用户名: 密码: 验证码:
苏云金芽胞杆菌bel基因生物学功能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以苏云金芽胞杆菌(Bacillus thuringiensis)菌株YBT-1520的bel(Bacillusenhancin like)基因为研究对象,对苏云金芽胞杆菌的Bel蛋白的增效活性和增效机制做了深入研究,从而进一步认识bel基因的生物学功能。主要研究结果如下:
     1.BMB171中bel基因的敲除和生物活性的测定
     利用同源重组的方法敲除BMB171菌株中的bel蛋白基因,得到了突变株BMB1084。将表达杀虫晶体蛋白基因cry1Ac的重组质粒pBMB1086转入菌株BMB171和突变株BMB1084,分别构建重组菌BMB1087和BMB1088。用两个重组菌的胞晶混合物分别感染棉铃虫一龄幼虫,结果重组菌BMB1087和BMB1088的LC_(50)分别为0.46mL/mL和2.73mL/mL,增效倍数为5.83,表明未敲除bel基因的Bt能提高Cry1Ac对棉铃虫幼虫的毒力。
     2.bel基因的大量表达和生物活性的测定
     从苏云金芽胞杆菌YBT-1520菌株中扩增出增效蛋白基因bel,以pGEX-6p-1为载体在大肠杆菌BL21中表达融合增效蛋白,通过亲和层析提纯到该融合增效蛋白,并测定其分子量为113KD。以棉铃虫为供试昆虫,测定Bel蛋白对杀虫晶体蛋白Cry1Ac杀虫的增效活性,结果显示当配比为Bel蛋白(0.8ug/mL)+Cry1Ac(3ug/mL)时,棉铃虫的死亡率为74.4%,比不添加Bel蛋白的34.2%增加120%,说明Bel蛋白能显著提高Cry1Ac对棉铃虫幼虫的毒力。同时以仅含Bel蛋白(1ug/mL)的饲料喂养棉铃虫,实验结果显示增效蛋白可以明显减缓棉铃虫幼虫体重的增长,说明该增效蛋白对棉铃虫生长有弱化作用。
     3.Bel蛋白增效机制的研究
     通过体内和体外Bel蛋白的增效机制的探讨,找出Bel蛋白增效机制。体内增效机制研究:将含Bel蛋白(1ug/mL)的饲料喂养5龄棉铃虫1.5天,提取棉铃虫围食膜(PM),通过扫描电镜的观察,发现喂食Bel蛋白的棉铃虫PM较薄并且有穿孔现象。这样加大了Cry1Ac穿过PM的量,通过增加感染量来增加了Cry1Ac和肠上皮细胞受体结合的量。体外增效机制研究(此结果由河北农业大学提供):用2ug/mL的Bel蛋白处理T.ni围食膜,SDS-PAGE后,以T.niⅡM抗体作为一抗,进行Western Blot检测。同时以T.ni的Enhancin蛋白处理T.ni围食膜作阳性对照,结果Bel蛋白可以体外降解T.ni的ⅡM。同样2ug/mL Bel蛋白体外处理HaⅡM86蛋白4小时后,SDS-PAGE后,以HaⅡM86抗体作为一抗,Western Blot检测。结果Bel蛋白可以体外降解棉铃虫肠粘蛋白HaⅡM86。
     4.高效杀虫的苏云金芽胞杆菌基因工程菌的构建
     利用了Bel蛋白的增效特性,构建出了一株高效杀虫的苏云金芽胞杆菌基因工程菌BMB171/pHT304/bel+cry1Ac。结果:导入了bel基因的工程菌BMB0187对棉铃虫的杀虫毒力明显比未导入bel基因的菌株BMB171/pHT304/cry1Ac强,而且相对增效倍数为3倍。
In this thesis,we reported the the biological function of bel from Bacillus thuringieusis YBT1520.The results were summarized as following:
     1.Construction of the bel knockout mutant of strain BMB171 and bioassay
     With the use of homologous recombination,the bel gene was knocked out in Bacillus thuringiensis BMB171,constructed the mutant BMB1084.Genetic complementary assay was also performed by expression the cry1Ac gene cloned in a modified Escherichia coli and Bacillus thuringiensis shuttle vector pHT304 in the strain BMB171 and BMB1084 respectively.Three days after inoculation,by the bioassay:the LC_(50) for BMB1087 and BMB1088 were 0.46 and 2.73 mL/mL respectively.The LC50 values of this mutant plus the cry1Ac insecticidal protein gene was about 5.8-fold higher when compared with the BMB171 strain.The result indicated that the Bel protein of Bacillus thuringiensis has a very significant enhancement on the toxicity of Bacillus thuringiensis to Helicoverpa armigera.
     2.Expression of Bel protein and bioassay
     The bel gene was cloned from Bacillus thuringieusis YBT1520,the recombinant Bel with GST tag using pGEX-6p-1 as vector was expressed in E.coil BL21. Purification of GST fusion protein was carried on with a BugBuster GST Bind Purification Kits.The molecular weight of GST fusion protein was measured through SDS-PAGE,it was about 113KDs.Taking Helicoverpa armige as tested insects,and synergistim of Bel to Cry1AC10 was deterimed by the bioassay.When purified Bel was mixed with Cry1Ac protein and fed to H.armigera larvae,3μg/mL Cry1Ac alone induced 34.2%mortality.Meanwhile the mortality reached about 74.4%when the same amount of Cry1Ac was mixed with 0.8μg/mL of Bel.The result confirms that Bel expressed in E.coil BL21 could strengthen the toxicity of crystal protein cry1Ac against the larvae of H.armiger.In the meantime,the larvae of H.armiger were fed with food containing Bel(1ug/mL).It was discovered that Bel can obviously decelerate the growth of H.armiger laver's weight.
     3.The synergistic mechanism of Bel protein
     To understand the action mechanisms of Bel protein during the Cry1Ac protein infection process,in vivo pathogenesis assays with fifth instar H.armigera larvae treated by Bel protein was conducted.The Scanning electron micrographs(SEM) observation showed that the PM of larvae fed artificial diet plus Bel was extremely thin,to the point of complete degradation in some cases and had a highly porous surface.These results demonstrated that Bel protein can destruct the PM of H. armigera in vivo,which is similar to the metalloprotease viral enhancin.In vitroⅡM degrading assay were conducted with purified Bel protein on H.armigera and T.ni. The PBS buffer and T.ni enhancin protein(En-Tn) were used as negative and positive control,respectively.Bel protein exhibited a degradation activity on PM in the midgut of T.ni andⅡM of H.a,which are similar to the function of viral enhancin protein (En-Tn).These results indicated that Bel protein has an ability to degrade H.armigeraⅡM.
     4.Construction of high insecticidal activities gene engineering strain of Bacillus thuringieusis
     Using the enhancin characteristic of Bel protein we constructed the high insecticidal activities gene engineering strain of Bacillus thuringieusis BMB171/pHT304/bel+cry1Ac.The result is:BMB171/pHT304/bel+cry1Ac has a very significant enhancement on the toxicity of Bacillus thuringiensis to Helicoverpa armigera when compared with the BMB171/pHT304/cry1Ac strain.The LC50 value was 3-fold higher.
引文
1.蔡秋月.围食膜因子的分子结构及其功能.广西轻工业,2007,6:12-13
    2.陈浩涛,潘雪义,袁哲明,谭济才.重组蛋白对棉铃虫的弱化作用.湖南农业大学学报,2003,129(4):308-310
    3.高博,邓柳红,易小平,肖苏生,张春发.昆虫杆状病毒杀虫剂研究与应用综述.现代农业科技,2008,8:66-67
    4.胡蓉,孟小林,徐进平等.棉铃虫颗粒体病毒增效蛋白基因2.6Kb片段的表达.中国病毒学,2001,16(4):364-368
    5.刘相国,杨恭,邱并生,张克勤,田波.棉铃虫颗粒体病毒增效蛋白基因5端截短片段的表达及增效活性测定.微生物学报,2001,41(2):167-172
    6.刘清术,刘前刚,陈海荣,兰时乐.生物农药的研究动态、趋势及前景展望.农药研究与应用,2007,11(1)
    7.李志广,伊隽,钟江.TnGV增强蛋白在AcMNPV中的表达和活性分析.中国病毒学,2002,17(4):326-330
    8.陆秀君,王勤英,李国勋.昆虫围食膜的研究进展.河北农业大学学报,2003,26:205-207
    9.欧洋,孟小林,徐进平.棉铃虫颗粒体病毒增效蛋白基因2.1KB片段在大肠杆菌中的表达.生物工程学报,2000,16(5):595-598
    10.彭建新,杨红,洪华珠.昆虫病毒增效蛋白研究进展.中国生物防治,2000,16(2):87-91
    11.萨姆布鲁克J,拉塞尔D W.分子克隆实验指南.第三版.(黄培堂等译).北京:科学出版社,2002
    12.沈鞠群,王锦举,喻子牛.苏云金杆菌制剂的标准化程序和方法.生物防治通报,1990,(增刊):12-168
    13.孙明,戴经元,罗曦霞,喻凌,刘子铎,喻子牛.对棉铃虫高毒力的苏云金芽胞杆菌YBT-1520菌株的特性.中国病毒学,1996,11:42-45
    14.王勤英,李国勋.昆虫围食膜的研究进展.河北农业大学学报,2003,26
    15.吴岚,孙明,喻子牛.利用苏云金芽胞杆菌转座子Tn4430构建含crylAc10基因的解离载体.微生物学报,2000,40.264-269
    16.谢玉英,李绪友.昆虫围食膜的研究概况.湖北生态工程职业技术学院学报,2007,5(2):10-14
    17.徐宝梁,刘小侠,宋丽,张青文.昆虫对Bt蛋白的抗性机理和抗性治理.第五届生物多样性保护与利用高新科学技术国际研讨会,2009,565-569
    18.姚江等.苏云金芽胞杆菌Ly30菌株crylAc10基因的克隆及表达.农业生物技术学报,2003,11(5):516-519
    19.喻子牛.苏云金杆菌.北京:科学出版社,1990
    20.喻子牛.苏云金芽胞杆菌杀虫晶体蛋白及其基因的研究与应用.见:李阜棣,李学垣,刘武定,喻子牛主编,生命科学和土壤学中几个领域的研究进展.北京:农业出版社,1993,170-179
    21.喻子牛,张杰,庞义,孙明,李林,丁之铨,刘子铎,余建秀,宋福平.重组杀虫细菌.见:黄大昉主编,农业微生物基因工程.北京:科学出版社.2001:175-270
    22.张严峻,谭军,林玉清.棉铃虫围食膜的结构和组成.浙江农业学报,2000,12(3):140-143
    23.邹寰,喻子牛,孙明.蜡状芽胞杆菌群16SrDNA分析.华中农业大学学报,2008,27(4):478-482
    24.Adang MJ and Spence KD.Permeability of the peritrophic membrane of the Douglas fir tussock moth(Orgyia pseudotsugata).Comparative Biochemical Physiology,1983,75:233-238
    25.Agaisse H and Lereclus D.How does Bacillus thuringiensis produce so much insecticidal crystal protein? J Bacteriol,1995, 177: 6027-6032
    
    26. Aronson A. Sporulation and 8-endotoxin synthesis by Bacillus thuringiensis. Cell Mol Life Sci, 2002,59: 417-425.
    
    27. Aronson AI, Beckman W and Dunn P. Bacillus thuringiensis and related insect pathogens. Microbiol Rev, 1986, 50: 1-24
    
    28. Battisti L, Green BD and Thorne CB. Mating system for transfer of plasmids among Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis. J Bacteriol,1985,162: 543-550
    
    29. Baum JA, Johnson TB and Carlton BC. Bacillus thuringiensis natural and recombinant bioinsecticide products, p.189-209. In F. R.Hall and J. J. Menn (ed.),Methods in Biotechnology. Vol 5 Biopesticides: Use and Delivery. Humana Press,N. J. Totowa, USA. 1999
    
    30. Bavykin SG, Mikhailovieh VM, ZakhayewVM, LysovYR, Kelly JJ, Alferov OS, Gavin IM, Kukhtin AV, Jackman J, Stahl DA, Chandler D and Mirzabekov AD.Discrimination of Bacillus anthraeis and closely related microorganisms by analysis of 16s and 23s rRNA with oligonueleotide microarray.Chem Biol Interact,2007
    
    31. Bourgouin C, Delecluse A and de la Terre F. Transfer of the toxin protein genes of Bacillus sphaericus into Bacillus thuringiensis subsp. israelensis and their expression. Appl Enviro Microbiol, 1990, 56:340-344
    
    32. Bischoff DS, Slavicek J M. MolecuLar analysis of an Enhancin gene in the Lymantria dispar nuclear polyhedrosis virus. J Virol, 1997, 71:8133-8140
    
    33. Bischoff DS and Slavicek JM. Overexpression of Lymantria dispar mNPV Enhancin gene. Abstract from Soci for Invertebr Pathol 30th Annu meeting.Canada. 1997b
    
    34. Bradford MM. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem, 1976,72:248-254
    
    35. Bravo A, Gomez I, Conde J, Munoz-Garay C, Sanchez J, Miranda R, Zhuang M,Gill SS, Soberon M. Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains. Biochim Biophys Acta, 2004,1667:38-46
    
    36. Bravo A, Sarjeet S. Gill and Soberon M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control.Toxicon,2007,49:432-435
    
    37. Brandt CR, Adang MJ and Spence KD.The peritrophic membrane:ultrastructural analysis and function as a mechanical barrier to microbial infection in Orgyia pseudotsugata. Journal of Invertebrate Pathology, 1978, 32:12-24
    
    38. Corsaro B G, Guzen M R and Wang P. Baculovirus Enhancing proteins as determinants of viral pathogenesis. In: Parasites and pathogens of insects, Vol 2.Pathogens. Academic Press, 1993,127-145
    
    39. Daffonchio D , Cherif A and Borin S. Homoduplex and heteroduplex Polymorphisms of the amplified ribosomal 16S—23S intenal transcribed spacers describe genetic relationships in the"Bacillus cereus group". Appl Environ Microbiol, 2000,66:5460-5468
    
    40. Derkser ACG and Granados RR. Alternation of a lepidoptera peritrophic membrane by baculoviruses and enhancement of viral infectiviry. Virol, 1988,167:242-250
    
    41. Dykstra, M.J. Biological Electron Microscopy: Theory, Techniques and Troubleshooting. Plenum Press, New York and London, 1992
    
    42. Felton GW and Summers CB. Antioxident systems ininsects. Arch. Insect Biochem. Physiol,1995,29:187-197
    
    43. Galloway C S, Wang P, Winstanley D and Jones I M. Comparison of the bacterial enhancin-like proteins from Yersinia and Bacillus spp. with a baculovirus enhancin. J Invertebr Pathol, 2005, 90:134-137
    
    44. Gunning R V, Dang HT, Kemp FC, Nicholson I C and G. D. Moores. New resistance mechanism in Helicoverpa armigera threatens transgenic crops expressing Bacillus thuringiensis Cry1Ac toxin. Appl Environ Microbiol, 2005,71:2558-2563
    
    45. Hajaij-Ellouze MS, Fedhila D, Lereclus and Nielsen-LeRoux C. The enhancin-like metalloprotease from the Bacillus cereus group is regulated by the pleiotropic transcriptional activator PlcR but is not essential for larvicidal activity.FEMS Microbiol Lett, 2006, 260:9-16
    
    46. Hashimoto Y, Corsaro BG. and Granados RR. Location and nucleotide sequence of the gene encoding the viral enhancing factor of the Trichoplusia ni granulosis virus. J Gen Virol, 1991, 72: 2645-2651
    
    47. Hayakawa T, Ko R and Okano K. Sequence analysis of the Xestia c-nigrum granulovirus genome. Virology, 1999,262:277 -297
    
    48. Heckel DG, Gahan LC and Gould F. Identification of a linkage toup with a major effect on resistance to Bacillus thuringiensis CryAc endotoxin in the tobacco budworm (Lepidoptera: Noctuidae). J Econ Entomol, 1997, 90 (1): 75-86
    
    49. Helgason E, Okstad OA, Caugant DA, Johansen HA, Fouet A, Mock M, Hegna I and Kolsto.Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis-one species on the basis of genetic evidence.Appl Environ Microbiol, 2000,66(6):2627-30
    
    50. Hilder VA, Gatehouse AMR, Sheerman SE, Barrer RF and Boulter D. A novel 4 mechanism of insect resistance engineered into tobacco. Nature, 1987,330:160-163
    
    51. Hukuhara T and Wijonarko A . Enhanced fusion of a nucleopolyhedrovirus with cultured cells by a virus enhancing factor from an entomopoxvirus. J Invertebr Pathol, 2001, 77:62-67
    52. Hunter EE. Practical Electron Microscopy. Praeger Publishers, New York, 1984
    
    53. Ivanova N, Sorokin A, Anderson I, Galleron N, Candelon B, Kapatral V,Bhattacharyya A, Reznik G., Mikhailova N, Lapidus A, Chu L, Mazur M,Goltsman E, Larsen N, D'Souza M, alunas TW, Grechkin Y, Pusch G., Haselkorn R, Fonstein M, Ehrlich SD, Overbeek R and Kyrpides N. Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature, 2003,423:87-91
    
    54. Jiang W and Bond JS . Famillies of metalloendopeptidases and their relationships. FEBS Lett, 1992, 312:110-114
    
    55. Kalman S, Kiehne KL, Cooper N, Reynoso MS and Yamamoto T. Enhanced production of insecticidal proteins in Bacillus thuringiensis strains carrying an additional crystal protein gene in their chromosomes. Appl Environ Microbiol,1995,61:3063-3068
    
    56. Lepore LS, Roelvink PR and Granados RR. Enhancin, the granuLosis virus protein that facilitates nucleopolyhedrovirus (NPV) infection, is a metalloprotease.J Invertebr Pathol, 1996,68:131-140
    
    57. Lehane M J. Peritrophic matrix structure and function. Annu Rev Entomol, 1997,42: 525-550
    
    58. Li Q, Li L, Moore K, Donly C, Theilmann DA and Erlandson M.Characterization of Mamestra configurata nucleopolyhedrovirus enhancin and its functional analysis via expression in an Autographa californica M nucleopolyhedrovirus recombinant. J Gen Virol, 2003, 84:123-132
    
    59. Li XQ, Tan A, Voegtline M, Bekele S, Chen CS and Aroian RV. Expression of Cry5B protein from Bacillus thuringiensis in plant roots confers resistance to root-knot nematode. Biol Control, 2008,1:97-102
    
    60. Li L, Yang C, Liu Z, Li F and Yu ZN. Screening of acrystalliferous mutants from Bacillus thuringiensis and their transformation properties. Acta Microbiol Sinica, 2000, 5: 395-399
    
    61. Luo K, Banks D and Adang MJ. Toxicity, binding, and permeability analyses of four Bacillus thuringiensis Cryl delta-endotoxins using brush border membrane vesicles of Spodoptera exigua and Spodoptera frugiperda. Appl Environ Microbiol, 1999, 65:457-464
    
    62. Margulisn L, Jorgensen JZ, Dolan S, Kolchinsky R, Rainey FA and Lo SC. The Arthromitus stage of Bacillus cereus: intestinal symbionts of animals. Proc Natl Acad Sci USA, 1998, 95:1236-1241
    
    63. Mock M and Fouet A. Anthrax.Annu Rev Microbiol, 2001, 55:647-71
    
    64. Ochman Howard, Nancy A and Moran.Genes lost and Genes Found: Evolution of Bacterial Pathogenesis and Symbiosis.Science 4th Aug 2000
    
    65. Pardo-Lopez L, Munoz-Garay C, Porta H, Rodriguez-Almazan C, Soberon M, Bravo A.Strategies to improve the insecticidal activity of Cry toxins from Bacillus thuringiensis. Peptides, 2009, 30(3):589-95
    
    66. Parkhill J, Wren BW, Thomson NR, Titball RW, Holden MT, Prentice MB,Sebaihia M, James KD, Churcher C, Mungall KL, Baker S, Basham D, Bentley SD, Brooks K, Cerdeno-Tarraga AM, Chillingworth T, Cronin A, Davies RM,Davis P, Dougan G, Feltwell T, Hamlin N, Holroyd S, Jagels K, Karlyshev AV,Leather S, Moule S, Oyston PC, Quail M, Rutherford K, Simmonds M, Skelton J,Stevens K, Whitehead S and Barrell BG.. Genome sequence of Yersinia pestis,the causative agent of plague. Nature, 2001,413: 523-527
    
    67. Peng J X, Zhong J and Granados R R. A baculovirus enhancin alters the permeability of a mucosal midgut peritrophic matrix from lepidopteran larvae. J . Insect Physiol, 1999,45:159-166
    
    68. Popham HJ, Bischoff DS and Slavicek JM. Both Lymantria dispar nucleopolyhedrovirus enhancin genes contribute to viral potency. J Virol, 2001,75:8639-8648
    69.Read TD,Peterson SN,Tourasse N,Baillie LW,Paulsen IT,Nelson KE,Tettelin H,Fours DE,Eisen.JA,Gill SR,Holtzapple E.K,Okstad OA,Helgason E,Rilstone J,Wu M,Kolonay JF,Beanan M J,Dodson RJ,Brinkac LM,Gwinn M,DeBoy RT,Madpu R,Daugherty SC,Durkin AS,Haft DH,Nelson WC,Peterson JD,Pop M,Khouri HM,Radune D,Benton JL,Mahamoud Y,Jiang L,Hance IR,Weidman JF,Berry KJ,Plaut RD,Wolf AM,Watkins KL,Nierman WC,Hazen A,Cline R,Redmond C,Thwaite JE,White O,Salzberg SL,Thomason B,Friedlande AM,Koehler TM,Hanna PC,Kolsto AB and Fraser CM.The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria.Nature,2003,423:81-86
    70.Regev A,Keller M and Strizhov N.Synergistic activity of a Bacillus thuringiensis delta-endotoxin and a bacterial endochitinase against Spodoptera littoralis larvae.Appl Environ Microbiol,1996,62:3581-3586
    71.Richards AG and Richrds PA.The pertrophic membrane of insects.Ann Rev Entomol,1997,22:219-240
    72.Roelvink P W,Corsaro B G,Granados R R.Characterization of the helicoverpa amigern and Pseudaletion unipuncta.J Gen Virol,1995,76:2693-2705
    73.Santos CD and Terra WR.Distribution and characterization of oligomeric digestive enzymes from Erinnyis ello larvae and inferences concerning secretory mechanisms and the permeability of the peritrophic membrane.Insect Biochemistry,1986,16:691-700
    74.Schnepf E,Crickmore N,Van Rie J,Lereclus D,Baum J,Feitelson J,Zeigler D R,Dean D H.Bacillus thuringiensis and its pesticidal crystal proteins.Microbiol Mol Biol Rev,1998,62:775-806
    75.Slavicek JM and Popham HJ.The Lymantria dispar nucleopolyhedrovirus enhancins are components of occlusion-derived virus.J Virol,2005,79:10578-10588
    76. Tanada Y. Synergism between two viruses of the armyworm, pseudaletia unipuncta (Haworth) (Lepidoptera; Noctuidac). J Invertebr Pathol, 1959,1:215-231
    
    77. Tanada Y, Inoue H, Hess RT and Omi EM. Site of action of a synergistic factor of a granulosis virus of the armyworm,Pseudaletia unipuncta. J Invertebr Pathol,1980, 35:249-255
    
    78. Tanada Y, Hess RT and Omi EM.Localization of a synergistic factor of a granulosis virus by its esterase activity in the larvae midgut of the armyworm,Pseudaletia unipuncta. Microbio, 1983, 37:87-93
    
    79. Tellam RL. The peritrophic matrix, the biology of the insect midgut. London:Chapman and Hall, 1996, 186-114
    
    80. Tellam RL, Wiffels G and Willadsen P. Peritrophic matrix proteins. Insect Biochem Mol Biol, 1999,29:87-101
    
    81. Tellam RL, Vuocolo T, Eisemann CH, Briscoe S, Riding G, Elvin C,Pearson R. Identification of an immuno-protective mucin-like protein,peritrophin-55, from the peritrophic matrix of Lucilia cuprina larvae. Insect Biochemistry and Molecular Biology, 2003, 33: 239
    
    82. Thrnbull PC. Definitive identification of Bacillus anthracis a review.J Appl Microbiol, 1999, 87:237-40
    
    83. Wang P and Granados RR. An intestinal mucin is the target for a baculovirus enhancin. Proc Natl Acad Sci USA, 1997a, 94:6977-6982
    
    84. Wang P and Granados RR.Molecular cloning and sequencing of novel invertebrate intestinal mucin.J.Biol.Chem, 1997b, 272:16663 -16669
    
    85. Wang P and Granados RR. Observations on the presence of the peritrophic membrane in larval Trichoplusia ni and its role in limiting baculovirus infection.J Invertebr Pathol, 1998, 72:57 -62
    86. Wang P and Granados RR. Molecular structure of the peritrophic membrane (PM): identification of potential PM target sites for insect control. Arch Insect Biochem Physiol, 2001,47:110-118
    
    87. Wang P, Hammer Da and Granados RR. Interaction of Trichoplusia ni granuLosis virus encoded Enhancin with the midgut epithelium and peritropic membrance of four lipidopteran insects. J Gen Virol, 1994, 75(8): 1961-1967
    
    88. Xu JH and Hukuhara T. Enhanced infection of a nuclear polyhedrosis virus in larvae of the armyworm, Pseudaletia separata, by a factor in the spheroids of an entomopoxvirus. J Invertebr Pathol, 1992,60:259-264
    
    89. Yamamoto T and Tanada Y. Phospholipid, an enhancing component in the synergistic factor of a granulosis virus of the armyworm, Pseudaletia unipuncta. J Invertebr Pathol, 1978, 31:48-56
    
    90. Yamamoto T and Tanada Y. Physiochemical properties and location of capsule components, in particular the synergistic factor, in the occlusion body of a granulosis virus of the armyworm, Pseudaletia unipuncta. Virology, 1980,107:434-440
    
    91. Zhu Y, Hukuhara T and Tamura K. Location of a synergistic factor in the capsule of a granulosis virus of the armyworm, Pseudaletia unipuncta. J Invertebr Pathol, 1989,54:49-56

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700