钟云等.铜包钢线材及其生产工艺[J].表面技术.2007,36(5):p.78-80
    [5]李明茂.金属复合线材的生产使用现状与发展趋势[J].塑性工程学报.2005,12(3):p.93-95
    [6]王庆娟,杜忠泽,王海波.铜包钢线生产工艺的特点及现状[J].电线电缆.2002,8:p.15-18
    [7]何慧兰.铜包钢线的研制与应用[J].电镀与环保.2002,22(6):p.32-33
    [8]韩钰,马光,陈新等.铜钢复合材料及其在变电站地网中的应用前景[J].电力建设.2009,30(10):p.95-98
    [9]S. Berski, H. Dyja, G. Banaszek etal. Theoretic analysis of bimetallic rods extrusion process in double reduction die[J]. J. Mat. Process. Technol.2004:p.583-588
    [10]D.M. Song. Finite Element Analysis on Extrusion of Composite Clad Rods[J]. M.S. Thesis. National Chiao Tung University.2003:p.205-207
    [11]J. A. Cave and J. D. Williams, The mechanism of cold pressure welding by rolling[J]. Journal of institute of metals.1973,101:p.203-207
    [12]娄燕熊,刘贵材.有色金属线材生产[M].长沙.中南工业大学出版社.1999:p.40-43
    [13]孙洋,运新兵.铜包钢接触线坯连续包覆工艺优化设计[J].塑性工程学报.2008,15(3):p.204-208
    [14]运新兵,宋宝韫,刘元文.铜包钢接触线坯连续挤压包覆成形的实验研究[J].塑性工程学报.2004,11(6):p.55-57
    [15]宋强,戴雅康,刘世程.包覆焊接法铜包钢线的结构设计和生产工艺[J].线缆材料.2003,3:p.44-46
    [16]方晓英,郭红.热浸镀法生产的铜包钢线性能研究[J].材料加工工艺.2006,35(22):p.49-51
    [17]傅晓,于九明,陈海耿.包铜钢线热浸镀过程的简化模型[J].金属学报.2000,36(8):p.828-832
    [18]肖秋雷,刘素霞,甘露等.电镀法生产铜包钢线的制造工艺及常见的质量问题的探讨[J].电线电缆.2008,3:p.14-16
    [19]宣天鹏,卑多慧.铜包钢线的生产工艺及其应用[J].电镀与涂饰.1998,17(3):p.26-32
    [20]徐高磊,张迎晖,林木法等.铜铝复合材料的研究与应用[J].有色金属加工.2008,37(4):p.6-8.
    [21]傅利,高扬.双金属包覆方法[P].中国:200910220463.8,2011.8.31
    [22]傅利,高扬.双金属包覆机[P].中国:200920277006.8,2010.9.15
    [23]马光,韩钰,妓京凯等.电气工程接地用铜覆钢腐蚀性能研究[J].华东电力,2010,38(11):p.1736-1739
    [24]王璞.铜中的氧对铜/钢扩散复合界面的影响[D].大连交通大学硕士学位论文.2006:p.5-8,p.17-18,p.43-46
    [25]李斗星,平德海.界面精细结构与界面反应产物结构[J].金属学报.1992,28(7):p.284-300
    [26]H. Z. Wang, K. H. Wang, R. K. Zheng, etal. TEM Study of Weld Interface between Cu-Alloy & Steel[J]. Microsc Microanal.2005,11 (2):p.2018-2019
    [27]Xianrong Li, Wei Liang, Xingguo Zhao, etal. Bonding of Mg and Al with Mg-Al eutectic alloy and its application in aluminum coating on magnesium[J]. Journal of Alloys and Compounds.2009,471:p. 408-411
    [28]Yahiro A, Masui T, Yoshida T, etal. Development of nonuferrous clad plate and sheet by warm rolling with different temperature of materials[J]. ISIJ Int.1991,31 (6):p.647
    [29]H Danesh Manesh, A. Karimi Taheri. The effect of annealing treatment on mechanical properties of aluminum clad steel sheet[J]. Materials and Design.2003,24:p.617-622
    [30]何鹏,张九海,冯吉才等.相变扩散连接界面生成金属间化合物的数值模拟[J].焊接学报.2000,21(3):p.75-78
    [31]于九明,孝云祯,王群骄等.金属层状复合技术及其新进展[J].材料研究学报.2000,14(1):p.12-16
    [32]顾文桂.铜铝固相轧制复合的界面组成[J].中国有色金属学报.1996,6(1):p.79-83
    [33]张红安,陈刚.铜/铝复合材料的固-液复合法制备及其界面结合机理[J].中国有色金属学报.2008,18(3):p.414-420
    [34]Ahmet Durgutlu, Hasan Okuyucu, Behcet Gulenc. Investigation of effect of the stand-off distance on interface characteristics of explosively welded copper and stainless steel[J]. Materials and Design.2008, 29:p.1480-1484
    [35]J.E. Lee, D.H. Bae, W.S. Chung, etal. Effects of annealing on the mechanical and interface properties of stainless steel/aluminum/copper clad-metal sheets[J]. Journal of Materials Processing Technology. 2007,187:p.546-549
    [36]丁旭光,张质良.双金属固相结合机理与研究趋势[J].锻压技术.1997:p.32-36
    [37]N. Bay, Mechanism producing metallic bonds in cold welding[J]. welding research supplement,1983: p.137-142
    [38]W. Zhang, N. Bay. Influence of Hydrostatic pressure on Cold-Pressure Welding[J]. CIRP Annals.1992, 41 (1):p.293-297
    [39]N. Bay. Influence of surface preparation on bond strength[J]. Metal Construction.1986:p.486-490.
    [40]赵凯.高强高导金属复合电极线研究.大连:大连交通大学硕士论文.2006:p.9-12,p.35-36,p.38-40,p.48-49
    [41]石德珂.材料科学基础第2版[M].北京.机械工业出版社.2003:p.23-26,p.40,p.48,p.279-281,p.349-352,p.358-362
    [42]H. Y. Wu, S. Lee, J. Y. Wang. Solid-state bonding of iron-based alloys, steel-brass, and aluminum alloys[J]. Journal of Materials Processing technology.1998,75:p.173-179
    [43]何康生,曹熊夫.异种金属焊接[M].北京.机械工业出版社.1986:p.145-146
    [44]马永庆,吴云忠.包覆拉拔法双金属线材的固相结合机理的研究[J].中国材料科技与设备.2008,1:p.85-87
    [45]潘金生,全健民,田民波.材料科学基础[M].北京:清华大学出版社.1998:p.191-192
    [46]Reid C N. Deformation Geometry for Materials Scientists[M]. Oxford:Pegamon Press,1973
    [47]K. Yoshida. Technology of manufacture and application on clad[J]. J. JSTP.1997,38:p.45-47
    [48]Z. Muskalski, J.W. Pilarczyk, S. Wiewiorowska, etal. Modeling the drawing of bimetallic rods with forge software[J]. Wire J. Int,2001:p.108-112
    [49]S. Berski, H. Dyja, G. Banaszek, etal. Theoretic alanalysis of bimetallic rods extrusion process in double reduction die, J. Mat. Process. Technol.2004,154(153):p.583-588
    [50]Chang Shengxie, Mu Linhu, Ya Ming, etal. Oxidation reaction during laser cladding of SAE1045 carbon steel with SiC/Cu alloy powder[J]. Journal of materials science.2001,36:p.1501-1505
    [51]D.C. Ko, S.K. Lee, B.M.Kim, etal. Evaluation of copper coating ratio in steel/copper clad wire drwaing, Journal of Materials Processing Technology,2007,186:p.22-26
    [52]李红,韩静涛.金属板材轧制-扩散复合机理研究进展[J].材料工程.2006,1:p.507-514
    [53]焦少阳,董建新,张麦仓,郑磊.双金属热轧复合的界面结合影响因素及结合机理[J].材料导报.2009,23(1):p.59-62
    [54]Ying D Y, Zhang D L. Solid-state reactions Cu and Al during mechanical alloying and heat treatment [J]. Journal of Alloys and Compounds.2000,311 (25):p.275-282
    [55]王立东,阮雪榆.双金属固相结合的有限元分析[J].塑性工程学报.1997,4(4):p.18-23
    [56]张朝晖,廖秋尽,程荆卫等.双金属复合材料固相结合数值仿真研究[J].材料工程.2006,10:p.34-37
    [57]王秋娜,刘新华,刘雪峰等.冷拉拔铜包铝细丝的退火工艺与组织性能研究[J].材料工程,2008,7:30-35
    [58]窦晓峰,鹿守理,赵辉.Q235钢动态再结晶模型的建立[J].北京科技大学学报.1998,20(5):p.467-470
    [59]沈丙振,方能炜,沈厚发等.低碳钢奥氏体再结晶模型的建立[J].材料科学与工艺.2005,13(5):p.516-520
    [60]T Inoue, F Yin, S Torizuka, etal. Effect of shear deformation on refinement of crystal grains, Second International Conference on Advanced Structure Steels.2004,155-159
    [61]Jae Sang Lee, Jong-Kyo Choi, Wung Yong Choo. Microstructure and mechanical properties of fine-grained hot rolled strips, Second International Conference on Advanced Structural Steels.2004, p. 172-174
    [62]陈志远.铝-铜轧延复合金属特性研究[D].国立成功大学博士论文.2007:p.20-23
    [63]赵宏亮,温景林.反向凝固复合不锈钢带及其轧制的试验研究[J].东北大学学报(自然科学版),1999,20(5):p.519-521
    [64]于九明,王群骄,孝云帧.铜/钢反向凝固复合试验研究[J].中国有色金属学报.1999(3):p.474-476
    [65]方晓英.液固相复合-轧制铜包钢线的组织性能及界面冶金行为[J].热加工工艺.2006,35(9):p.9-11
    [66]张翔,陈汝淑,刘德义等.碳钢/不锈钢的瞬间液相扩散复合[J].热加工工艺.2007,36(3):p.30-32.
    [67]陈汝淑,张锋刚,刘德义等.碳钢黄铜中间层不锈钢液固相扩散结合区组织[J].焊接学报.2009,30(4):p.61-64
    [68]于九明,孝云祯,王群骄等.反向凝固过程铜/钢复合界面的研究[J].东北大学学报(自然科学版).2000,21(3):p.286-289
    [69]Yamamoto Y, Uemura S, Kaj lhara M. Observations on diffusion-induced recrystallization in binary Ni/Cu diffusion couples annealed at an intermediate temperature[J]. Materials Science and Engineering. 2001,312:p.176-181
    [70]G. Mctealfe. Composite Matels, Voll, Interfaces in Metal Matrix. Composites[M]. Academic Press, New York and London,1974:p.347-351
    [71]Pan Jinning, Xiaoguang. Hu Kuyi..Ye Hengqiang. ACTA Metallurglca Sinca[J].1993,6 (6):p.465
    [72]陈燕俊,孟亮,周世平,杨富陶,林德仲.不同温度下Ag/Cu复合界面的扩散处理[J].材料科学与工程.2001,19(1):p.56-59
    [73]魏伟,史庆南.铜/钢双金属板异步轧制复合机理研究[J].稀有金属.2001,25(4):p.307-311.
    [74]方晓英,张艳莉,孙业东.铜/钢液固相复合工艺的实验研究[J].山东理工大学学报.2003,17(6):p.11-13
    [75]王璞,刘世程,刘德义,陈汝淑,滕颖丽,戴雅康.铜/钢扩散复合界面分析[J].有色金属加工.2006,35(2):p.35-37
    [76]孙德勤,吴春京,谢建新.铜包铝复合线材制造技术的发展现状与前景[J].电线电缆.2003,3:p.3-6
    [77]Guo Wei, Zhao Xihua, Song Minxia. The statement and developments of diffusion bonding interface theories[J]. Aerospace Manufacturing Technology.2004,5:p.36-39.
    [78]赵凯,陈汝淑,刘世程,刘德义.黄铜包钢双金属线的复合工艺与性能[J].有色金属加工.2006,35(1):p.30-32
    [79]束德林.工程材料力学性能(第2版)[M].北京.机械工业出版社.2007:p.12-13,p.15-16,p.170-171
    [80]唐建成,黄伯云.Ti-Al基合金中的Hall-Petch关系及影响因素分析[J].金属学报.2002,38(4):p.365-368
    [81]冉广,周敬恩,李鹏亮.高能球磨制备Al-Pb-Si-Sn-Cu纳米晶粉末的特性[J].稀有金属材料与工程.2004,33(12):p.1312-1316
    [82]Z. Lee, F. Zhou, R.Z. Valiev, E.J. Lavernia, S.R. Nutt. Microstructure and microhardness of cryomilled bulk nanocrystalline Al-7.5%Mg alloy consolidated by high pressure torsion[J]. Scripta Materialia. 2004,51:p.209-214
    [83]訾炳涛,王辉.块体纳米材料的制备技术概况[J].天津冶金.2003,118(6):p.256-257
    [84]陈汉宾,程军胜,扬滨.块体纳米晶Al-Zn-Mg-Cu合金的热处理[J].中国有色金属学报.2007,1:p.30-34
    [85]程军胜,郝斌,孙淼.低温球磨和真空热压技术制备的纳米晶纯铝块体的强化机理[J].材料热处理学报.2006,27(5):p.1-5
    [86]章荣建.金属拉伸速度对强度影响的控制[J].机电技术.2008,2:p.38-40
    [87]王艳云,王庆,陈丽蓉,李娅妮,唐春磊.拉伸速度对低碳钢和铸铁力学性能影响的试验研究[J].农业与技术.2010,30(6):p.118-121
    [88]李忠民,李文学,李国成.拉伸速度对力学性能测定的影响及控制方法[J].物理测试.1996,6:p.30-33
    [89]Basinski Z S, Saimoto S J. Resistivity of deformed crystals[J]. Canadian Journal of Physics 1967,45: p.1161-1176
    [90]Brown R A. A comparison of two theories of dislocation resistivity [J]. J.Phys.F:MetalPhys.1977,7 (11):p.297-230
    [91]Kaveh M and Wiser N. Deviation from Matthiessens rule for the electrieal resistivity of dislocations[J]. J.Phys. F:met.Phys.1986,16:p.795-802
    [92]Rossiter P L.The electrical resistivity of metals and alloys[M]. Cambridge, UK, Cambridge University Press,1987:p.65-70
    [93]Batawi. Eeffet on small alloying additions on behavitor of rehavior rapidly solidified Cu-Cr alloy[J]. Material Science and Technology.1990,6:p.892
    [94]于九明,方晓英,孝云祯.铜/钢液固相复合界面的结合强度[J].材料研究学报.2000,14(6):p.661-664
    [95]李忠文.钛-钢扩散复合界面组织与性能的研究[D].大连:大连交通大学硕士学位论文.2005:p.19-20.
    [96]田德旺.双金属复合材料冷轧变形行为及结合强度的研究[D].武汉:武汉科技大学硕十学位论文.2006:p.28-29
    [97]颜学柏,李正华,李选明等.轧制参数对钛/铝轧制复合板的结合强度和剥离面SEM形貌的影响[J].稀有金属材料工程,1991,20(4):p.36-45
    [98]冯爱新,张永康,谢华琨,等.划痕试验法表征薄膜涂层界面结合强度[J].江苏大学学报.2003,24(2):p.16-19
    [99]C. C. Wong, A. Danno, X. H. Huang, etal. A study into a cost effective roll bonding process for clad metals[J]. SIMTech technical reports.2008,9(2):50-55
    [100]クラツド铜の试验方法.JIS G0601-2002.日本国家标准手册[M].国家标准局.2002:p.3-5
    [101]李斗星,平德海.界面精细结构与界面反应产物结构[J].金属学报.1992,28(7):p.284-300
    [102]H. Z. Wang, K. H. Wang, R. K. Zheng, etal. TEM Study of Weld Interface between Cu-Alloy & Steel[J]. Microsc Microanal.2005,11 (2):p.2018-2019
    [103]Xianrong Li, Wei Liang, Xingguo Zhao, etal. Bonding of Mg and Al with Mg-Al eutectic alloy and its application in aluminum coating on magnesium[J]. Journal of Alloys and Compounds.2009,471:p. 408-411
    [104]Yahiro A, Masui T, Yoshida T, etal. Development of nonuferrous clad plate and sheet by warm rolling with different temperature of materials[J]. ISIJ Int.1991,31 (6):p.647
    [105]H Danesh Manesh, A. Karimi Taheri, The effect of annealing treatment on mechanical properties of aluminum Clad steel sheet [J]. Materials and Design.2003,24:p.617-622
    [106]何鹏,张九海,冯吉才等.相变扩散连接界面生成金属间化合物的数值模拟[J].焊接学报.2000,21(3):p.75-78
    [107]刘鹏,陆明,田涛等.钛/钢复合板爆炸焊接试验及结合界面研究[J].热加工工艺.2010,39(7):p.30-33
    [108]梅志,顾明元,吴人洁.金属基复合材料界面表征及其进展[J].材料科学与工程.1996,14(3):p.1-5
    [109]孟亮,周世平,杨富陶.轧制及扩散温度对Ag/Cu层状复合材料结合性能的影响[J].中国有色金属学报.2001,11(6):p.982-986
    [110]温景林,赵红亮,齐克敏,王新华,许中波,张健.反向凝固与高温轧制过程中元素互扩散对复合界面的作用[J].塑料工程学报.2002,9(1):p.34-36
    [111]赵红亮,楼琅洪,胡壮麒.反向凝固高温轧制带坯及冷轧带的界而结合与力学性能[J].金属学报.2001,37(11):p.1189-1191
    [112]王晓峰,刘德义,刘世程等.钢/黄铜双金属管扩散复合的研究[J].有色金属加工.2005,34(1):p.27-29
    [113]傅利,高扬.双金属包覆机[P].中国:200920277006.8,2010.9.15
    [114]金属平均晶粒度测定法.GB 6394-86.中国国家标准手册[M].国家标准局.1987:p.716-721.
    [115]方晓英,于翠芳,于九明.铜/钢液固相复合界面冶金行为的研究[J].淄博学院学报(自然科学与工程版).2001,3(3):p.67-70
    [116]金属显微维氏硬度试验方法.GB/T4342-84.中国国家标准手册[M].国家标准局.1999:275-278
    [117]金属拉伸试验方法.GB/T 228-2002.中国国家标准手册[M].国家标准局.2002:p.297-332
    [118]金属材料电阻率测量方法.GB/T 3048.2.中国国家标准手册[M].国家标准局.1999:p.134-140
    [119]韦德骏.材料力学性能与应力测试[M].长沙.湖南大学出版社.1997:p.59-60
    [120]http://www.matweb.com/search/DataSheet.aspx?MatGUID=9d1e943f7daf49ef92e1d8261a8c6fc6
    [121]江东亮.材料力学[M].北京.机械工业出版社.1995:p.202-204
    [122]http://www.matweb.com/search/DataSheet.aspx?MatGUID=3c78d450e90f48c48d68e2d 17a8e51f7
    [123]姚启均.金属力学性能试验常用数据手册(第3版)[M].北京.机械工业出版社.1994:p.24-25
    [124]马全仓,毛卫民,冯惠平,余永宁.拉伸变形晶粒所承受的反应应力对其取向变化的影响[J].塑性工程学报.2009,16(2):p.171-175
    [125]刘建涛,刘国权,胡本芙,陈焕铭,宋月鹏,张义文.FGH96合金晶粒长大规律的研究[J].材料热处理学报.2004,25(6):p.25-29
    [126]http://www.doc88.com/p-981342594210.html
    [127]赵凯.高强高导金属复合电极线研究[D].大连:大连交通大学硕士论文.2006:p.9-12,p.35-36,p.38-40,p.48-49
    [128]王建华,任立军.高锰钢加工硬化机理研究[J].凿岩机械气动工具.2002(4):p.42-46
    [129]http://www.doc88.com/p-958290995941.html
    [130]方晓英,郭红.热浸镀法生产的铜包钢线性能研究[J].材料加工工艺.2006,35(22):p.49-51
    [131]丁旭光,张质良.双金属固相结合机理与研究趋势[J].锻压技术.1997:p.32-36
    [132]费保俊.采用铜包钢复合线的对称电缆邻近效应[J].电线电缆,2001,2:27-29
    [133]佟建国,高晓丹,曲海涛,邹十文,李殊霞,任学平.25Cr5MoA钢/Q235钢固-液复合轴界面Cr元素扩散行为[J].北京科技大学学报.2009,31(4):p.451-458
    [134]张胜华,郭祖军.铝/铜轧制复合板的界面结合机制[J].中南工业大学学报.1995,26(4):p.510-513
    [135]王富耻.材料现代分析测试方法[M].北京:北京理工大学出版社.2005:p.100-104
    [136]陈世朴,王永瑞.金属电子显微分析[M].北京:机械工业出版社.2010::p.58-59,67-68
    [137]江伟辉,肖兴成,周健儿,马光华,顾幸勇,胡行方.晶格常数的变化对钛酸铝热稳定性的影响[J].无机材料学报.2000,15(1):p.163-167
    [138]张雪华,阮莹,王伟丽,魏炳波.三元Fe-Sn-Ge和Cu-Pb-Ge偏晶合金相分离与快速凝固研究[J].中国科学.2007,37(3):p.359-366
    [139]王秋娜,刘新华,刘雪峰,谢建新.冷拉拔铜包铝细丝的退火工艺与组织性能研究[J].材料工程.2008,7:p.30-35.
    [140]祖国胤,刘刚,王宁.退火工艺对镍/铝复合带金属间化合物的影响[J].材料热处理学报.2007,28(2):p.54-59.
    [141]陈雪莲,许光明,崔建忠,韩建芬,刘丽平.钢-铝界面扩散层长大过程的研究[J].轻合金加工技术,2005,33(2):p.44-47
    [142]王兴庆,隋永江,吕海波.铁铝原子在金属间化合物形成中的扩散[J].上海大学学报(自然科学版).1998,4(6):p.661-667
    [143]王小红,唐荻,徐荣昌,温永红.铝-铜轧制复合工艺及界面结合机理[J].有色金属.2007,59(1):p.21-24.
    [144]Abbasi M, Karimi Taheri A, Salehi M T. Growth rate of intermetallic compounds in AI/Cu bimetal produced by cold roll welding process[J]. Journal of Alloys and Compounds,2001,26(319):p.233-241.
    [145]Jacobson M H, Umpston G. Diffusion solder[J]. Solder&Surface Mount Technology,1992,17(10): 27-32
    [146]张红安,陈刚.铜/铝复合材料的固-液复合法制备及其界面结合机理[J].中国有色金属学报,2008,18(3):414-420
    [147]刘耀辉,刘海峰,于思荣.液固结合双金属复合材料界面研究[J].机械工程学报,2000,36(7)81-85
    [148]董占贵,钱乙余,石素琴,吴培莲Al/Cu/Al接触反应液相行为及其连接[J].焊接学报.2001,22(6):p.45-47
    [149]Li Yuntao, Du Zeyu, YangJiang. Study on Interfacial Bonding State of Ag-Cu in Cold Pressure Welding[J]. Transactions of Tianjin University,2003,9(3):p.219-222
    [150]Zhou Y, North T H. Numerical model for the effect of grain boundaries on the total amount diffusion[J]. Acta Metall,1994,42(3):p.1025-1029
    [151]胡秀莲,李世春Zn-Al合金铸态共晶结构的研究[J].材料工程.1997(11):p.20-22
    [152]韩彬,李世春.A1含量对Zn-Al合金超塑性的影响[J].石油大学学报(自然科学版).2002,26(3):p.78-80
    [153]佟建国,高晓丹,曲海涛,邹十文,李殊霞,任学平25Cr5MoA钢/Q235钢固-液复合轴界面Cr元素扩散行为[J].北京科技大学学报.2009,31(4):p.451-458
    (154]麻田宏,小原嗣朗.金属材料表面工学[M].日冕出版社.1968:p.258-259
    [155]曹永泽.钢铝轧制复合界面化合物的抑制机理研究[D].东北大学硕士学位论文.2009:p.13-16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700