用户名: 密码: 验证码:
Caveolin-3在病毒性心肌炎小鼠中的作用及银杏叶提取物干预的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
病毒性心肌炎(viral myocarditis,VMC)是小儿最常见心血管系统疾病,病情轻重不一,多数患儿预后良好,部分患儿可发展为扩张型心肌病、致残性心律失常。VMC的发病机制尚不明确,涉及病毒的直接损伤、免疫机制、细胞凋亡、心肌纤维化、生化机制等,免疫机制一直以来是研究的热点。小凹(caveolae)是定位于细胞质膜上的膜结构,可从细胞质膜上脱落下来形成囊泡,把细胞外的生物活性分子通过吞饮作用向胞内转移、参与多种信号转导过程。小凹蛋白-3(Caveolin-3)主要表达在心脏,骨骼和平滑肌的肌细胞中。研究表明, TGF-β1及其下游蛋白smad3构成的信号通路在心肌纤维化的发生中具有重要作用;Caveolin参与冠心病、心肌病、糖尿病大血管病变等多种疾病的发展过程。在病毒性心肌炎发生机制中,Caveolin-3的作用以及Caveolin-3是否可调控TGF-β1/smad3信号通路的表达目前尚未见报道。银杏叶提取物具有广泛的药理作用,如具有改善毛细血管的通透性、扩张冠状动脉、改善心肌血液循环、降低心肌细胞耗氧量等多种功能,临床已用于心血管疾病、肾病综合征、糖尿病、老年痴呆等心脑血管疾病的预防和治疗。
     本研究用CVB3感染大鼠原代心肌细胞,同时加入银杏叶提取物,检测银杏叶提取物对大鼠心肌细胞的保护作用及毒性作用,同时通过western-blot、免疫组化方法检测大鼠心肌细胞内Cav-3、TGF-β1、smad3蛋白表达量变化。另外,通过CVB3感染Balb/C小鼠建立病毒性心肌炎小鼠模型,通过HE染色观察小鼠心肌病理变化,通过Masson染色观察各组小鼠心肌纤维化程度;然后分别通过RT-PCR、western-blot、免疫组化方法检测小鼠心肌Cav-3、TGF-β1、smad3蛋白表达量及mRNA变化。体内、体外实验结果显示,Cav-3、TGF-β1及smad3蛋白在病毒感染后表达增加,银杏叶提取物能够改善小鼠心肌病理变化,降低心肌纤维化程度,银杏叶提取物是通过下调Cav-3、TGF-β1及其下游蛋白smad3的表达,以实现治疗病毒性心肌炎的作用,其治疗效果与参麦注射液相当,为临床应用银杏叶提取物治疗VMC提供了理论和实验依据。
     本研究创新点:(1)Cav-3、TGF-β1及smad3蛋白在病毒性心肌炎中的作用少见报道,本研究显示其在病毒性心肌炎发病中具有一定的作用;(2)本研究探讨了银杏提取物对病毒性心肌炎中的Cav-3、TGF-β1和smad3蛋白表达的影响,及其对病毒性心肌炎的治疗作用。
Viral myocarditis is one common cardiovascular disease of Clinical Pediatrics,which caused by Virus infection, can lead to cardiac muscle degeneration necrosis andits incidence rising rencently, the VMC has become one of the main causes ofunexplained sudden death among teenagers,further more the chronic VMC candevelop to dilated cardiomyopathy,and threaten children’s health severely. Thepathogenesis of VMC is not yet fully understood, which refers to myocardial directinjury caused by virus, inflammatory reaction and immune response in common. Asmyocardial fibrosis is one most important pathological process of VMC, and theCav-3-TGF-β1-smad3signal pathway plays an important role in fibrosis, so weinferred that this signal pathway also has an important role in VMC, if regulatedtheir expression, we may can cure VMC, and this signal pathway maybe a clinicalcare target of VMC.
     Extract of ginkgo biloba(EGB) has widely pharmacological value, such asantagonist of platelet active factor, scavenge harmful free radicals, anti-inflammatory,antianaphylaxis, and so on.EGB is used in the clinical treatment of cerebral vascular function obstacles andperipheral vascular disease, include alzheimer’s disease, parkinson’s disease, brainand retina ischemia, memory loss and intermittent limp, and so on. So we inferred thatEGB can antagonize CVB3infection, improve mice heart pathological changes, andEGB is expected to cure VMC.
     (1)Vitro experimental study of the role of Caveolin-3in viral myocarditis and the therapeutic efficacy of EGB
     Materials and methods: We get the fetal rats which are borned in24hours, andgained the cardiocytes, then exposed to the EGB, tested the activity of cardiocytesthrough MMT method to check toxicity of EGB, then infected cardiocytes with CVB3,and tested the activity of cardiocytes through MMT method to determine theconcentration of CVB3, then we infected cardiocytes with this concentration of CVB3,and added EGB, then tested the activity of cardiocytes through MMT method to checkthe protective activity of EGB, meanwhile we tested the expression of Cav-3、TGF-β1、smad3through western blot, immunohistochemical staining methods, thenwe can observe whether EGB can affect the expression of Cav-3,TGF-β1and smad3,so we can offer basis for viral myocarditis pathogenesis research and clinicaltreatment.
     Result: First we isolated and got cardiocytes successfully, each concentration ofEGB has no toxicity on cardiocytes, the cell survival rate of cardiocytes was morethan75%after exposed to EGB for24h and48h, so we selected1750μg/mL of EGBfor next research. When the concentration of EGB is reach to54μg/mL,it hasprotective effect against the CVB3infection, and the cell survival rate of cardiocyteswas more than75%, so we select selected1750μg/mL of EGB for next research. Afterdetected the expression of Cav-3、 TGF-β1、 smad3through western blot,immunohistochemical staining methods, we found that EGB can down regulate theexpression of this signal pathway, which was much lower than virus model group withstatistically significant difference, P<0.05.
     Conclusions: EGB has no toxicity on cardiocytes, but has protective effect against theCVB3infection, which through reducing the expression of Cav-3,TGF-β1,smad3, itsugges that EGB can down regulate the signal pathway to protect cardiocytes againstCVB3infection, which can offer basis for viral myocarditis pathogenesis research andclinical treatment.
     (2)Vivo experimental study of the role of Caveolin-3in viral myocarditis and thetherapeutic efficacy of EGB
     Materials and methods: We choose160pure bred Balb/c mice aged4weeks and divide their into control group statistically up (n=40) and VMC group (n=120)randomly, the VMC group: VMC model was established by injecting intraperitoneallyo.1mL102TCID50CVB3solution, while the control group was injected with0.1mLEngeal’s fluid excluding virus, then divided the120VMC modle into3groupsrandomly, they are VMC-control group (n=40), the EGB group (n=40), the shenmaiinjection group (n=40), the VMC-control group was injected intraperitoneally o.5mLphysiological saline for21days continuously since the day injected the CVB3, theEGB group and the shenmai injection group mice were injected with1ml/kg.d EGB,shenmai injection1ml/kg.d separately for21days continuously since the day injectedthe CVB3. In the day5,day10,day15,day21of injection, we take part of mice ineach group randomly, then killed by cutting necks, obtained the hearts to examinPathological integral and myocardial fibrosis stage of cardiomyocyte through HEstain and Masson stain, then examined the expression of Cav-3,TGF-β1,smad3byRT-PCR and immunohistochemical staining and western-blot separately. Then we canobserve whether EGB can effect Cav-3,TGF-β1and smad3signal pathway, so we canoffer basis for viral myocarditis pathogenesis research and clinical treatment.
     Result: The pathological integral of cardiomyocyte of VMC-control group miceincreased with the extension of time, which was much higher than the control group ateach stage, difference was significant, P<0.01. After injected with EGB, thepathological integral of EGB group mice decreased, and much lower thanVMC-control group, difference was significant, P<0.01, but difference of pathologicalintegral of EGB group and shenmai injection group was not significant,P>0.05. TheVMC-control group mice emerged collagen at day5, and myocardial cell gapincreases, the CVF increased with the extension of time, which was much higher thanthe control group at each stage, difference was significant, P<0.01. The CVF of EGBgroup and shenmai injection group also increased with the extension of time, but wasmuch lower than the VMC-control group at each stage, difference was significant,P<0.01, but the difference of pathological integral of EGB group and shenmaiinjection group was not significant,P>0.05. The expression of Cav-3、TGF-β1、smad3of VMC-control group mice was much higher than the control group at each stage detected by RT-PCR and immunohistochemical staining and western-blot, differencewas significant, P<0.01. After injected with EGB, the pathological integral of EGBgroup mice decreased, and much lower than VMC-control group, difference at eachstage was significant excepted at day5and day10, P<0.05,, but the expression ofthis signal pathway in EGB group and shenmai injection group has no difference,P>0.05.
     Conclusions: EGB can improve the pathological integral of VMC micecardiomyocyte, decrease CVF, and also improve VMC mice heart fouction. EGB canantagonize VMC through regulate the expression of Cav-3, TGF-β1and smad3signalpathway. EGB can be used for the clinical treatment of VMC.
引文
[1] Tavares PS, Rocon-Albuquerque R Jr, Leite-Moreira AF. Innate immune receptoractivation in viral myocarditis: pathophysiologic implications [J].RevPortCardio,l2010,29(1):57-78.
    [2] Kashimura T, Kodama M, Hotta Y, et al. Spatiotemporal changes of coxsackie-virus and adenovirus receptor in rat hearts during postnatal development and incultured cardiomyocytes of neonatal rat [J]. Virchows Arch,2004,444(3):283-292.
    [3] Lim BK, Xiong D, Dorner A, Youn TJ, et al. Coxsackievirus and adenovirusreceptor (CAR) mediates atrioventricular-node function and connexin45localiza-tion in the murine heart. J Clin Invest.2008,118(8):2758-70.
    [4]盖显英,张圳,孙景辉.结缔组织生长因子及其在心血管疾病中作用的研究进展.中国实验诊断学,2009,13(3):425-426.
    [5]李文娟,何学华,方亦兵.病毒性心肌炎不同时点血管内皮细胞生长因子mRNA的表达.临床儿科杂志,2009,27(5):429-432.
    [6]刘红英,刘丽春.单核细胞趋化蛋白-1在病毒性心肌炎小鼠心肌中表达及意义.临床儿科杂志,2010,28(12):1174-1177.
    [7]田琳,何春枝,孙捷,等.肿瘤坏死因子配体相关分子IA在病毒性心肌炎小鼠心肌中的表达及意义.临床儿科杂志2008,2(10):893-896.
    [8] Mengshol J A,Golden-Mason L,Arikawa T,et al. A Crucial Role for KupfferCell-Derived Galectin-9in Regulation of T Cell Immunity in Hepatitis C Infectio[J].PLOS One,2010,5(3):9504.
    [9] Bersinger NA,Frischknecht F,Taylor RN,et al.Basal and cytokine stimulatedproduction of epithelial neutrophil activating peptide-78(ENA-78) andinterleukin-8(IL-8) by cultured human endometrial epithelial and stromal cells[J]. Fertil Steril,2008,89(5Suppl):1530-1536.
    [10]严伟强,黄友敏,周永勤.病毒性心肌炎患儿血清内脂素和ENA-78水平的变化.中华全科医学,2011,9(7):1046-1047.
    [11] Snider P, Hinton RB, Moreno-Rodriguez RA, et al. Periostin is requiredfor maturation and extracellular matrix stabilization of noncardiomyocytelineages of the heart [J].Circ Res.2008,102(7):752-760.
    [12]吴岚,宋丽君,孙景辉.骨膜蛋白在实验性病毒性心肌炎小鼠的表达及意义.临床儿科杂志,2011,29(7):661-664.
    [13]王仲华,方永祥,李韧.巨噬细胞炎性蛋白-2在病毒性心肌炎小鼠中的表达及黄芪的干预作用.心血管康复医学杂志,2011,20(1):84-86.
    [14]李静,李新香,孙景辉.钠氢交换蛋白-1在心血管疾病中的作用析.ChineseGeneral Practice,2010,13(4):1364-1366.
    [15]罗永姣,刘红英.病毒性心肌炎患儿的T细胞免疫改变.南华大学学报医学版.2010,38(1):96-97.
    [16] Qing K, Weifeng W, Fan Y,et al. Distinct different expression of Th17and Th9cells in coxsackie virus B3-induced mice viral myocarditis. Virology Journal:2011;8:267.
    [17] Yuquan Xie, Ruizhen Chen, Xian Zhang etal,The role of Th17cells andregulatory T cells in Coxsackievirus B3-induced myocarditis;Virology:(2011):231-236.
    [18]李永伟,何志强,杨恒,等.病毒性心肌炎患者外周血单核细胞来源DCs的功能研究.中国免疫学杂志,2011年,27(10):1009-1014.
    [19] Bauer S, Pigisch S, Hangel D et al. Recognit ion of nucleic acid and nucleic acidanalogs by Toll-like recept ors7,8and9[J]. Immunobiology,2008;213(3-4):315-328.
    [20] E lgueta R, B enson M J, de Vries VC, et a l. Molecular mechanism and functionof CD40/CD40L engagement in the immune system [J]. Imm unol R ev,2009,229(1):152-172.
    [21] Ishinaga H, Jono H, Lim JH,, et a.l Synergistic induction of nuclear factor-kappaB by transforming growth factor-beta and tumour necrosis factor-alpha ismediated by protein kinase A-dependent RelA acetylation [J]. Biochem J,2009,417(2):583-591.
    [22]刘唐威,王秋雁,伍伟锋.内质网伴侣蛋白在小鼠病毒性心肌炎心肌细胞的表达及其与细胞凋亡的关系.广西医科大学学报,2005,22(2):157-159.
    [23] YASUKAWA H, YAJIMA T, DUPLAIN H, et al.The suppression of cytokinesignaling-1(SOCS1) is a novel therapeutic target for enterovirus-induced cardiacinjury [J].Clin Invest,2003,111:469-478.
    [24]仇慧仙,吴蓉洲,荣星,等.病毒性心肌炎小鼠细胞外信号调节激酶表达变化及其意义.温州医学院学报,2010,40(3):266-268.
    [25]王娟.基质金属蛋白酶及其组织抑制剂与病毒性心肌炎心肌纤维化.中国心血管杂志,2007,12(6):467-469.
    [26] Heymans S, Pauschinger M, de Palma A, et al. Inhibition of urokinase-typeplasminogen act ivator or matrixmetalloproteinases prevents cardiac injuryand dysfunction during viral myocard itis [J]. C irculation,2006,114(6):565-573.
    [27]盖显英,张圳,孙景辉.结缔组织生长因子及其在心血管疾病中作用的研究进展.中国实验诊断学,2009,13(3):425-426.
    [28] Huang D, Wang Y, Yang C, et al. Angiotensin II promotes poly(ADP-ribosyl)ation of c-Jun/c-Fos in cardiac fibroblasts[J]. J Mol Cell Cardiol,2008,46(1):25-32.
    [29] Song HP, Zhang L, Dang YM, et a l. The phosphatidylinositol3-kinase-Ak tpathway protects cardiomyocytes from ischaem c and hypoxic apoptosis viamitochondrial function [J]. Clin Exp Pharmacol Physiol,2010,37(5):598-604.
    [30] SiX, McManusBM, Zhang J, et, al. Pyrrolidine dithiocarbamatereducescoxsackie virusB3replication through inhibition of the ubiquity irprot-easome pathway[J].J Virol,2005,79(13):8014-8023.
    [31] Ahn J, Jun ES,LeeHS,etal.A small interferingRNA targeting cox-sackievirusB3protects permissiveHeLa cells from viral challenge[J].J Virol,2005,79(13):8620-8624.
    [32] WerkD,SchubertS,LindigV,et al.Developing an effective RNA interfe-rencestrategy against a plus strand RNA virus: Silencing of cox-sackievirusB3and itscognate coxsackievirus-adenovirus recep tor[J].BiolChem,2005,386(9):857-863.
    [33] Lim BK, Choi JH,Nam JH,et al.Virus receptor trap neutralizes cox-sackievirus inexperimental murine viral myocarditis[J].CardiovascRes,2006,71(3):517-526.
    [34]窦忠霞,孙景辉,魏征人.辛伐他汀对病毒性心肌炎小鼠心肌细胞L-型钙通道mRNA表达的影响[J].吉林大学学报:医学版,2009,35(1):78-81.
    [35]李岳春,任江华,曹茂银.卡维地洛对柯萨奇病毒B3病毒性心肌炎小鼠的疗效及其抗氧化应激作用[J].广东医学,2006,27(5):656-658.
    [36]罗陆一.《伤寒论》六经辨证论治病毒性心肌炎的探讨[J].中华中医药学刊,2011,29(5):26~30.
    [37]倪淑芳,张军平.“随其所得”理论与病毒性心肌炎病机探讨[J].中华中医药杂志,2010,25(6):844~845.
    [38]张勤勤,孙润广,李连启.Caveolae及其蛋白家族的生物学结构和功能的研究现状.北京生物医学工程,2011,30(2):215-220.
    [39] Zhao XX, Liu Y. Caveolin-1negativelyregulates TRAIL inducedapoptosis inhuman hepatocarcinoma cells [J].Biochemicaland Biophysical ResearchCommunication,2009,378:21-26.
    [40] Garg V, Sun W, Hu KL.Caveolin-3negatively regulates recombinant cardiacKATP channels[J].Biochemical and Biophysical ResearchCommunications,2009,385:472-477.
    [41] Zheng aY, Lim EJ.Role of caveolin-1in EGCG-mediated protection againstlinoleicacid induced end othelialcell activatio[J]. Journal of NutritionalBiochemistry,2009,20:202-209.
    [42] Rao X, Evans J, Chae H. CpG island shore methylation regulates caveolin-1expression in breast cancer. Oncogene.,2012,5:474.
    [43] Yang SL, Jin Y, Shen L. Effects of dachengqi decoction containing serum on theexpressions of caveolin-1, eNOS, and NF-kappaB in lipopolysaccharidestimulated human bronchial epithelial cells. Zhongguo Zhong Xi Yi Jie He ZaZhi.2012,32(8):1088-94
    [44] Yamazaki H, Oda M, Takahashi Y. Relation between Ultrastructural Localization,Changes of Caveolin-1, and Capillarization of Liver Sinusoidal Endothelial Cellsin Human Hepatitis C-Related Cirrhotic Liver. J Histochem Cytochem.2012,12.
    [45] Tahir SA, Kurosaka S, Tanimoto R. Serum caveolin-1, a biomarker of drugresponse and therapeutic target in prostate cancer models. Cancer BiolTher.2012,31:14(2).
    [46] Joshi B, Bastiani M, Strugnell SS. Phospho caveolin-1is a mechanotransducerthat induces caveola biogenesis via Egr1transcriptional regulation. J CellBiol.2012,29,199(3):425-35.
    [47] Stary CM, Tsutsumi YM, Patel PM. Caveolins: targeting pro-survival signalingin the heart and brain. Front Physiol,2012,3:393.
    [48] Ramirez CM,Gonzule ZM,DiazM.VDAC and ERα interaction in caveolae fromhuman cortexi saltered in Alzheimer’disease[J].Molecular and Cellular Neuroscience,2009,42:172-183.
    [49] BalijepalliRC,Kamp TJ. Caveolae, ionchannelsand cardiac arrhythmias[J].Progressin Biophysicsand Molecular Biology,2008,98:149-160.
    [50] PaniB,Singh BB.Lipid rafts/caveolae as microdomains of calcium signaling
    [J].CellCalcium,2009,45:625-633.
    [51] Chunhacha P, Chanvorachote P. Roles of caveolin-1on anoikis resistance in nonsmall cell lung cancer. Int J Physiol Pathophysiol Pharmacol,2012,4(3):149-55.
    [52] Lin S, Nadeau PE, Wang X, Mergia A. Caveolin-1reduces HIV-1infectivity byrestoration of HIV Nef mediated impairment of cholesterol efflux by apoA-I.Retrovirology,2012,15(9):85.
    [53] Lal H, Verma SK, Feng H. Caveolin and β1-integrin coordinate angiotensinogenexpression in cardiac myocytes,2012,09:131.
    [54] PaniB,Singh BB.Lipidrafts/caveolae as mincrodomains of calcium singnaling
    [J].Cellcalcium,2009,45:625-633.
    [55] Meng J, Zou Y, Hu C,et,al. Fluorofenidone attenuates bleomycin-inducedpulmonary inflammation and fibrosis in mice via restoring caveolin1expressionand inhibiting mitogen-activated protein kinase signaling pathway. Shock,2012,38(5):567-73.
    [56]王翀,梅盈洁,李莉.猪小窝蛋白1(caveolin-1)的基因结构及在各组织中的表达分析[J].中国科学C辑:生命科学,2008,38(7):619-625.
    [57] Rodriguez-Feo JA,Hellings WE,Moll FL,et a1.Caveolin-1influences vascularprotease activity and is a potential stabilizing factor in human atherosclemtiedisease[J].PLos One,2008,3:e2612.
    [58] C ohen AW, Park DS, W oodm an SE, et a l.Caveolin-1nullm ice develop cardiac hypertrophy with hyperactivation of p42/44MAP kinase in card-iac fibroblasts[J]Am J Physio C ell Physio,2003,284: C457-741.
    [59] Woodm an SE, Park DS, C ohen AW, et al.Caveolin-3knock-out m ice develop aprogressive cardiomyopathy and show hyperactivation of the p42/44MAPKcascade[J] J BiolChem,2002,277:38988-971.
    [60] K ikuch i T, Oka N, Koga A, et, al.Behavior of Caveolae and Caveolin-3duringthe development of myocyte hypertrophy[J].Cardiovasc Pharm aco,2005,45(3):204-101.
    [61] InselPA, H ead BP, O strom RS, et al.Caveolae and lipid rafts: G protein coupledreceptor signaling microdoains in cardiac myocytes[J].Ann NY Acad,2005,1047:166-721.
    [62]何清.小凹蛋白1在动脉粥样硬化中的作用.中国动脉硬化杂志,2006,14(6):547-549.
    [63]李瑛.小凹蛋白与心血管疾病.中国动脉硬化杂志,2007,15(1):71-73.
    [64] Lin ww,unYc.chang TY,et a1.Coveolin-3expression is associated with plaqueformation in hypereholesterolemic rabbits[J].J Histcchem Cytochem,2006,54:897—904.
    [65] Hu C,Ye RD, Dinauer MC.et a1.Neutrophil eaveolin expression contrihutes tomechanism of lung inflammation and injury.Am J Physiol Lung Cell MolPhysiol,2008,294:L178一186.
    [66] Marek Drab, Paul Verkade, Marlies Elger, et al. Loss of caveolae, vasculardysfunction, and pulmonary defects in caveolin-1gene-disrupted mice[J].Science,2001,294:2449-452.
    [67] Sellers SL, Trane AE, Bernatchez PN. Caveolin as a potential drug targetfor cardiovascular protection. Front Physiol,2012,3:280.
    [68] Ushio, FukaiM, Zuo L, et al. Abltyrosine kinase mediates reactive oxygenspecies and Caveolin dependent AT1receptor signaling invascular smoothmuscle: role in vascular hypertrophy[J]. Circ Res,2005,1497(8):829-361.
    [69] Zuo L, UshioFuka iM, Ik eda S, et al. Caveolin1isessential for activation ofRac1and NAD(P)Hoxidase after angiotensin II type1receptorst imulation invascular smooth muscle cells: role in redoxsignaling and vascular hypertrophy[J].Arterioscler Thromb Vasc Bio,2005,25(9):1824-301.
    [70] Frank PG, Lee H, Park DS, et al. Genetic ablation of Caveolin-1confer sprotection again st atherosclerosis[J]. Arterioscler Thromb Vasc Bio,2004,24:98-1051.
    [71] Wu KN, Queenan M,Brody JR. Loss of stromal caveolin-1expression inmalignant melanoma metastases predicts poor survival. Cell Cycle.2011,10(24):4250-5.
    [72] Zou H, Stoppani E, Volonte D. Caveolin-1, cellular senescence and age-relateddiseases. Mech Ageing Dev,2011,132(11-12):533-42.
    [73]王乾蕾,汤勇波,朱炳阳.小凹蛋白1-小凹在血管紧张素II诱导血管平滑肌细胞增殖信号转导通路中的作用.中国动脉硬化杂志,2004,12(3):353-345.
    [74] Rodriguez-Feo JA,Hellings WE,Moll FL,et a1.Caveolin-l influences vascularprotease activity and is a potential stabilizing factor in human atherosclemtiedisease[J].PLos One,2008,3:e2612.
    [75] Park DS, Woodman SE, William Schubert, et al.Caveolin-1/3double-knockoutmice are viable, but lact both muscle and nonmuscle caveolae, and develop asevere cardiomyopathic phenotype [J].Am J Pathol,2002,160:2207-217.
    [76] Cohen AW, Park DS, W oodm an SE, et a l. Caveolin-1null mice develop cardiac hypertrophy with hyperactivation of p42/44MAP kinase in card-iac fibrob lasts[J]Am J Physio Cell Physio,2003,284:457-741.
    [77] Cohen AW, Hnasko R, Wlliam Schubert, et al. Role of caveolae and caveolae inhealth and disease[J].Physiol Rev,2004,84:1441-479.
    [78] Sethi R, Manchanda S, Perepu RS. Differential expression of caveolin-1andcaveolin-3: potential marker for cardiac toxicity subsequent to chronic ozoneinhalation. Mol Cell Biochem,2012,369(1-2):9-15.
    [79] Woodman SE, Park DS, Cohen AW, et al. Caveolin-3knock-out mice developaprogressive cardiomyopathy and show hyperactivation of the p42/44MAPKcascade[J].BiolChem,2002,277:38988-971.
    [80] Kikuchi T, Oka N, Koga A, et al. Behavior of Caveolae and Caveolin-3duringthe development of myocyte hypertrophy[J]. Cardiovasc Pharmaco,2005,45(3):204-101.
    [81] Pfleger C, Ebeling G, Bl sche R. Detection of caveolin-3/caveolin-1/P2X7Rcomplexes in mice atrial cardiomyocytes in vivo and in vitro. Histochem CellBiol,2012,138(2):231-41.
    [82] Insel PA, Head BP, Ostrom RS, et a1.Caveolae and lipid rafts: G protein coupledreceptor signaling microdomains in cardiac myocytes[J].Ann NY A cadci,2005,1047:166-721.
    [83] Hoop CL, Sivanandam VN Structural characterization of the caveolin scaffoldingdomain in association with cholesterol-rich membranes. Biochemistry.,2012,51(1):90-9.
    [84]武明花,苏琦.小凹-小凹蛋白的生物学特性.国外医学(临床生物化学与检验学分册),2003,06.
    [85] Williams TM, Lisanti MP. The Caveolin genes: from cell biology tomedicine[J].Ann Med,2004,36(8):584-95.
    [86] Hlawaty H,Jacob kiP,Louedec L et a1.Leukotriene receptor antagonism and thepreventian of extracellular matrix degradation during atherosclerosisand in-tentstenosis[J].Artefioscler Tnromb Vase Bi0,2009,29:518—524.
    [87] Lk zhu, Diane Schwegler-Berry. Vince Castranova Internalization of Caveolin-1scaffolding domain facilitated by Antennapedia homeodomain attenuatesPAF-induced increase in microvessel permeability.2004(1).
    [88]勤慧,廖端芳.小凹蛋白胞内胆固醇转运复合物的矛盾运动与启示[J].中国医学理论与实践,2005,15(4):504-5.
    [89] Tsai EJ, Liu Y, Koitabashi N. Pressure-overload-induced subcellularrelocalization/oxidation of soluble guanylyl cyclase in the heart modulatesenzyme stimulation. Circ Res,2012,110(2):295-303.
    [90] Ciocca DR, Cuello-Carrión FD,Natoli AL. Absence of caveolin-1alters heatshock protein expression in spontaneous mammary tumors driven by Her-2/neuexpression. Histochem Cell Biol,2012,137(2):187-94.
    [91] Asghari P, Scriven DR, Hoskins J The structure and functioning of thecouplon in the mammalian cardiomyocyte. Protoplasma,2012,249(1):S31-8.
    [92] Doan ND,Nguyen TT, Létourneau M. Biochemical and pharmacologicalcharacterization of nuclear urotensin-II binding sites in rat heart. Br J Pharmacol,2012,166(1):243-57.
    [93] Murakami G, Watable T, Imamura T, et al. Cooperative inhibition of bonemorphogenetic protein signaling by Smurf and inhibitiory Smads[J].MolBiolCell,2003,14(7):2807-2817.
    [94] Karsdal MA, Hjorth P, Henriksen K, et al. Transforming growth factorbetecontrols human osteoblastogenesis through the p38MAPK and regulation ofRANK expression [J]. J Biol Chem,2003,278(45):44975-44987.
    [95] keuehi M,Tsutsui H,Shiomi T,el a1.Inhibition of TGF—beta signalingexacerbates early cardiac dysfunction but prevents late mmodeling afterinfarction.Caxdiovase Res,2004,64(3):526-535.
    [96] Fmntz S,Hu K,Adamek A,et a1.Transforming growth factor beta inhibitionincreases mortality and left ventricular dilatation aftermyocardialinfarction.Basic Res Cardiol,2008,103(5):485-492.
    [97] Aihara K,lkeda Y,Yogi S,et a1.Transforming Growth Factor-Blas a CommonTarget Molecule for Development of Cardiovascular Diseases, RenalInsufficiency and Metabolic Syndrome.CardiolRes Praot,2010,2011:175381.
    [98] Hermida N,Lopez B,Gonzalez A,el a1.A synthetic peptide from transforminggrowth lector-betal typeII receptor prevents myocardial fibrosis inspontaneously hypertensive:rats.CardiovascRes,2009,8l(3):60l-609.
    [99] Wang S,Wlikes MC,Leof EB,et a1.1matinib mesylate blocks anon-SmadTGF-beta pathway and reduces renal fibrogenesis in vivo.FASEB J,2005,19(1):l—11.
    [100] Villar AV,Cobo M.Llano M.et a1.Plasma levels of transforminggrowthfactor-betal reflect left ventrieular remodeling in aortic ate.nosis.PLns One,2009,4(12):e8476.
    [101] Gramley F,Lomnzen J,Koellensperger E, el a1.Atrial fibrosisand atrialfibrillation:the role of the TGF-β signaling pathway.hat J Cardiol,2010,143(3):405-413.
    [102] Zhu R, He L, Xu J, Zhang Y. Changes of TGF-β1and CTGF in rats withincreased blood flow-induced pulmonary artery hypertension Zhong Nan DaXue Xue Bao Yi Xue Ban,2012,37(10):1013-20.
    [103] Wang B, Hao J, Jones SC, et al. Decreased Smad7expression contributes tocardiac fibrosis in the infarctedrat heart [J]. Am J Physiol Heart Circ Physiol,2002,282(5): H1685-H1696
    [104]高连如, Teerlink J, Karliner J.慢性心力衰竭大鼠转化生长因子-β-Smads信号传导通路的调节异常[J].中华心血管病杂志,2001,29(3):177-180.
    [105] Xu J, Cui G, Esmailian F, et al. Atrial extracellular matrix remodeling and themaintenance of atrial fibrillation [J]. Circulation,2004,109(3):363-368.
    [106] Everett TH4th, Olgin JE. Atrial fibrosis and the mechanisms of atrialfibrillation [J]. Heart Rhythm,2007,4(3Supp l): S24-S27.
    [107] Verheule S, Sato T, Everett T, et al. Increased vulnerability to atrial fibrillationin transgenic mice with selective atrial fibrosis caused by overexp ression ofTGF-beta1[J]. Circ Res,2004,94(11):1458-1465.
    [108] LiX, Ma C, Dong J, et al. The fibrosis and atrial fibrillation: is thetransforming growth factor-beta1a candidate etiology of atrial fibrillation
    [J]. Med Hypot heses,2008,70(2):317-319.
    [109] MAJOR RT. The ginkgo the most ancient liv ing tree[J]. Science,1967,157(794):1270-1273.
    [110]刘颖.银杏叶制剂的药理作用及临床研究概述.中医药信息.2011,28(4):145-146.
    [111] Mahadevan S, Park Y. Multifaceted therapeutic benefits of Ginkgo bilobaL:chemistry,efficacy,safety,and uses[J].J Food Sic,2008,73(1):R14-R19.
    [112] Haruyama T, Nagata K Anti-influenza virus activity of Ginkgo biloba leafextracts. J Nat Med.2012,Nov,22.
    [113] Bikram S,Pushpinder Kr, Gopichand,et a1.Biology and chemistry of Ginkgobiloba[J].Fitoterapia,2008,79(6):401.
    [114]刘彬果,张新萍,刘岩.银杏叶中萜内酯类化合物的研究进展药学实践杂志,2011,29(6):421-425.
    [115]李春艳.浅析银杏叶的药理作用和功效.医学信息,2011,09:4529.
    [116] Van Beck TA.Chemical analysis of Ginkgo biloba leaves and extracts[J].JChmmatogr A,2002,967(1):21.
    [117]姚碧文.银杏叶药理研究进展[J].浙江中西医结合杂志,2005,15(3):391—392.
    [118]万英,罗朝淑.银杏叶提取物抗缺血再灌注损伤的研究进展.四川生理科学杂志,2005,27(3):124-126.
    [119]潘洪平.银杏叶制剂药理作用和临床应用研究进展.中国中药杂志.2005,30(2):93-96.
    [120] Clostre F.Protective effects of a ginkgo biloba extract (EGb761)onischemia-reperfusion injury [J].Therapie,2001,56(5):595.
    [121] Umegaki K, Shinozuka K, Watarai K. Ginkgo biloba extract attenuates thedevelopment of hypertension in deoxycorticosterone acetate-salt hypertensiverats. Clin Exp Pharmacol Physiol,2000,7(4):277-82.
    [122]谢卫红,田金满,崔晓红.银杏叶提取物的临床应用[J].现代中西医结合杂志,2004,13(15):2076.
    [123]李欣,廖新学,廖晓星,等.银杏叶提取物对动脉粥样硬化的防治作用研究〔J〕.中华急诊医学杂志,2004,13(9):609-611.
    [124] Galle J, Quaschnin g T, Seibold S, et al. Endothelial dysfunction and inflammation: what is th e link〔J〕.Kidney Int Su ppl,2003,(84): S45-49.
    [125]涂自智,肖卫民,刘梅冬,等.核转录因子-JB在热休克预处理抑制过氧化氢所致心肌细胞损伤中的作用〔J〕.中国危重病急救医学,2005,17(7):412-416.
    [126]林梅瑟,陈碧新,赵志光,等.姜黄素对动脉粥样硬化家兔核转录因子-JB的影响〔J〕.中国中西医结合急救杂志,2007,14(2):95-98.
    [127] Chen JW, Chen YH, Lin FY, et al. Ginkgo biloba extract inhibits tumornecrosis fact oralpha induced reactive oxygens pecies generation, trans cription fact or activation, and celladhesion molecule expression in human aorticen dothelial cell s〔J〕.Arterioscler Thromb Vasc Biol,2003,23(9):1559-1566.
    [128]蒋军广,谭伟丽,王丽华,等.银杏叶提取物对老年肺心病患者抗脂质过氧化损伤的影响〔J〕.中国危重病急救医学,2006,18(4):246-247.
    [129] Pierre SV, Lesnik P, Moreau M, et al The standardized Ginkgo biloba extractEgb-761protects vascular endothelium exposed tooxidized low densitylipoproteins[J]. CellMol Biol (Noisy-le-g rand),2008,54(suppl):OL1032-OL1042.
    [130]章红燕,桂兰,何福根.银杏叶总黄酮和银杏内酯对心脑血管作用的研究进展.河南临床医学,2008,10(4):543-544.
    [131] Qin Y, RuiYC, LiTJ, et al.Inhibitory effect of extract of Ginkgo biloba leaveson VEGF-induced hyperpermeability of bovine coronary endothelial ce lls invitro [J]. A cta Pharmacol Sin,2004,25(10):1306-1311.
    [132] Lunard i C, Bason C, Corrocher R, et al.Induction of endothelial cell damageby HCMV molecularm imicry [J]. T rends lmmuno,2005,26(1):19-24.
    [133]严丽荣,于焱,吴俊秀,等.银杏叶提取物对老年心血管病患者MDA、NO含量和SOD、GSH-px活性的影响[J].镇江医学院学报,2000,10(1):18-19.
    [134]张英,吴晓琴,俞卓裕.竹叶和银杏叶总黄酮含量及其抗自由基活性的比较研究.中国中药杂志.2002,27(4):334-337.
    [135]潘晓宏,傅国盛,单江,等.银杏叶提取物EGb761对离体大鼠心脏再灌注心律失常的影响[J].中国药理学通报,1998,4(3):283.
    [136]任洪佳.银杏叶注射液对心肌缺血再灌注模型心律失常的影响[J].中华实用医学,2004,6(13):102.
    [137] Watanabe CM H, Wolffram S, Ader P. The invivo neuro modulatory effects ofthe herbal medicine Gink go Biloba [J]. Biochemistry,2001,98(12):6577-6580.
    [138] Jin B, Wang D, Lu Y Structure and function of the tentpole in the reproductiveprocess of Ginkgo biloba L. Plant Signal Behav,2012,7(10).
    [139] Ming Liang, Zhang Yan, Zhang San-jun, et al. The effect of EGb onplateletadhesion and thrombosis [J]. Chinese Journal of clinical pharmacologyandtherapeutics,2000,5(3):221-223.
    [140] Wu YZ, Li SQ, Zu XG, et al. Ginkgo biloba extract improves coronaryarterycirculation in patients with coronary artery disease: contributionof plasmanitric oxide and endothelin-1[J]. Phytother Res,2008,22(6):734-739.
    [141] Tada Y, Kagota S, Kubota Y, et al. Long-term feeding of Ginkgo bilobaextractimpairs peripheral circulation and hepatic function inaged spontaneouslyhypertensive rats [J]. Biol Pharm Bull,2008,31(1):68-72.
    [142] Xu Y, Cui C, Pang C,et al. Restoration of impaired phosphorylation ofcyclicAMP response element-binding protein (CREB) by EGb761and itsconstituents in Abeta expressing neuroblastoma cells [J]. Eur J Neurosci,2007,26(10):2931-2939.
    [143]李玉山,薛慧,李田.杏叶茶对高脂饮食大鼠血脂、氧自由基影响.中国公共卫生,2005,2l(2):193-194.
    [144]何健.银杏叶的研究进展[J].中国药房,2011,22(15):1434-1435.
    [145]张晓丹,马灵芝,邵碧霞.银杏叶总黄酮的研究进展[J].中国心血管杂志,2006,11(5):385-387.
    [146]唐莉音,戴永勤,李子军.银杏达莫对心肌梗死后微循环影响的研究[J].重庆医学,2010,39(22):3011-3015.
    [147]金萍.银杏叶的药理功能及银杏叶胶囊临床治疗高脂血症的研究[J].中医中药,2012,4(下):50-51.
    [148]王琴,温其标.银杏种仁中活性成分及其药理作用的研究进展[J].现代食品科技,2005,22(1):164-167.
    [149]戴伟,陈学智,王小莉,等.银杏提取物及银杏黄酮调节大鼠血脂的效果研究.上海预防医学杂志,2003,15(6):2621.
    [150]王丽,石耀辉,战海英,等.银杏叶联合来适可治疗肾病综合征高脂血症临床观察.中医药信息,2002,199(4):33~34.
    [151]盛建国,李增利,顾香玉,等.银杏叶提取物对冠心病患者血脂、血小板活化因子水平的影响[J].华东船舶工业学院学报(自然科学版),2002,16(6):80.
    [152] Li Anlan, Shi Yongde, Britt aL, et al. Hemorheology and walk in gofperipheral acterial occlu sive diseases patents during treatment with Ginkgobiloa extract [J]. Act aPhar macological Sincia,1998,19(5):417.
    [153]耿秀芳.银杏叶制剂药理作用和临床应用研究进展.中国中药杂志,2005,30(2):93-96.
    [154]周兰兰,明亮,左从文,等.银杏叶提取物改善反复脑缺血再灌注小鼠血液流变学的作用[J].中国现代应用药学,2000,17(2):91-93.
    [155]林海燕,林坚,赵文彬.银杏叶口服液治疗高血压病30例疗效观察[J].浙江中医杂志,1998,9:429.
    [156] Yanagawa B, Spiller OB, Proctor DG,et al. Soluble recombinantcoxsac-kievirus and adenovirus receptorabrogates coxsakievirusb3-mediatedpancreatitis andmyocarditis in mice[J].J InfectDis,2004,189(8):1431-1439.
    [157]于小华,杜九中,张新刚,等.柯萨奇-腺病毒受体在小鼠病毒性心肌炎心肌表达及其与心肌损害关系[J].实用儿科临床杂志,2004,19(9):747-749.
    [158] Buskohl PR, Sun ML, Thompson RP. Correction: Serotonin PotentiatesTransforming Growth Factor-beta3Induced Biomechanical Remodeling inAvian Embryonic Atrioventricular Valves. PLoS One.,2012,7(10).
    [159] Feng Y, Zhang D, Zhang Y The mechanism of long-term low-dose asymmetricdimethylarginine inducing transforming growth factor-β expression inendothelial cells. Int J Mol Med,2013,31(1):67-74.
    [160] Villar AV, García R, Llano M BAMBI (BMP and activin membrane-boundinhibitor) protects the murine heart from pressure-overload biomechanicalstress by restraining TGF-β signaling. Biochim Biophys Acta,2012, Nov17:S0925-4439.
    [161] Nemir M, Metrich M, Plaisance I. The Notch pathway controls fibrotic andregenerative repair in the adult heart. Eur Heart J,2012,Nov19.
    [162] Vanhoutte D, van Almen GC, Van Aelst LN. Matricellular proteins and matrixmetalloproteinases mark the inflammatory and fibrotic response in humancardiac allograft rejection. Eur Heart J,2012,Nov8.
    [163]赵晓燕,苏金林,张作鹏,等. TGF-β/Smads信号通路与心血管疾病关系的研究进展[J].宁夏医科大学学报,2010,32(3):462-464.
    [164] VerrecchiaF, Mauviel A. Transforming growth factor-beta andfibrosis[J].World JGastroenterol,2007,13(22):3056-3062.
    [165] Jing L,Zhangjz,Zhao L,et a1.High-expression of transforming growthfactor betal and Phosphorylation of extracellularsis,lal—regulated proteinkinasein vascular smooth muscle cells from aorta and renal arterioles ofspontaneoushypertensionrats[J].ClinExp Hypertens.2007,29(2):107.
    [166]李龙英,肖谦.转化生长因子--β1/Smdas信号转导通路与糖尿病心肌病变[J].国外医学:老年医学分册.2007,28(3):118—121.
    [167] LiXA,EversonWV, SmartEJ.Caveolae,lipid rafts, and vascular disease[J].Trends Cardiovasc Med,2005;15(3):92-6.
    [168] WilliamsTM,LisantiMP. TheCaveolin genes: from cell biology tomedicine[J].AnnMed,2004;36(8):584-95.
    [169] Kikuchi T,Oka N, Koga A,et al.Behavior of Caveolae and Caveolin-3duringthe developmentofmyocyte hypertrophy[J].JCardiovascPharmaco,l2005;45(3):204-10.
    [170] Cohen AW,Park DS,WoodmanSE,et al.Caveolin-1null mice develop cardiachypertrophy with hyperactivation of p42/44MAPkinase in cardiacfibroblasts[J].Am JPhysiol Cell Physiol,2003;284:CA57-74.
    [171] KikuchiT,OkaN,KogaA,et al. Behavior of Caveolae and Caveolin-3during thedevelopment Of myocytehypertrophy[J]. JCardiovascPharmacol,2005;45(3):204-10.
    [172] Ushio—FukaiM,ZuoL,Ikeda S,et aL.cAbl tyrosine kinase mediates reactiveoxygenspecies and Caveolin-dependent ATl receptor signaling in vascularsmooth muscle:role in vascular hypertrophy[J].Circ Res,2005;1497(8):829-36.
    [173] Frank PG,Lisanti MP.Caveolin-l and Caveolae in atherosclerosis:differentialroles in Fatty streak formation andneointimal hyperplasia[J].CurrLipidol,2004;15(5):523-9.
    [174] Yamaguchi M,Niimi A,Matsumoto H,et al.Sputum levels of transforminggrowth factor-beta1in asthma: relation to clinical and computed tomographyfindings [J].Investig Aller-gol Clin Immunol,2008,18(3):202-206.
    [175] Le AV,Cho JY,Miller M,et al.Inhibition of allergen-in-duced airwayremodeling in Smad3-deficient mice[J].J Im-munol,2007,178(11):7310-7316.
    [176]严海东,李雪竹,李曼.银杏叶提取物对肾间质成纤维细胞中AGEs诱导的TGF-β1CTGF表达及氧化应激的抑制作用[J].中国实用内科杂志,2006,26(6):443-446.
    [177]郭晓莺,李青山.银杏叶制剂治疗心脑血管疾病研究进展[J].山西医药杂志,2008,37(8):737-738.
    [178] Vellas B, Coley N, Ousset PJ. Long-term use of standardised ginkgo bilobaextract for the prevention of Alzheimer's disease (GuidAge): a randomisedplacebo-controlled trial. Lancet Neurol,2012,11(10):851-9.
    [179]王桂英,高英梅,郝玉杰,等.银杏叶提取物药理作用的研究进展[J].河北中医,2009,31(6):944-946.
    [180]何云,韦小瑜.银杏制剂对肺纤维化的干预作用及可能机制[J].西南军医,2009,11(6):1015-1017.
    [181]周晓倩,何云,程明亮.银杏叶对大鼠肝纤维化的影响[J].解放军医学杂志,2008,33(9):1117-1119.
    [182]曹雪梅,李武修,高玉光,等. TGF-β1/Smad信号转导通路及其调控机制的研究进展[J].国际免疫学杂志,2008,31(6):482-486.
    [183]张勇,秦娜,于斌. TGF-β1/Smads信号转导通路的研究进展[J].广西医科大学学报,2009,26(1):155-157.
    [184]包剑锋,施军平,徐珊.肝纤维化大鼠转化生长因子β1/Smad蛋白的动态表达及意义[J].中华实验和临床病毒学杂志,2011,25(5):334-337.
    [185]黄岂平,陈国宝.肝纤维化中肌成纤维细胞的作用及TGF-β1-Smads通路的研究进展[J].生物技术通报,2009(11):16-20.
    [186]肖业臣,黄亚东,李校垄,等.肿瘤中TGF-β1-Smads信号通路的研究进展[J].肿瘤防治研究,2006,33(8):616-618.
    [187]王腾科,朱毅. Caveolae及其蛋白质组学研究进展[J].生理科学进展,2005,36(4):357-360.
    [188]沈林霞,项美香. Caveolae/Caveolin在心血管疾病中的研究进展[J].中国老年学杂志,2006,26:865-867.
    [189]姚荣妹,韩淑英,吴范武,等.中药治疗柯萨奇B病毒性心肌炎的研究进展[J].辽宁中医杂志,2011,38(1):187-189.
    [190]付爱双,赵雅宁,李琳,等.银杏叶提取物对哮喘大鼠气道重塑及转化生长因子-β1表达的影响[J].中国煤炭工业医学杂志,2010,13(7):1047-1048.
    [191]徐西振,郑常龙,凃玲,等.银杏叶提取物对转化生长因子β1诱导的人肾小管上皮细胞转分化的影响及其机制[J].中国病理生理杂志,2008,24(11):2235-2238.
    [192] Jang CH, Cho YB, Choi CH.Effect of ginkgo biloba extract on recovery afterfacial nerve crush injury in the rat. Int J Pediatr Otorhinolaryngol,2012,76(12):1823-6.
    [193] Deng Q, Deng YK, An YW. Protective effects of Ginkgo biloba extract on thelung injury of dogs undergoing hypothermic cardiopulmonary bypass. ZhongguoZhong Xi Yi Jie He Za Zhi,2012,32(7):951-4.
    [194] Mandery K, Balk B, Bujok K Inhibition of hepatic uptake transporters byflavonoids. Eur J Pharm Sci,2012,46(1-2):79-85.
    [195] Weng MZ, Zhou XP, Jia JG The hepatic protective mechanism of Ginkgo bilobaextract in rats with obstructive jaundice. Bosn J Basic Med Sci,2011,11(4):209-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700