用户名: 密码: 验证码:
能量回馈系统PWM整流器低电流谐波控制策略的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着环境危机的日益严重,可再生能源已成为现代社会发展的需求,在寻求新能源的同时,节能减排也显得至关重要。能量回馈型网侧变换器在节能中发挥了举足轻重的作用。随着电力电子设备容量的增大,它对电网的影响也日趋显著。因此,电力系统对能量回馈系统的运行提出了苛刻的要求,即能量回馈系统回馈的电能质量必须良好。目前国内能量回馈型变换器市场正在需要具有自主知识产权和核心技术,并且价格合理的实际产品。本文针对最基础、最实用的能量回馈型变换器进行较为系统和深入的理论和应用研究,为其实用化奠定较好的基础。
     本文研究的控制策略研究内容主要涉及以下两个方面:一是基于能量回馈系统回馈到电网的电流谐波控制策略,二是寻求抑制回馈能量时直流母线电压泵升,保证直流母线电压稳定的方法。
     在运用预测电流控制进行谐波控制时,文中首先基于预测电流原理,研究了静止坐标系和旋转坐标系预测电流控制策略,阐述了各自的机理和实现目标。文中总结了当前主流的预测电流控制算法,提出了一种改进的旋转坐标系下预测电流控制算法。该算法继承了传统预测电流控制算法低电流谐波的特点,又克服了传统预测电流控制算法存在电流稳态误差的缺点,实现了良好的动静态特性。
     为了保证系统稳定运行,对于直流侧电压闭环控制进行了建模和分析,增加了直流侧电流的采样,补偿负载突变时的电流。为了克服并网电流过冲问题,采用了一套直流母线电压软启动方案。
     在前几章设计和分析的基础上,建立了一台基于DSP控制的能量回馈系统实验样机,并进行了相关的实验研究。此外,在原有硬件平台上,针对实际应用问题,完善系统的保护,主要包括过流保护、过欠压保护和相序错误等。本文还设计了系统主程序软件,并解决了实际系统运行中易受到的抗干扰问题。
     通过研究和实验证明,本文所研究、提出的能量回馈系统控制策略、主电路设计和实际应用对策等关键技术的一些理论、设计和方法是行之有效的,能够指导能量回馈型网侧变换器的实际研发和生产。
With the worsening environmental crisis, renewable energy has become the demand of the development of modern society, while seeking new energy sources, energy conservation is crucial. Energy feedback grid-side converter has played a important role in energy conservation. With the increasing capacity of the power electronic devices, its impact on the power grid are becoming increasingly significant. Therefore, the energy feedback power system must meet the demanding requirements, that the feedback current quality of energy feedback systems must be good. With independent intellectual property rights, core technologies, and reasonably priced products are developed for the domestic energy feedback converter market. This paper do some systematic and deep research on the most fundamental and applied the energy feedback converter including related theoretical and application issues.
     The following two aspects of control strategies were mainly discussed in this paper. On the one hand, back to the grid current harmonics control strategy is sought based on energy feedback system. On the other hand, the method is sought to ensure the DC bus voltage stable when system feedback energy to the grid.
     Predictive current control strategy was introduced to control the current harmonics. Firstly, based on the principle of the predictive current control strategy, the mechanism and different targets of the predictive current control strategy in the stationary coordinate frame and the rotating coordinate frame was studied and outlined. This paper summarizes the mainstream current predictive current control algorithm and provide an improved predictive current control algorithm in the rotating coordinate frame. The algorithm inherits the characteristics of low current harmonics, also overcome the shortcomings of the traditional predictive current control algorithm, which include the current steady-state error, and finally achieve a good static and dynamic characteristics.
     The closed-loop control of DC voltage was modeled and analyzed in order to ensure the stable operation of the system by adding the sampling of the DC side current to compensation current error when the load mutation. Moreover a DC bus voltage soft-start program was developed to overcome the grid current overshoot.
     An experimental prototype of a DSP-based control of the energy feedback system was established and experimentally studied based on the design and analysis in the previous chapters. In addition, the protection measures was designed to improve of the system, including over-current protection, over-voltage protection and phase sequence error, based on the original hardware platform for the practical application. The main system software was accurately designed and solver the interference problem of the actual operation of the system.
     Through the research and experimental results, it can be verified that the key technologies for energy feedback system described in this paper, including control strategy, the main circuit design and the practical application method is viable and effective, which can guide the actual R & D and production of the energy feedback converter.
引文
[1]朱益波,陈国呈.具有滤波与能量回馈双功能的电力变换器研究[J].电力电子技术,1997,44(9):26-28.
    [2]并网逆变器输出电流滞环跟踪控制技术研究[J].中国电机工程学报,2006,26(5):108-112.
    [3]Qunying Yao, D.G Holmes. "A Simple, Novel Method for Variable-Hysteresis-Band Current Control of a Three Phase Inverter with Constant Switching Frequency[C]," IEEE Transactions Society Annual Meeting, Vol.2, pp.1122-1129, Oct 1993.
    [4]LUIGI MALESANA, PAOLO TENTI. "A Novel Hysteresis Control Method for Current-Controlled Voltage-Source PWM Inverters with Constant Modulation Frequency[J]," IEEE Transactions on Industrial Electronics, Vol.26, No.1, pp.88-92, February 1990.
    [5]TAKAO KAWABATA, TAKESHI MIYASHITA. "Dead Beat Control of Three Phase PWM Inverter[J]," IEEE Transactions on Power Electronics, vol.5, No.1, pp.21-28, January1990.
    [6]Luigi Malesani, Paolo Mattavelli and Simone Buso. "Robust Dead-Beat Current Control for PWM Rectifiers and Active Filters[J]," IEEE Transactions on Industry Application, vol.35, No.3, pp.613-620, May 1999.
    [7]Hua C. "Two-level switching pattern deadbeat DSP controlled PWM Inverter[J]. IEEE Transactions on Power Electronics. " vol.10. No.5:310-317,1995.
    [8]张凯,康勇,熊健,陈坚.基于状态反馈控制和重复控制的逆变电源研究[J].电力电子技术,2000(5):9-12.
    [9]Shih-Liang Jung, Lien-Hsun Ho. "DSP-Based digital control of a PWM inverter for sine wave tracking by optimal state feedback technique[C]," IEEE-PESC'94 Conf. Rec.,1:546-551,1994.
    [10]高军,黎辉,杨旭等.UPS逆变器数字化控制技术.电工技术杂志,第12期:6-9,2001.
    [11]Dawei Zhi, Lie Xu. "Direct Power Control of DFIG with Constant Switching Frequency and Improved Transient Performance[J]," IEEE Transactions on Energy Conversion, vol.22, No.1, pp.110-118, March 2007.
    [12]Marriusz Malinowski, Marek Jasinski and Marian P.K.azmierkowski. "Simple Direct Power Control of Three-Phase PWM Rectifier Using Space-Vector Modulation (DPC-SVM)[J]," IEEE Transactions on Industry Electronics, vol.51, No.2, pp.447-454, April 2004.
    [13]Marcelo Godoy Simoes, Bimal K.Bose and Ronald J.Spiegel. "Fuzzy logic based intelligent control of a variable speed cage machine wind generation system [J]," IEEE Transactions on Power Electronics, vol.12, No.1, pp.87-95, January 1997.
    [14]Mahmoud M.Neam, Fayez F.M.EI-Sousy. "Fuzzy logic based intelligent control of a variable speed cage machine wind generation system[J]," IEEE Transactions on Power Electronics, vol.12. No.1, pp.87-95, January 1997.
    [15]周其杰,徐建闽.神经网络控制系统的研究展望[J].控制理论与应用,1992,9(6):569-577.
    [16]达飞鹏,宋文忠.基于模糊神经网络滑模控制器的一类非线性系统自适应控制[J].中国电机工程学报.2002,22(5):78-81.
    [17]GB/T14549-1993.电能质量公用电网谐波.
    [18]IEEE-519.IEEE recommended practice and requirement for harmonic control in electric power systems 1992.
    [19]Tjomas S Key.Jih-Shen Lai IEEE and international standards impact on power electronic equipment design.
    [20]IEC 1000-3-2.Electromagnetic compatibility part 3:Limits section 2:limits for harmonic current emissions(equipment input current<16A per phase) 1995.
    [21]IEC 1000-3-4.Electromagnetic compatibility part 3:Limits section 4:limits for harmonic current emissions(equipment input current>16A per phase) 1995.
    [1]杨勇,阮毅,叶斌英,汤燕燕.三相并网逆变器无差拍电流预测控制方法[J].中国电机工程学报,2009,29(33):40-46.
    [2]S. Song, S. Kang, and N. Hahm, "Implementation and Control of Grid Connected AC-DC-AC Power Converter for Variable Speed Wind[C]," Conference Proceedings-IEEE Applied Power Electronics Conference and Exposition-APEC, vol.1, pp.154-158,2003.
    [3]G.H. Bode, P.C. Loh, M.J. Newman, and D.G. Holmes, "An Improved Robust Predictive Current Regulation Algorithm[J]," IEEE Transactions on Industry Application, vol.44, pp.1720-1733, December 2005.
    [4]于蓉蓉,魏学业,吴小进.一种改进型预测电流控制算法[J].电工技术学报,2010,25(7):100-107.
    [5]Bo Yang, Jiand Wu, Xiaodong Lu, and Xiangning He, "An improved DSP-based control strategy with predictive current control and fuzzy voltage control for grid-connected voltage source inverters[C]," 34th Annual Conference of IEEE Industrial Electronics, pp.2296-2300, January 2008.
    [6]Qingrong Zeng, Liuchen Chang, "An Advanced SVPWM-Based Predictive Current Controller for Three-Phase Inverters in Distributed Generation Systems[J]," IEEE Transactions on Industrial Electronics, Vol.55, No.3, pp.1235-1246, March 2008.
    [7]Z. Wang and L. Chang. "A DC voltage monitoring and control method for three-phase grid-connected wind turbine inverters[J]," IEEE Trans. Power Electron., vol.23, no.3, pp. 1118-1125, May 2008.
    [8]Zitao Wang, Liuchen Chang, "Dc-bus Voltage of Three-Phase AC/DC Converter Using Load Predictive Method[C]," IEEE Energy Conversion Congress and Exposition-ECCE,2009, pp. 968-972.
    [9]D. G. Holmes and D.A Martin, "Implementation of a direct digital predictive current controller for single and three Phase voltage source inverter[C]," In Conf. Ree.1996 Annual Meeting IEEE Industry Applications, pp.906-913.
    [10]V. Blasko, V. Kaura, "A New Mathematical Model and Control of A Three-phase AC-DC Voltage Source Converter[J]," IEEE Transactions on Power Electron, vol.12, No.1, pp.116-123, January 1997.
    [11]J. Rodriguez, J. Pontt, C. A. Silva, P. Correa, P. Lezana, P. Cortes, and U. Ammann. "Predictive current control of a voltage source inverter[J]," IEEE Trans. Ind. Electron., vol.54, no. 1, pp.495-503, Feb.2007.
    [12]Gun-Woo Moon, Suk-Ho Yoon, "Predictive current control of distribution static condenser (D-STATCON) for reactive power compensation in flexible AC transmission system (FACTS), [C]'" IEEE 29th Annual Power Electronics Specialists Conference, vol.1, pp.816-822, May 1998.
    [13]M. P. Kazmierkowski and L. Malesani, "Current control techniques for three-phase Voltage-Source PWM Converters:A survey[J]," IEEE Trans. Ind. Electron., vol.45, pp.691-703. Oct.1998.
    [14]Bin Yu and Liuchun Chang, "Improved Predictive Current Controlled PWM for Single-Phase Grid-Connected Voltage Source Inverters[C]," 36th IEEE Power Electronics Specialists Conference, vol.16, pp.231-236, June 2005.
    [15]Yun Fang, Yan Xing, "Design and Analysis of Three-Phase Reversible High-Power-Factor Correction Based on Predictive Current Controller[J]," IEEE Transactions on Industrial Electronics, vol.55, pp.4391-4397, December 2008.
    [16]王晓刚,谢运翔,帅定新.以网侧电流为补偿目标的有源电力滤波器预测电流控制[J].电气应用,2008,27(19):69-72.
    [17]Jose Rodriguez, Jorge Pontt, Cesar A.Silva, "Predictive Current Control of a Voltage Source Inverter," IEEE Transactions on Industrial Electronics, vol.54, No.1, pp.495-503, February 2007.
    [1]王兆安,李民,卓放.三相电路瞬时无功功率理论的研究[J].中国电工技术学报,1992(8):55-59.
    [2]刘进军,王兆安.瞬时无功功率与传统功率理论的统一数学描述及物理意义[J].中国电工技术学报,1998(12):6-12.
    [3]陈仲,徐德鸿.基于基波相位补偿策略的无延迟谐波检测[J].电力系统自动化,2005,Vol.29,No.10,pp.50-54.
    [4]陈仲,徐德鸿.一种基于DSP的高精度谐波检测改进方案设计[J].电力电子技术,2004,Vol.38,No.6,pp.53-55.
    [5]赵仁德.变速恒频双馈风力发电机交流励磁电源研究[D].杭州,浙江大学,2005.
    [6]刘其辉.变速恒频风力发电系统运行与控制研究[D].杭州,浙江大学,2005.
    [7]赵仁德,贺益康,刘其辉.提高PWM整流器抗负载干扰性能研究[J].电工技术学报,19(8):67-72.
    [8]Vaishnavi Deshpande, J.G.Chaudhari, P.P.Jagtap, Development and Simulation of SPWM and SVPWM Control Induction Motor Drive[C],. IEEE ICETET., pp 748-752,2009.12.
    [9]Garces Luis J., "Paramenter Adaption for the Speed-Controlled Static AC Drive with a Squirrel-Cage Induction Motor[J],," IEEE Transactions on Industry Application, Vol.2, pp:173-178,1980.
    [10]ZHAI Li, Li Hefei. Modeling and Simulating of SVPWM Control System of Induction Motor in Electric Vehicle[J], IEEE ICAL., pp:2026-2030. September 2008.
    [11]Maamoun, A.M.Soliman, A.M.Kheireldin. Space-Vector PWM Inverter Feeding a Small Induction Motor[J]. IEEE IEMECH., pp 1-4. Japan,2007.
    [12]Nandi S., Ahmed S., Toliyat H.A. "Detection of rotor slot and other eccentricity related harmonics in a three phase induction motor with different rotor cages[J],". IEEE Tansactions on Energy Conversion, Vol.16, pp.253-260. Sep 2001.
    [1]Datasheet of IGBT. http://www.semikron.com/internet/gecont/pdf/40.pdf.
    [2]L03SxxxD15系列霍尔电流传感器.
    [3]徐科军,张瀚,陈智渊.TMS320X281x DSP原理与应用[M].北京,北京航空航天大学出版社,2006.8.
    [4]TMS320F2810, TMS320F2811, TMS320F2812, TMS320C2810, TMS320C2811, TMS320C2812 Digital Signal Processors Data Manual SPRS174N.
    [5]王毓东.电机学[M].杭州,浙江大学出版社,1990.1.
    [6]许大中,贺益康.电机控制[M].杭州,浙江大学出版社,2002.7.
    [7]Takahashi Isao, Noguchi Toshihiko, "A New Quick-Response and High-Effciency Cotrol Strategy of an Induction Motor[J]," IEEE Transactions on Industry Application, Vol.2, pp:820-827, 1986.
    [8]洪乃刚.电力电子和电力拖动控制系统的MATLAB仿真[M].北京,机械工业出版社,2006.1.
    [9]贺益康.交流电机调速系统计算机仿真[M].杭州,浙江大学出版社,1993.
    [10]陈伯时.电力拖动自动控制系统[M].机械工业出版社,1997.
    [11]王兆安,杨君,刘进军.谐波抑制与无功功率补偿[M].北京:机械工业出版社,2002.
    [12]林渭勋.现代电力电子电路[M].杭州:浙江大学出版社,2002.
    [13]陈仲.并联有源电力滤波器实用关键技术的研究[M].杭州,浙江大学,2005.
    [14]黄俊.半导体变流技术[M].北京:机械工业出版社,1991.
    [15]吴峻,李圣怡.异步电机再生制动状态分析与控制[J].微电机,2002(3):60-61.
    [16]Nash. "Direct torque control, induction motor vector control without encoder[J]". IEEE Tansactions on Industry Application, pp.333-341, March 2009.
    [17]Kazmierkowski M.P, Kasprowicz A.B, "Improved direct torque and flux vector control of PWM inverter-fed induction motor drive[J]",IEEE Transaction on Industrial Electronics., Vol.42, pp.344-350,Aug 1995.
    [18]Abreu J, Sa J S, Prado C C, "Harmonic torques in three-phase induction motors supplied by nonsinusoidal voltages[C]",11th International Conference on Harmonics and Quality of Power., pp 652-657,2004.
    [19]谢丽蓉,王智勇.鼠笼异步电动机机械特性的研究[J].中国电机工程学报,2008,21(28):68-72.
    [20]周绍英,彭晓伟.一种新型的转差频率控制设计方法[J].电气传动,1991(2):2-7.
    [21]黄进,许大中.鼠笼异步电机的混合模型与派克模型[J].电工技术学报,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700