用户名: 密码: 验证码:
慢性间歇性低压低氧抗大鼠再生障碍性贫血作用及其机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
再生障碍性贫血(再障, aplastic anemina,AA)是由化学、物理、生物、遗传及不明原因引起的一种获得性骨髓造血功能衰竭综合征,是一种严重危害人类健康的恶性血液疾病。AA的病理机制复杂,呈高度异质性。临床上主要表现为贫血、出血倾向和感染症状。目前AA尚无特异有效的治疗方法。因此,有关AA机制及其防治措施的研究具有重要的理论和实用意义。
     大量研究表明,慢性间歇性低压低氧(chronic intermittent hypobarichypoxia, CIHH)对机体多种组织、器官具有保护作用。例如,CIHH可增强机体对缺血、缺氧的耐受性,对抗缺血/再灌注所致心功能损伤及心律失常,保护脑、肝脏、肾脏等器官组织,调节免疫功能,抗细胞凋亡,抗氧化。此外,CIHH可降低血压、调节血管舒缩功能、易化压力感受性反射等。我们以往研究表明,CIHH对基础心功能无影响,但可对抗缺血/再灌注和急性缺氧/复氧对心脏的损伤,发挥心脏保护作用。近来,我们研究结果显示,CIHH对肾血管性高血压大鼠、胶原诱导关节炎大鼠和果糖诱导代谢综合征大鼠均具有明显的防治作用。
     众所周知,高原低氧可促进红细胞的生成。研究表明,低氧能显著影响造血过程,促进造血祖细胞(hemopoietic progenitor cells, HPCs)或造血干细胞(hemopoietic stem cells, HSCs)、骨髓间质干细胞(bone marrowmesenchymal stem cells, BMMSCs)增殖并抑制其分化,以及改善骨髓微环境(hematopoietic microenviroment, HIM)。但有关CIHH对血液系统及造血机能的影响尚未明了,也未见CIHH对AA作用的报道。
     本研究旨在利用5-氟尿嘧啶(5-fluorouracil,5-FU)联合白消安(busulfan, BU)诱导的AA动物模型,应用实验动物学、细胞生物学、形态学和分子生物学等方法,从整体、组织和细胞分子不同水平、系统动态地观察CIHH处理对AA的影响,并探讨其机制。研究分为四部分:(1)探讨CIHH对5-FU和BU联合诱导的AA大鼠的防治作用;(2)通过观察CIHH对AA大鼠外周血T淋巴细胞亚群的影响,探讨CIHH抗大鼠AA作用的细胞免疫学机制;(3)通过观察CIHH对AA大鼠骨髓细胞凋亡的影响,探讨CIHH抗大鼠AA作用的细胞凋亡机制;(4)通过观察CIHH对AA大鼠BMMSCs及其粘附性的影响,探讨CIHH抗大鼠AA作用的粘附分子机制。
     第一部分慢性间歇性低压低氧抗大鼠再生障碍性贫血的作用
     目的:初步探讨CIHH对5-FU联合BU诱导的的AA大鼠的防治作用。
     方法:雄性成年SD大鼠随机分为6组:对照组(Con)、CIHH组(CIHH)、CIHH预处理组(Pre-T)、预处理再障组(Pre-AA)、CIHH后处理组(Post-T)和后处理再障组(Post-AA)。Pre-AA和Post-AA大鼠给予5-FU联合BU腹腔注射诱导AA;Pre-T和Post-T大鼠分别在AA造模前、后接受28天、模拟海拔3,000米(大气压:525mmHg,PO2:108.8mmHg)、每天5小时的低压低氧处理;CIHH大鼠仅给予模拟海拔3,000米(大气压:525mmHg,PO2:108.8mmHg)、每天5小时的低压低氧处理; Con大鼠不给予AA造模和间歇性低压低氧处理。H-E染色观察骨髓形态学变化;甲基纤维素半固体培养法检测骨髓粒-单系集落形成单位(colony-forming unit-granulocyte-macrophage, CFU-GM)、红系集落形成单位(colony-forming unit-erythroid, CFU-E)、红系爆式集落形成单位(burst-forming unit-erythroid, BFU-E)和巨核系集落形成单位(colony-forming unit-megakaiyocyte, CFU-MK)产率;酶联免疫吸附试验(enzymelinked immunosorbent assay, ELISA)检测血清白介素-3(interleukin-3,IL-3)、促红细胞生成素(erythropoietin, EPO)、肿瘤坏死因子-α (tumornecrosis factor-alpha, TNF-α)和白介素-2(interleukin-2, IL-2)水平。
     结果:1.与Con大鼠相比,CIHH和Pre-T大鼠体重无显著差异(P<0.05);Pre-AA组、Post-AA和Post-T大鼠体重显著下降(P<0.01)。
     2. Pre-T大鼠AA发生率(25%)显著低于Pre-AA大鼠(80%, P <0.01);Pre-T首次发病时间(24.9±4.4天)显著迟于Pre-AA大鼠(16.2±5.3天, P<0.01);Post-T大鼠死亡率(30%)显著低于Post-AA大鼠(70%, P <0.01)。
     3.与Con大鼠相比,CIHH和Pre-T大鼠外周血红细胞(red blood cell,RBC)、白细胞(white blood cell, WBC)、血小板(platelet, PLA)、血红蛋白(hemoglobin, HGB)、红细胞比容(hematocrit, HCT)、网织红细胞(retieulocyte, Ret)绝对值、中性粒细胞(neutrophils, NEUT)百分比、淋巴细胞(lymphocyte, LYM)百分比和单核细胞(monocyte, MON)百分比无显著差异(P>0.05);Pre-AA和Post-AA大鼠除LYM%显著增多(P<0.01)外,其余各血象指标均明显减少(P<0.01);Post-T大鼠除RBC、WBC、PLA、HGB、HCT和Ret绝对值显著减少(P<0.01)外,其它血象指标无显著差异(P>0.05)。
     4.与Con大鼠相比,Pre-AA和Post-AA大鼠骨髓组织明显脂肪化,造血细胞减少,非造血细胞增多,骨髓间质血窦扩张明显,毛细血管网明显减少,造血功能显著低下。Pre-T和Post-T大鼠骨髓的各种改变明显改善。
     5.与Con大鼠相比,CIHH、Pre-T和Post-T大鼠的骨髓单个核细胞(bone marrow mononucleated cells, BMMNCs)和骨髓各类细胞均无显著变化(P>0.05);Pre-AA和Post-AA大鼠的BMMNCs数、原粒细胞、分叶粒细胞、碱性早幼粒细胞、早红细胞、中红细胞、晚红细胞和巨核细胞显著减少(P<0.01),而其中幼粒细胞、晚幼粒细胞、杆状粒细胞、酸性中幼粒细胞、单核细胞和淋巴细胞显著增多(P<0.01),其他骨髓细胞无显著差异(P>0.05)。
     6.与Con大鼠相比,CIHH和Pre-T大鼠的CFU-GM、CFU-E、BFU-E和CFU-MK产率无显著差异(P>0.05);Pre-AA、Post-AA和Post-T大鼠的CFU-GM、CFU-E、BFU-E和CFU-MK集落产率显著减少(P<0.01)。
     7.与Con大鼠相比,CIHH大鼠血清IL-3、EPO、TNF-α和IL-2水平均无显著差异(P>0.05);Pre-AA和Post-AA大鼠血清IL-3和EPO水平显著减少(P<0.01),而其TNF-α和IL-2水平显著增多(P<0.05);Pre-T和Post-T大鼠血清IL-3和EPO水平显著增多(P<0.01),而其TNF-α和IL-2水平无显著差异(P>0.05)。
     小结: CIHH预处理可预防大鼠AA的发生,CIHH后处理有抗AA的作用,可减轻AA大鼠造血功能障碍,改善骨髓组织病理损伤。此作用与CIHH升高血清正性造血调控因子IL-3和EPO,降低造负性血调控因子TNF-α和IL-2有关。
     第二部分慢性间歇性低压低氧对再生障碍性贫血大鼠T淋巴细胞的影响
     目的:通过观察CIHH对AA大鼠外周血T淋巴细胞亚群的影响,探讨CIHH抗大鼠AA作用的细胞免疫机制。
     方法:实验分组、AA模型制备和CIHH处理和同本研究第一部分。流式细胞术(flow cytometry, FCM)检测大鼠外周血T淋巴细胞及其亚群CD3~+、CD4~+、CD8~+、CD4~+HLA-DR~+和CD8~+HLA-DR~+;ELISA法检测大鼠血清干扰素-γ(interferon, IFN-γ)、白介素-4(interleukin-4, IL-4)和白介素-9(interleukin-9, IL-9)(分别代表Th1、Th2、Th9细胞表达水平);免疫组化法检测大鼠骨髓组织IFN-γ、IL-4和IL-9蛋白。
     结果:1.与Con大鼠相比,CIHH大鼠外周血T淋巴细胞亚群CD3~+、CD4~+、CD8~+、CD4~+HLA-DR~+、CD8~+HLA-DR~+百分比和CD4~+/CD8~+值均无显著差异(P>0.05);Pre-AA和Post-AA大鼠外周血T淋巴细胞亚群CD3~+、CD8~+、CD8~+HLA-DR~+百分比显著升高(P<0.01),CD4~+百分比和CD4~+/CD8~+值显著降低(P<0.01); Pre-T大鼠外周血T淋巴细胞亚群各参数无显著差异(P<0.01);Post-T大鼠外周血T淋巴细胞亚群CD3~+、CD8~+和CD4~+HLA-DR~+无显著差异(P>0.05),而CD4~+、CD4~+/CD8~+和CD8~+HLA-DR~+显著升高(P<0.05)。
     2.与Con大鼠相比,CIHH、Pre-T和Post-T大鼠血清IFN-γ、IL-4、IL-9水平和IFN-γ/IL-4(Th1/Th2)值均无显著差异(P>0.05);Pre-AA和Post-AA大鼠血清促炎因子IFN-γ、IL-9水平和IFN-γ/IL-4(Th1/Th2)值显著升高(P<0.01),抗炎因子IL-4水平显著降低(P<0.05)。
     3.与Con大鼠相比,CIHH、Pre-T和Post-T大鼠骨髓组织IFN-γ、IL-9、IL-4水平和IFN-γ/IL-4(Th1/Th2)值均无显著差异(P>0.05);Pre-AA和Post-AA大鼠骨髓组织促炎因子IFN-γ、IL-9水平和IFN-γ/IL-4(Th1/Th2)值显著升高(P<0.01),抗炎因子IL-4水平显著降低(P<0.01)。
     小结: CIHH处理对大鼠基础状态外周血T淋巴细胞亚群、血清和骨髓组织中炎性因子IFN-γ、IL-9及IL-4无影响,但可有效对抗AA大鼠外周血辅助性T淋巴细胞(CD4~+)的降低,细胞毒性T淋巴细胞(CD8~+)和活化的细胞毒性T淋巴细胞(CD8~+HLA-DR~+)的升高,从而维持T淋巴细胞亚群的平衡,促炎因子和抗炎因子间的平衡。CIHH的细胞免疫调节作用可能是CIHH抗大鼠AA的作用机制之一。
     第三部分慢性间歇性低压低氧对再生障碍性贫血大鼠骨髓细胞凋亡的影响
     目的:通过观察CIHH对AA大鼠骨髓细胞凋亡的影响,探讨CIHH抗大鼠AA作用的细胞凋亡机制。
     方法:实验分组、AA模型制备和CIHH处理和同本研究第一部分。FCM和原位末端标记法(terminal dUTP nick end labeling, TUNEL)检测大鼠骨髓细胞凋亡;免疫组化法检测大鼠骨髓细胞凋亡相关蛋白Fas、Bax、Bcl-2、Caspase-3和Caspase-8表达;Western blot法检测大鼠骨髓细胞低氧诱导因子-1α(hypoxia inducible factor-1alpha, HIF-1α)和核转录因子-κB(nuclear factor-kappa B, NF-κB)表达。
     结果:1. FCM和TUNEL结果均显示,与Con大鼠相比,CIHH、Pre-T和Post-T大鼠骨髓细胞凋亡率无显著差异(P>0.05);Pre-AA和Post-AA大鼠骨髓细胞凋亡率显著升高(P<0.01)。
     2.与Con大鼠相比,CIHH,Pre-T和Post-T大鼠骨髓细胞凋亡蛋白Fas、Bax、Bcl-2、Caspase-3、Caspase-8表达和Bax/Bcl-2值无显著差异(P>0.05);Pre-AA和Post-AA大鼠骨髓细胞促凋亡蛋白Fas、Bax、Caspase-3、Caspase-8和Bax/Bcl-2值显著升高(P<0.05-P<0.01),而抑凋亡蛋白Bcl-2显著降低(P<0.05)。
     3.与Con大鼠相比,CIHH和Pre-T大鼠骨髓细胞HIF-1α和NF-κB蛋白表达无显著差异(P>0.05);Pre-AA和Post-AA大鼠骨髓细胞HIF-1α和NF-κB蛋白表达显著升高(P<0.05-P<0.01);Post-T大鼠骨髓细胞HIF-1α蛋白表达显著升高(P<0.01),而其NF-κB蛋白表达无显著差异(P>0.05)。
     小结: CIHH处理对基础状态下大鼠骨髓细胞凋亡和凋亡无影响,但可对抗AA大鼠HIF-1α和NF-κB蛋白过度表达,下调促凋亡蛋白Fas、Bax、Caspase-3和Caspase-8表达,上调抑凋亡蛋白Bcl-2表达,最终抗骨髓细胞凋亡。CIHH抗骨髓细胞凋亡可能也是CIHH抗大鼠AA的作用机制之一。
     第四部分慢性间歇性低压低氧对再生障碍性贫血大鼠骨髓间质干细胞粘附性的影响
     目的:通过观察CIHH对AA大鼠BMMSCs及其粘附性的影响,探讨CIHH抗大鼠AA作用的粘附分子机制。
     方法:实验分组、CIHH处理和AA模型制备同本研究第一部分。体外长期骨髓植入培养(long-term bone marrow explant cultures, LTBMC-Ex)动态观察骨髓贴壁细胞形态和骨髓成纤维细胞集落形成单位(colonyforming unit-fibroblast, CFU-F)的变化;差速贴壁法培养并纯化BMMSCs;FCM检测BMMSCs极晚期抗原-4(very late antigen-4, VLA-4)、血管细胞间粘附分子-1(vascular cell adhesion molecule-1, VCAM-1)、细胞间粘附分子-1(intercellular adhesion molecule-1, ICAM-1)、CD162和CD164;Western blot法检测BMMSCs表达p38丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)。
     结果:1.体外骨髓长期植入培养过程中,Pre-AA和Post-AA大鼠骨髓基质细胞层发育不良,细胞多为不成熟的大基质前体细胞和成纤维样细胞。CIHH处理对基础状态下大鼠骨髓基质细胞层无影响,但可有效对抗AA大鼠骨髓基质细胞层发育不良,重新形成有效支持造血的骨髓基质细胞层。
     2.与Con大鼠相比,CIHH和Pre-T大鼠骨髓的CFU-F集落数无显著变化(P>0.05);Pre-AA和Post-AA大鼠骨髓的CFU-F集落数显著减少(P<0.01); Post-T大鼠骨髓的CFU-F集落数显著减少(P<0.01)。
     3.与Con大鼠相比,CIHH大鼠BMMSCs表达VLA-4、VCAM-1、ICAM-1、CD162和CD164无显著差异(P>0.05); Pre-AA和Post-AA大鼠BMMSCs表达VLA-4、VCAM-1和ICAM-1显著减少(P<0.01),而表达CD162和CD164显著增多(P<0.01);Pre-T大鼠BMMSCs表达VLA-4、VCAM-1、ICAM-1和CD164无显著差异(P>0.05),但表达CD162显著增多(P<0.05);Post-T大鼠BMMSCs表达VCAM-1和ICAM-1无显著差异(P>0.05),但表达VLA-4显著减少(P<0.01),表达CD162和CD164显著增多(P<0.01)。
     4.与Con大鼠相比,CIHH和Pre-T大鼠BMMSCs表达p38MAPK无显著差异(P>0.05);Pre-AA、Post-AA和Post-T大鼠BMMSCs表达p38MAPK显著升高(P<0.01)。
     小结:CIHH处理对基础状态下骨髓基质细胞发育和BMMSCs粘附性无显著影响;但可有效修复AA大鼠发育不良的骨髓基质细胞,明显增强AA大鼠BMMSCs减弱的粘附性。CIHH的粘附分子调节机制也是CIHH抗大鼠AA的作用机制之一。
     结论: CIHH处理可通过抑制AA大鼠信号通路HIF-1α、NF-κB和p38MAPK蛋白过度表达及下游信号分子的异常变化,维持造血调控因子间、T淋巴细胞亚群间、炎性因子间和粘附分子间的平衡,从而减轻骨髓造血组织损伤和造血功能抑制、减少造血细胞凋亡,增强骨髓造血细胞与造血微环境间的粘附性,发挥防治大鼠AA作用。
Aplastic anemia (AA), a common clinical malignant blood disease, is anacquired bone marrow failure syndrome caused by chemical, physics, biologi-cal, heredity and some unknown causes. The main clinical manifestations areanemia, bleeding tendency and infection symptoms. The pathogenesis of AA iscomplicated and heterogeneity. Up till now, there are no effective methods forAA treatment. So it is significant to explore the mechanism and developtherapeutic methods theoretically and practically.
     A great number of researches have shown that chronic intermittenthypobaric hypoxia (CIHH) has protective effect on tissue and organ of the body.For example, CIHH enhances the tolerance of body to ischemia and hypoxia,protects heart, brain, liver and kidney against ischemia/reperfusion injury, andantagonizes apoptosis and oxidation. Also it was reported that CIHH regulatesimmune function and vasomotoricity, keeps blood pressure stable throughfacilitating baroreflex. Our previous studies showed that CIHH had no effectson basic cardiac function, but protected heart against ischemia/reperfusioninjury. Recently, our research demonstrated that CIHH had effective preventiveand therapeutic effects on the renal vascular hypertension, collagen-inducedarthritis and fructose feeding-induced metabolic syndrome rats.
     It is well known that the plateau hypoxia promotes the production of redblood cells. Researches in vitro showed that hypoxia could promote theproliferation of hemopoietic progenitor cells (HPCs) or hemopoietic stem cells(HSCs), bone marrow mesenchymal stem cells (BMMSCs), and could inhibitthe differentiation of HSCs and BMMSCs. Hypoxia has been proved toimprove hematopoietic microenviroment (HIM) and affect the hematopoieticprocess. However, the effect of CIHH on blood system and hemopoiesis is notclear yet and the effect of CIHH on AA has not been reported.
     The objective of this study was to investigate the effect of CIHH on AArats induced by combination of5-fluorouracil (5-FU) and busulfan (BU)systemically in whole body, tissue, cellular and molecular levels usingexperimental zoology, cellular biology, morphology and molecular biologymethods, and explore the underlying mechanism. The study consists of fourparts:(1) To confirm the preventive and therapeutic effect of CIHH on AA ratswith hematopoietic stem cell failure induced by combination of5-FU and BU;(2) To investigate the immunological mechanism for protective effect of CIHHagainst AA through observing the effect of CIHH on T lymphocyte subpopula-tions of peripheral blood in AA rats;(3) To investigate the anti-apoptosismechanism for protective effect of CIHH against AA through observing effectof CIHH on bone marrow cells apoptosis in AA rats;(4) To investigate thehematopoietic HIM for protective effect of CIHH against AA throughobserving effect of CIHH on BMMSCs and its adhesiveness.
     PartⅠThe protective effects of chronic intermittent hypobaric hypoxiaagainst aplastic anemia rats
     Objective: To investigate the preventive and therapeutic effect of CIHHon AA rats with hematopoietic stem cell failure induced by combination of5-FU and BU.
     Methods: The adult male Sprague-Dawley rats were randomly dividedinto the six groups: control group (Con), CIHH treatment group (CIHH), CIHHpre-treatment group (Pre-T), pre-aplastic anemia group (Pre-AA), CIHH post-treatment group (Post-T), post-aplastic anemia group (Post-AA). Pre-AA和Post-AA rats were given an intraperitoneal injection with combination of5-FUand BU to induce AA; Pre-T and Post-T rats were exposed to hypobarichypoxia simulating3,000m altitude(barometric pressure:525mmHg, PO2:108.8mmHg) in a hypobaric chamb-er for28days,5hours per day before andafter AA induction, respectively. CIHH rats accepted intermittent hypobarichypoxia treatment only and Con rats were not experienced neither AAinduction nor CIHH treatment. The pathologic morphology of bone marrowwas observed by hematoxylin-eosin (H-E) staining. The HPCs of colony-forming unit-granulocyte-macrophage (CFU-GM), colony-formingunit-erythroid (CFU-E), burst-forming unit-eryth-roid (BFU-E) andcolony-forming forming unit-megakaiyocyte (CFU-MK) were assayed by themethod of methylcellulose-based semisolid cultures. The serum interleukin-3(IL-3), erythropoietin (EPO), tumor necrosis factor-alpha (TNF-α) andinterleukin-2(IL-2) was measured by enzyme linked immuno-sorbent assay(ELISA).
     Results:1. Compared with Con rats, the body weight of CIHH and Pre-Trats were not significantly different (P>0.05);The body weight of Pre-AA andPost-AA rats significantly decreased (P<0.01); The body weight of Post-T ratssignificantly decreased (P<0.01).
     2. The incidence rate of AA in Pre-T rats (25%) was significantly lowerthan that in Pre-AA rats (80%, P<0.01).The initial onset time of AA in Pre-Trats (24.9±4.4d) was significantly later than that in Pre-AA rats (16.2±5.3d,P<0.01).The mority in Post-T rats (30%) was significantly lower than that inPost-AA rats (70%, P<0.01).
     3. Compared with Con rats, the value of red blood cells (RBCs), whiteblood cells (WBCs), platelets (PLAs), retieulocytes (Rets), hemoglobin (HGB),hematocrit (HCT), the percentage of neutrophils (NEU), lymphocyte (LYM)and monocyte (MON) in peripheral blood of CIHH and Pre-T rats were notsignificantly different (P>0.05); Except percentage of LYM was significantlyincreased (P<0.01), other indexes of peripheral blood in Pre-AA and Post-AArats were obviously decreased (P<0.01); Except the value of RBCs, WBCs,PLA, Rets, HGB and HCT were significantly decreased (P<0.01), otherindexes of peripheral blood in Post-T rats were not significantly different (P>0.05).
     4. Compared with Con rats, the bone marrow tissue in Pre-AA and Post-AA rats displayed a pinelosis, hematopoietic cells decrease, non-hematopoieticcells were significantly increase, and the percentage of hematopeitic cells weresignificantly decreased in Pre-AA and Post-AA rats. The number of bonemarrow capillary significantly reduced and bone marrow mesenchymal blood sinus was dilated in Pre-AA and Post-AA rats. The changes of pathologicmorphology in bone marrow tissue of Pre-T and Post-T rats were significantlyimproved.
     5. Compared with Con rats, the value of bone marrow mononucleatedcells (BMMNCs) and other bone marrow cells in CIHH, Pre-T and Post-T ratswere not significantly different (P>0.05);The value of BMMNCs andmyeloblasts, segmented granulocytes, basophilic promyelocytes, basophilicerythroblasts, polychromatophilic erythroblasts, normoblasts and megakaryo-cytes in AA rats were significantly decreased (P<0.01), and the percentage ofmyelocytes, metamylocytes, stabform granulocytes, eosinophilic myelocyteslymphocytes and monocytes in Pre-AA and Post-AA rats were significantlyincreased (P<0.01), which the other cells in Pre-AA and Post-AA rats bonemarrow were not significantly different (P>0.05).
     6. Compared with Con rats, the colonies of CFU-GM, CFU-E, BFU-E andCFU-MK in CIHH and Pre-T rats were not significantly different (P>0.05).The colonies of CFU-GM, CFU-E, BFU-E and CFU-MK in Pre-AA, Post-AAand Post-T rats were significantly decreased (P<0.01).
     7. Compared with Con rats, the serum concentration of IL-3, EPO, TNF-αand IL-2were not significantly different in CIHH rats (P>0.05); The serumconcentration of IL-3and EPO were significantly decreased, while TNF-α andIL-2were significantly increased in Pre-AA and Post-AA rats (P<0.01). Theserum concentration of IL-3and EPO were significantly increased (P<0.01),while TNF-α and IL-2were not different in Pre-T and Post-T rats (P>0.05).
     Summary: This study confirmed for the first time that CIHH pre-treatment has preventive effect on incidence of AA, and CIHH post-treatmenthas protective effect on AA, lessening the functional disturbance and improvethe pathological damage of bone marrow tissue in AA rats. The protectiveeffect of CIHH on AA was related to the increase of serum IL-3and EPO, thepositive hematopoiesis regulatory factor, and to the decrease of serum TNF-αand IL-2, the negative hematopoiesis regulatory factor.
     Part II Effects of chronic intermittent hypobaric hypoxia on T lympho-cytes in aplastic anemia rats
     Objective: To investigate the immunological mechanism for protectiveeffect of CIHH against AA through observing the effect of CIHH on Tlymphocyte subpopulations of peripheral blood in AA rats.
     Methods: Experimental grouping, preparation of AA and CIHH treatmentwere the same as Part. T lymphocytes and subpopulations of CD3~+, CD4~+,CD8~+, CD4~+HLA-DR~+and CD8~+HLA-DR~+in peripheral blood of rats weredetected by flow cytometry (FCM). Serum interferon-gamma (IFN-γ),interleukin-4(IL-4) and interleukin-9(IL-9) in rats were assayed by ELISA.Protein expression of IFN-γ, IL-4and IL-9in bone marrow of rats wasmeasured by immunohistochemistry method.
     Results:1. Compared with Con rats, the percentage of CD3~+, CD4~+, CD8~+,CD4~+HLA-DR~+and CD8~+HLA-DR~+T lymphocyte subpopulations were notsignificantly different in CIHH and Pre-T rats (P>0.05); The percentages ofCD3~+T lymphocytes, CD8~+and CD8~+HLA-DR~+T lymphocyte subpopulationswere significantly increased and the percentages of CD4~+T lymphocytesubpopulations and the ratio of CD4~+/CD8~+were significantly decreased inPre-AA and Post-AA rats (P<0.01); The percentages of CD3~+, CD8~+and CD4~+HLA-DR~+T lymphocyte subpopulations were not significantly different (P>0.05), while the percentages of CD4~+, CD8~+HLA-DR~+and the ratio of CD4~+/CD8~+were significantly increased in Post-T rats (P<0.05).
     2. Compared with Con rats, serum IFN-γ, IL-4, IL-9and the ratio ofIFN-γ/IL-4(Th1/Th2) were not significantly different CIHH, Pre-T and Post-Trats (P>0.05); Serum IFN-γ, IL-9and the ratio of IFN-γ/IL-4(Th1/Th2) inPre-AA and Post-AA rats were significantly increased (P<0.01), and serumIL-4were significantly decreased in Pre-AA and Post-AA rats (P<0.05).
     3. Compared with Con rats, protein expression of IFN-γ, IL-4, IL-9andthe ratio of IFN-γ/IL-4(Th1/Th2) of bone marrow tissue were not significantlydifferent in CIHH, Pre-T and Post-T rats (P>0.05); The protein expression ofIFN-γ, IL-9and the ratio of IFN-γ/IL-4(Th1/Th2) of bone marrow weresignificantly increased (P<0.01), while the protein expression of IL-4of bone marrow were significantly decreased in Pre-AA and Post-AA rats (P<0.01).
     Summary: Under physiological condition, CIHH treatment had nosignificant effects on T lymphocyte subpopulations and the levels of IFN-γ, IL-9and IL-4in peripheral blood,serum and bone marrow,but effectivelyantagonized the reduction of helper T lymphocytes (CD4~+) and the increase ofcytotoxic T lymphocytes (CD8~+) and activated cytotoxic T lymphocytes (CD8~+HLA-DR~+), keeping the balance of peripheral blood T lymphocyte subsets andthe balance between proinflammatory cytokines and anti-inflammatory cyto-kines. The regulation of CIHH on cellular immunity may be one of themechanisms of anti-AA effect of CIHH.
     Part III Effects of chronic intermittent hypobaric hypoxia on apoptosis ofbone marrow cells in aplastic anemia rats
     Objective: To investigate the anti-apoptosis mechanism for protectiveeffect of CIHH against AA through observing effect of CIHH on bone marrowcells apoptosis in AA rats.
     Methods: Experimental grouping, preparation of AA and CIHHtreatment were the same as Part. The apoptosis of bone marrow cells wasexamined by FCM and terminal dUTP nick end labeling (TUNEL). Theexpression of apoptosis associated protein Fas, Bax, Bcl-2, Caspase-3andCaspase-8was measured by immunohistochemisty method. The expression ofhypoxia inducible factor-1alpha (HIF-1α) and nuclear factor-kappa B (NF-κB)protein was analyzed by western blot.
     Results:1. The results of FCM and TUNEL showed that, compared withCon rats, the apoptosis rate of bone marrow cells were not significantlydifferent in CIHH, Pre-T and Post-T rats (P>0.05); The apoptosis rate in thebone marrow cells of Pre-AA and Post-AA rats were significantly increased (P<0.01).
     2. Compared with Con rats, the protein expressions of Fas, Bax, Bcl-2,Caspase-3, Caspase-8and the radio of Bax/Bcl-2of bone marrow cells werenot significantly different in CIHH, Pre-T and Post-T rats (P>0.05); The proteinexpressions of Fas, Bax, Caspase-3, Caspase-8and the ratio of Bax/Bcl-2were significantly increased (P<0.05-P<0.01), while the protein expression of Bcl-2of bone marrow cells were significantly decreased in Pre-AA and Post-AA rats(P<0.05).
     3. Compared with Con rats, the protein expressions of HIF-1α and NF-κBof bone marrow cells were not significantly different in CIHH and Pre-T rats (P>0.05); The protein expression of HIF-1α and NF-κB of bone marrow cellswere significantly increased in Pre-AA and Post-AA rats (P<0.05-P<0.01); Theprotein expression of HIF-1α of bone marrow cells were significantly increasedin Post-T rats (P<0.01),and the protein expression of NF-κB of bone marrowcells in the bone marrow cells were not significantly different in Post-T rats (P>0.05).
     Summary: Under physiological condition, CIHH treatment had nosignificant effect on apoptosis and apoptosis associated protein of bone marrowcells, but effectively antagonized the overexpression of HIF-1α and NF-κBproteins, down-regulated the expression of positive apoptosis proteins Fas, Bax,Caspase-3and Caspase-8, up-regulated the expression of negative apoptosisprotein Bcl-2, resulting in anti-apoptosis eventually. The anti-apoptosis ofCIHH on bone marrow cells might be one of the mechanisms of anti-AA effectof CIHH.
     Part IV Effects of chronic intermittent hypobaric hypoxia on adhesivenessof bone marrow mesenchymal stem cells in aplastic anemia rats
     Objective: To investigate the hematopoietic HIM for protective effect ofCIHH against AA through observing effect of CIHH on BMMSCs and itsadhesiveness.
     Methods: Experimental grouping, preparation of AA and CIHHtreatment were the same as Part. The morphology of adhension cell andcolony-forming unit-fibroblast (CFU-F) were observed by long-term bonemarrow explant cultures (LTBMC-Ex) dynamically. BMMSCs were culturedand purifucated in vitro by the method of differential velocity adherent cellsculture.Very late antigen-4(VLA-4), vascular cell adhesion molecule-1(VCAM-1), intercellular adhesion molecule-1(ICAM-1), CD162and CD164 of BMMSCs were analyzed by FCM. The protein expression of p38mitogen-activated protein kinase (p38MAPK) was assayed by western blot.
     Results:1. During LTBMC-Ex, the bone marrow stromal cells in Pre-AAand Post-AA rats were dysplasia, and the most cells were immature precursorcells and fibroblast-like cells. Under the basic physiological condition, CIHHtreatment had no effect on development of bone marrow stromal cells layer, butantagonized effectively the dysplasia of bone marrow stromal cells layer andrenewed a valid layer to support hematopoiesis.
     2. Compared with Con rats, the CFU-F colonies of bone marrow had nosignificantly changes in CIHH and Pre-T rats (P>0.05); The CFU-F colonies ofbone marrow were significantly decreased in Pre-AA and Post-AA rats (P<0.01); The CFU-F colonies of bone marrow were significantly decreased inPost-T rats (P<0.01).
     3. Compared with Con rats, the protein expressions of VLA-4, VCAM-1,ICAM-1, CD162and CD164of BMMSCs were not significantly different inCIHH rats (P>0.05). The protein expressions of VLA-4, VCAM-1and ICAM-1of BMMSCs were significantly decreased (P<0.01), while CD162and CD164of BMMSCs were significantly increased in Pre-AA and Post-AA rats (P<0.01). The protein expression of VLA-4, VCAM-1, ICAM-1and CD164ofBMMSCs were not significantly different (P>0.05), but CD162of BMMSCswas significantly increased in Pre-T rats (P<0.01). The protein expressions ofVCAM-1and ICAM-1of BMMSCs were not significantly different in (P>0.05), while VLA-4of BMMSCs was significantly decreased in Post-T rats (P<0.01) and the protein expressions of CD162and CD164of BMMSCs weresignificantly increased in Post-T rats (P<0.01).
     4. Compared with Con rats, the protein expression of p38MAPK ofBMMSCs was not significantly different in CIHH and Pre-T rats (P>0.05). Theprotein expression of p38MAPK of BMMSCs was significantly increased inPre-AA, Post-AA and Post-T rats (P<0.01).
     Summary: Under physiological condition,CIHH treatment had nosignificant effect on development of bone marrow stromal cells layer and the adhensiveness of BMMSCs, but effectively antagonized the dysplasia of bonemarrow stromal cells layer to support hematopoietsis and the adhensiveness ofBMMSCs in AA rats. This demonstrates that CIHH treatment improves theadhesion of BMMSCs and enhance nutritional support to HSCs in AA rats,which might be one of mechanism of anti-AA effect of CIHH.
     Conclusion: CIHH has protective effect agains aplastic anemia of ratsthrough inhibit-ing the overexpression of HIF-1α, NF-κB, p38MAPK anddownstream signal molecules, maintaining homeostasis of hematopoieticregulatory factors, keeping balance of T lymphocyte subpopulations,proinflammatory/anti-inflammatory factors,and adhensive molecules, lesseningthe damage of hematopoietic tissue and inhibition of hematopoietic function inbone marrow, decreasing hematopoietic cell apoptosis, and enhancing theadhesiveness and nutritional support between the bone marrow hematopoieticcells and hematopoietic mic-roenvironment.
引文
1Young NS, Maciejewski J.The pathophysiology of acquired aplasticanemia. New Engl J Med,1997,336(19):1365~72
    2Scopes J, Ismail M, Marks K J, et al.Correction of stromal cell defect afterbone marrow transplantation in aplastic anaemia. Br J Haematol,2001,115(3):642~52
    3Philpott NJ, Scopes J, Marsh JCW, et al. Increased apoptosis in aplasticanemia bone marrow progenitor cells: possible pathophysiologic signifi-cance. Exp Hematol,1995,14(23):1642~48
    4Domen J, Weissman IL.Self-renewal, differentiation or death: regulationand manipulation of hematopoietic stem cell fate. Mol Med Today,1999,5(5):201~8
    5Abellan R, Ventura R, Remacha AF, et al. Intermittent hypoxia exposurein a hypobaric chamber and erythropoietin abuse interpretation. J SportsSci,2007,25(11):1241~50
    6Grayson W L, Zhao Fang,Bunnell B, et al. Hypoxia enhances proliferationand tissue formation of human mesenchymal stem cells. Biochem BiophysRes Commun,2007,358(3):948~53
    7Rochefort GY, Delorme B,Lopez A,et al.Multipotential mesenchymalstemcells are mobilized into peripheral blood by hypoxia. Stem cells,2006,24(10):2202~8
    8Rochefort GY, Vaudin P, Bonnet N, et al. Influence of hypoxia on the do-miciliation of mesenchymal stem cells after infusion into rats: possibili-ties of targeting pulmonary artery remodeling via cells therapies? RespirRes,2005,6:125
    9Yoon D, Ponka P, Prchal JT. Hypoxia.5. Hypoxia and hematopoiesis. AmJ Physiol Cell Physiol,2011,300(6): C1215~22
    10Shi M, Cui F, Liu AJ, et al. Protection of chronic intermittent hypobarichypoxia against collagen-induced arthritis in rat through increasingapoptosis. Acta Physiologica Sinica,2011,63(2):115~23
    11Guo HC, Guo F, Zhang LN, et al. Enhancement of Na/K pump activity bychronic intermittent hypobaric hypoxia protected against reperfusioninjury. Am J Physiol Heart Circ Physiol,2011,300(6): H2280~7
    12Zhang Y, Zhong N, Zhou ZN. Effects of chronic intermittent hypobarichypoxia on the L-type calcium current in rat ventricular myocytes. HighAlt Med Biol,2010,11(1):61~7
    13Zhou JJ, Wei Y, Zhang Y, et al. Cardioprotection of chronic intermittenthypobaric hypoxia in fructose induced-metabolic syndrome rat. ActaPhysiologica Sinica,2010,62(suppl.1):274
    14Morley A, Blake J. An animal model of chronic aplastic marrow failure I.a) late marrow failure after busulfan. Blood,1974,44(1):49~56
    15赵钧铭,褚建新,丁顺利等。5-氟尿嘧啶与白消安合用诱导建立大鼠急性再生障碍性贫血模型。中华血液学杂志,2001,22(4):202~4
    16GJden Ottolander, Jte Velde, W Veenhof,et al.Busulphan aplasia in rabbits:a model for human aplastic anaemia. Br J Haematol,1982,51(2):265~76
    17Young NS, Scheinberg P, Calado RT. Aplastic anemia. Curt OpinHematol,2008,15(3):162~8
    18Guan Y, Gao L, Ma HJ, et al.Chronic intermittent hypobaric hypoxiadecreases beta-adrenoceptor activity in right ventricular papillary muscle.Am J Physiol Heart Circ Physiol,2010,298(4): H1267-272
    19Tong J, Viale M, Bacigalupo A, et al. Effect of FK-506and cyclosporin Aon in vitro CFU-GM growth in severe aplastic anemia patients.Haematolo-gica,1992,77(4):369~70
    20Meagher RC, Rothmann SA, Paik IK, et al. In vitro growth of rat bonemarrow BFU-E. Exp Hematol,1989,17(4):374~8
    21Hanada T, Nagasawa T, Abe T. A case of severe aplastic anemia having Tlymphocytes which suppressed both CFU-E colony formation and immu-noglobulin production in vitro. Rinsho Ketsueki,1981,22(3):386~91
    22NagataY, Shozi Y, Nagaswa T, et al.Serum throbopoietin level is notregulated by transcription but by the total counts of both megakaryocytesand planets during thrombocytopenia and thrombocytes. Throm Haemost,1997,77(5):808~14
    23Rosendaal M, Adam J. Patterns of haematopoietic recovery after stress II.Treatment with fluorouracil. Leuk Res,1988,12(6):479~85
    24Hodgson GS, Bradley TR. Properties of haematopoietic stem cells surviv-ing5-fluorouracil treatment: evidence for a pre-CFU-S cells? Nature,1979,281(5730):381~2
    25Bacigalupo A, Piaggio G, Figari O, et al. Response of CFU-GM toincreas-ing doses of rhGM-CSF in patients with aplastic anemia. ExpHematol,1991,19(8):829~32
    26Umemura T, Takeichi N, Kaneko S, et al. Significance of abnormalityhigh endogenous CFU-E numbers in aplastic anemia. Nihon KetsuekiGakkai Zasshi,1986,49(4):837~45
    27Chauvet M, Léger J, Molina L, et al. Study of megakaryocytic progenitors(CFU-MK) in human long-term bone marrow cultures (LTBMC): adjuvanteffect of plasma from aplastic patients. Exp Hematol,1990,18(1):61~4
    28Hsu HC, Tsai WH, Chen LT, et al. Production of hematopoietic regulatoryb) cytokines by peripheral blood mononuclear cells in patients withaplastic anemia. Exp Hematol,1996,24(1):31~6
    29Valent P, Geissler K, Sillaber C, et al.Why clinicians should be interestedin Interleukin. Blut,1990,61(6):338~45
    30Valent P, Besemer J, Muhm M, et al. Interleukin-3activates human bloodbasophils via high-affinity binding sites. Proc Natl Acad Sci USA,1989,86(14):5542~6
    31YoshidaY, Anzai N, Kawabata H, et al.Serial ehanges in endogenouserythropoietin levels in patients with myelodysplastic syndromes andaplastic anemia undergoing erythropoiet in treatment. Ann Hematol,1993,66(4):175~80
    32Kast RE, Altschuler EL. Proposal for using small molecule tumor necrosisfactor-alpha lowering agents, possibly bupropion, in aplastic anemia. MedHypotheses,2005,65(2):374~6
    33Dubey S, Shukla P, Nityanand S. Expression of interferon-gamma andtumor necrosis factor-alpha in bone marrow T cells and their levels in bonemarrow plasma in patients with aplastic anemia. Ann Hematol,2005,84(9):572~7
    34Wang SY, Wei YF, Du HL, et al. Clinical efficacy and T-lymphocyte subset,serum interferon-gamma (IFN-gamma), tumor necrosis factor-alpha (TNF-alpha), interleukin-2(IL-2) levels on treatment of chronic aplastic anemiapatients by shenfu injection combined with stanozol and cyclosporin A.Zhongguo Zhong Yao Za Zhi,2005,30(5):383~5
    35Chen LZ, Chen JY, Yu W,et al. Therapy of aplastic anemia with autologousperipheral mononuclear cells treated by IL-2and GM-CSF in culture: a
    long-term follow-up report on49patients. Zhongguo Shi Yan Xue Ye Xue
    Za Zhi,2011,19(3):781~6
    1Arason GJ, Jorgensen GH, Ludviksson BR. Primary immunodeficienc andautoimmunity: lessons from human diseases. Scand J Immunol,2010,71(5):317~28
    2Young NS. Hematopoietic cell destruction by immune mechanisms in ac-quired aplastic anemia. Semin Hematol,2000,37(1):3~14
    3Mentzel U, Vogt H, Rossol R, et al.Analysis of lymphocyte subsets inpatients with aplastic anemia before and during immunosuppressivetherapy. Ann Hematol,1993,66(3):127~9
    4Stefanie Scheu, JudithAlferink, Tobias Potzel, et a1.Targeted disruption ofLIGHT causes defects in costimulatory T cell activation and reveals co-operation with lymphotoxin in mesenteric lymph node genesis. J Exp Med,2002,195(12):1613~24
    5Melenhorst JJ, Van Krieken JHJM, Dreef E, et a1.T cells selectivelyinfiltrate bone marrow areas with residual haemopoiesis of patients withacquired aplastic anemia. Br J Haematol,2000,99(3):517~9
    6Serebrovskaya TV, Swanson RJ, Kolesnikova EE. Intermittent hypoxia:mechanisms of action and some applications to bronchial asthma treatment.J Physiol Pharmacol,2003,54(1):35~41
    7Shi M, Cui F, Liu AJ, et al. Protection of chronic intermittent hypobarichypoxia against collageninduced arthritis in rat through increasingapoptosis. Acta Physiologica Sinica,2011,63(2):115~23
    8Meerson FZ, Frolov BA, Volianik MN, et al.The effect of adaptation tothe periodic action of hypoxia on the indices of the immunity system andon the course of allergic diseases. Patol Fiziol Eksp Ter,1990,(3):16~21
    9Soslow RA, Dannenberg AJ, Rush D, et al. Cox-2is expressed inhuman pulmonary, colonic, and mammary tumors. Cancer,89(12):2637~45
    10赵武述:免疫平衡研究及其临床意义。北京:科学出版社,2005,12~18
    11Kaito K, Otsubo H, Usui N, et a1.Thl/Th2lymphocyte balance in patientswith aplastic anemia. Rinsho Byori,2004,52(7):569~73
    12Miura A, Endo K, Sugawara T, et al. T cell-mediated inhibition of erythro-poiesis in aplastic anaemia: the possible role of IFN-γ and TNF-α. Br JHaematol,1991,78(3):442~9
    13Zeng WH, Kajigaya S, Chen G, et a1.Transcript profile of CD4+T cellsand CD8+T cells from the bone maorw of acquired aplastic anemiapatients. Exp Hematol,2004,32(9):806~14
    14Lanzavecchia A, Sallusto F. Regulation of T cell immunity by dendriticcells. Cell,2001,106(3):263~6
    15Stefanie Scheu, JudithAlferink, Tobias Potzel, et a1.Targeted disruption ofLIGHT causes defects in costimulatory T cell activation and reveals co-operation with lymphotoxin in mesenteric lymph node genesis. J Exp Med,2002,195(12):1613~24
    16Castellino F, Germain R N. Cooperation between CD4+and CD8+T cells:when, where, and how. Annu Rev Immunol,2006,24(1):519~40
    17Liberman AC, Refojo D, Arzt E. Cytokine signaling/transcription factorcross-talk in T cell activation and Th1-Th2differentiation. Arch ImmunolTher Exp (Warsz),2003,51(6):351~65
    18Elenkov IJ, Chrousos GP, Wilder RL. Neuroendocrine regulation of IL-12and TNF-alpha/IL-10balance. Clinical implications. Ann NY Acad Sci,2000,917:94~105
    19Young NS, Scheinberg P, Calado RT. Aplastic anemia.Curt OpinHematol,2008,15(3):162~8
    20VeldhoenM, Uyttenhove C, Snick VJ, et al. Transforming growth factor-beta ‘reprograms’ the differentiation of T helper-cells and promotes aninterleukin-2producing subset. Nat immunol,2008,9(12):1341~6
    21Dardalhon V, AwasthiA, Kwon H, et al. IL-4inhibits TGF-beta inducedFoxp3+T cells and, together with TGF-beta, generates IL-9+IL-10+Foxp3(-)effector T cells. Nat Immunol,2008,9(12):1347~55
    22Renauld JC, Goethals A, Houssiau F, et al. Human P40/IL-9expression inactivated CD4+T cells, genomic organization, and comparison with themouse gene. J Immunol,1990,144(11):4235~41
    23Soussi Gounni A, Gregory B, Nutku E, et al. Interleukin-9enhances Inter-leukin-5receptor expression, differentiation and survival of human eosi-nophils. Blood,2000,96(6):2163~71
    24Soussi Gounni A, Koussih L, Nutku E, et al. Functional expression of IL-9receptor by human neutrophils from asthmatic donors: Role in IL-8release.J Immunol,2001,166(4):2768~74
    25Little FF, Cruikshank WW, Center DM. IL-9stimulates release of chemo-tactic factors from human bronchial epithelial cells. Am J Respir Cell MolBiol,2001,25(3):347~52
    26Louahed J, Toda M, Jen J, et al. Interleukin-9upregulates mucusexpres-sion in the airways. Am J Respir Cell Mol Biol,2000,22(6):649~56
    27Baraldo S, Faffe DS, Moore PE, et al. Interleukin-9influences chemokinerelease in airway smooth muscle: Role of ERK. Am J Physiol Lung CellMol Physiol,2003,284(6):1093~102
    1Koopman G, Reutelingsperger CP, Kuijten GA, et al. Annexin V forflow-cylometric detection of phosphatidylserine expression on B cellsundergoing apoptosis. Blood,1994,84(5):1415~20
    2Cellera F, Falcao RP. Increased apoptotic cells in bone marrow biopsiesrom patients with aplastic anemia. Br J Haematol,1997,98(1):18~20
    3Taylor CT. Interdependent roles for hypoxia inducible factor and nuclearactor-kappa B in hypoxic inflammation. J Physiol,2008,586(17):4055~9
    4G rlach A, Bonello S. The cross-talk between NF-kappa B and HIF-1:further evidence for a significant liaison. Biochem J,2008,412(3): e17~9
    5Soslow RA, Dannenberg AJ, Rush D, et al. Cox-2is expressed inhuman pulmonary, colonic, and mammary tumors. Cancer,89(12):2637~45
    6Contassot E, Gaide O, French LE. Death receptors and apoptosis.Dermatol Clin,2007,25(4):487~501
    7Teramura M, Saito H, Kobayashi S, et al. Mechanism of immunosuppres-sive therapy for aplastic anemia. Rinsho Ketsueki,1993,34(3):273~7
    8Nagafuji K, Shibuya T, Harada M, et al. Functional expression of Fasantigen (CD95) on hematopoietic progenitor cells. Blood,1995,86(3):883~9
    9Sato T, Selleri C, Anderson S, et al. Expression and modulation of cellularreceptors for interferon-gamma, tumour necrosis factor, and Fas on humanbone marrow CD34+cells. Br J Haematol,1997,97(2):356~65
    10Liu H, Mihara K, Kimura A, et al. Induction of apoptosis in CD34+cellsby sera from patients with aplastic anemia.Hiroshima J Med Sci,1999,48(2):57~63
    11Niho Y, Asano Y. Fas/Fas ligand and hematopoietic progenitor cells.CurrOpin Hematol,1998,5(3):163~5
    12Green DR. Apoptotic pathways: the roads to ruin. Cell,1998,94(6):695~8
    13Chen Z, Chua CC, Ho YS, et al. Overexperession of Bcl-2attenuatesapoptosis and protects against myocardial I/R injure in transgenic mice.Am Physiol Heart Circ Physiol,2001,280(5): H2313~20
    14Oltcai ZN, Milliman CL, Korsmeyer SJ. Bcl-2heterodimerizes in vivowith a conserved homolog, Bax, that accelerates programmed cell death.Cell,1993,74(4):609~19
    15Granville DJ, Jiang H, An MT, et al.Bcl-2overexpression blocks caspaseactivation and downstream apoptotic events instigated by photodynamictherapy. Br J Cancer,1999,79(1):95~100
    16Planchon SM,Wuerzberger-Davis SM, Pink JJ, et al.Bcl-2protects againstbeta-lapachone-mediated caspase3activation and apoptosis in humanmyeloid leukemia (HL-60) cells. Oncol Rep,1999,6(3):485~92
    17Kim WU, Kang SS,Yoo SA, et al. Interaction of vascular endothelialgrowth factor165with neuropilin-1protects rheumatoid synoviocytesfrom apoptotic death by regulating Bcl-2expression and Bax translocation.J Immunol,2006,1177(8):5727~35
    18Ismail M, Gibson FM, Gordon-Smith EC,et al. Bcl-2and Bcl-x expressionin the CD34+cells of aplastic anaemia patients: relationship with increasedapoptosis and upregulation of Fas antigen. Br J Haematol,2001,113(3):706~12
    19Nicholson DW, Thornberry NA. Caspases:killer proteases. Trendsbiochem Sci,1997,22(8):299~306
    20Enari M, Sakahira H, Yokoyama H, et al.A Caspase-activated DNase thatdegrades DNA during apoptosis,and its inhibitor ICAD. Nature,1998,391(6662):43~50
    21Gregoli PA, Bondurant J. Function of caspases in regulating apoptosiscause by erythropoietin deprivation in erythroid progenitors. J Cellphysiol,1999,178(2):133~43
    22Ke Q, Costa M. Hypoxia-inducible factor-1(HIF-1). Mol Pharmacol,2006,70(5):1469~80
    23Qian J, Ramroop K, McLeod A, et al. Induction of hypoxia-induciblefactor-1alpha and activation of caspase-3in hypoxia-reoxygenated bonemarrow stroma is negatively regulated by the delayed production ofsubstance P. J Immunol,2001,167(8):4600~8
    24Carlsen H, Alexander G, Austenaa LM, et al. Molecular imaging of thetranscription factor NF-kappa B, a primary regulator of stress response.Mutat Res,2004,551(1-2):199~211
    25Makarov SS. NF-kappa B in rheumatoid arthritis: a pivotal regulator ofinflammation, hyperplasia, and tissue destruction. Arthritis Res,2001,3(4):200~6
    26Walmsley SR, Print C, Farahi N, et al. Hypoxia-induced neutrophilsurvival is mediated by HIF-1alpha-dependent NF-kappaB activity. J ExpMed,2005,201(1):105~15
    27Belaiba RS, Bonello S, Z hringer C, et al. Hypoxia up-regulates hypoxia-inducible factor-1alpha transcription by involving phosphatidylinositol3-kinase and nuclear factor kappaB in pulmonary artery smooth musclecells.Mol Biol Cell,2007,18(12):4691~7
    28Scortegagna M, Cataisson C, Martin RJ, et al. HIF-1alpha regulatesepithelial inflammation by cell autonomous NF-kappaB activation andparacrine stromal remodeling. Blood,2008,111(7):3343~54
    29Gerondakis S, Banerjee A, Grigoriadis G, et al. NF-κB subunit specificityin hemopoiesis. Immunol Rev,2012,246(1):272~85
    1Marsh JCW, Chang J, Testa NG, et al.In vitro assessment of marrow’stemcell’ and stromal cell function in aplastic anaemia. British Journal ofHaematology,1991,2(78):258~67
    2Okubo T, Matsui N,Yanai N, et al. Stroma-dependent maintenance ofcytokine responsive hematopoietic progenitor cells derived from long-termbone marrow culture.Cell Structure and Function,2000,2(25):133~9
    3Rochefort GY, Delorme B, Lopez A, et al. Multipotential mesenchymalstem cells are mobilized into peripheral blood by hypoxia. Stem Cells,2006,24(10):2202~8
    4Ottino P, Finley J, Rojo E, et al.Hypoxia activates matrix metalloprotein-ase expression and the VEGF system in monkey choroidretinal endothelialcells: involvement of cytosolic phospholipase A2activity. Mol Vis,2004,
    10:341~50
    5Okubo T, Matsui N, Yanai N, et al. Stroma-dependent maintenance ofcytokine responsive hematopoietic progenitor cells derived from long-termbone marrow culture.Cell Structure and Function,2000,2(25):133~9
    6Turton JA, Sones WR, Andrews CW, et al. Further development of amodel of chronic bone marrow aplasia in the busulphan-treated mouse. IntJ Exp Pathol,2006,1(87):49~63
    7Dexter TM, Allen TD, Lajtha LG. Conditions controlling the proliferationof haemopoietic stem cells in vitro. J Cell Physiol,1977,91(3):335~44
    8Ben-Yosef Y, Lahat N, Shapiro S, et al. Regulation of endothelial matrixmetalloproteinase-2by hypoxia/reoxygenation.Circ Res,2002,90(7):784~791
    9Clulombel L, Auffray I, Gaugler MH, et al. Expression and function ofintegrins on hematopoietic progenitor cells Acta Haematol,1997,97(1-2):13~21
    10吴祖泽,贺福初,裴雪涛。造血调控。上海:上海医科大学出版社,2000,44
    11Nissen C, Genitsch A, Sendelov S, et al.Cell cycling stress in themonocyte line as a risk factor for progression of the aplastic anaemia/paroxysmal noturnal haemoglobinuria syndrome to myelodysplasticsyndrome. Acta Haematol,2000,103(1):33~40
    12Nimer SD, Leung DH, Wolin MJ, et al.Serum stem cell factor levels inpatients with aplastic anemia. Int J Hematol,1994,60(3):185~9
    13阮长耿.血细胞的粘附分子。中国实验血液学杂志,2004,12(1):l~5
    14Chan JY, Watt SM. Adhesion receptors on haematopoietic progenitor cells.Br J Haematol,2001,112(3):541~57
    15胡晶,吴宏.造血干/祖细胞归巢的研究进展。国外医学内科学分册,2005,32(5):195~9
    16Levesque JP, Leavesley DI, Niutta S, et al.Cytokines increase humanhemopoietic cell adhesiveness by activation of very Iate antigen(VLA)-4and VLA-5intergrins. J Exp Med,1995,181(5):1805~15
    17Laazik Z, Jansen,PJ, Cumming RD, et al.P-selectin glycoprotein ligand1isbroadly expressed in cells of myeloid,lymphoid and Dendritic lineage andin some non-hemaropoietic cells. Blood,1996,88(8):3010~21
    18Greenberg AW, Kerr WG, Hammer DA. Relationship between selectin-mediated rolling of hematopoietic stem cell and progenitor cells andprogression in hematopoietic development. Blood,2000,95(2):478~86
    19Jean P L, Andrew CW, Zannettino MP, et al. PSGL-1-mediated adhesionof human hematopoietic progenitors to P-selectin results in suppression ofhemaopoiesis. Immunity,1999,11(3):369~78
    20Walt SM, Chan JY. CD164-a novel sialomucin on CD34+cells. LeukLymphoma,2000,37(1-2): l~25
    21Watt SM, Butler LH, Tavian M, et al.Functionally defined CD164epitopesare expressed on CD34+cells throughout ontogeny but display distinctdistribution patterns in adult hematopoietic and nonhemaopoietic tissues.Blood,2000,95(10):3113~24
    22Jorgensentye B, Levesque JP, Royle L, et al.Epitope recognition ofantibodies that define the sialomucin,endolyn (CD164), a negativeregulator of haematopoiesis. Tissue antigens,2005,65(3):220~39
    23HaPer SJ, Lo Grasso P. Signalling for survival and death in neurones:therole of stress-activated kinase, JNK and p38. Cell Signal,2001,13(5):299~310
    24Kollet O, Spiegel A, Peled A, et al.Rapid and efficient homing of humanCD34(+), CD38(-/low), CXCR4(+)stem and progenitor cells to the bonemarrow and spleen of NOD/SCID and NOD/SCID/B2m (null) mice.Blood,2001,97(10):3283~91
    25Stein MI, Zhu J, Emerson SC. Molecular pathways regulating the self-renewal of hematopoietic stem cells. Exp Hematol,2004,32(12):1129~36
    26Kommann M, Ishiwata T, Kleeff J, et al. Fas and Fas-ligand expression inhuman panereatie cancer. Ann Surg,2000,231(3):368~79
    27Tamura DY, Moore EE, Johnson JL, et al. P38mitogen-activated protein-
    kinase inhibition attenuates intercellular adhesion molecule-1upregulation
    on human pulmonary microvascular endothelial cells. Surgery,1998,124
    (2):403~7
    1Young NS, Maciejewski J. The pathophysiology of acquired aplasticanemia. New Engl J Med,1997,336(19):1365~72
    2Scopes J, Ismail M, Marks K J, et al.Correction of stromal cell defect afterbone marrow transplantation in aplastic anaemia. Br J Haematol,2001,115(3):642~52
    3Philpott NJ, Scopes J, Marsh JCW, et al. Increased apoptosis in aplasticanemia bone marrow progenitor cells: possible pathophysiologic signifi-cance. Exp Hematol,1995,14(23):1642~8
    4Domen J, Weissman IL. Self-renewal, differentiation or death: regulationand manipulation of hematopoietic stem cell fate. Mol Med Today,1999,5(5):201~8
    5Melenhorst JJ, Van Krieken JHJM, Dreef E, et a1.T cells selectivelyinfiltrate bone marrow areas with residual haemopoiesis of patients withacquired aplastic anemia. Br J Haematol,2000,99(3):517~9
    6Beguin PC, Joyeux-Faure M, Godin-Ribuot D, et al. Acute intermittenthypoxia improves rat myocardium tolerance to ischemia. J Appl Physiol,2005,99(3):1064~9
    7Lavie L. Intermittent hypoxia: the culprit of oxidative stress, vascularinflammation and dyslipidemia in obstructive sleep apnea. Expert RevRespir Med,2008,2(1):75~84
    8Ramond A, Ribuot C, Lévy P, et al. Deleterious myocardial consequencesinduced by intermittent hypoxia are reversed by erythropoietin. RespirPhysiol&Neurobiol,2007,156(3):362~9
    9Halstead WC. Chronic intermittent anoxia and impairment of peripheralvision. Science,1945,101(2633):615~6
    10Windle WF, Jensen AV. Brain structure after intermittent exposure tosimulated high altitudes. Fed Proc,1946,5(1Pt2):114
    11Jensen AV, Windle WF. The brain after intermittent exposure to simulatedhigh altitude. Arch Neurol Psychiatry,1946,56:346
    12Zhang Y, Zhong N, Gia J, Zhou Z. Effects of chronic intermittent hypoxiaon the hemodynamics of systemic circulation in rats. Jpn J Physiol,2004,54(2):171~4
    13Langmeier M, Maresová D. Intermittent hypobaric hypoxia duringdevelopment-morphological and functional changes in the neocortex.Prague Med Rep,2005,106(3):275~82
    14Anatskaya OV, Vinogradov AE. Genome multiplication as adaptation totissue survival: evidence from gene expression in mammalian heart andliver. Genomics,2007,89(1):70~80
    15Meerson FZ, Frolov BA, Volianik MN, et al. The effect of adaptation tothe periodic action of hypoxia on the indices of the immunity system andon the course of allergic diseases. Patol Fiziol Eksp Ter,1990,(3):16~21
    16Shi M, Cui F, Liu AJ, et al. Protection of chronic intermittent hypobarichypoxia against collagen-induced arthritis in rat through increasingapoptosis. Acta Physiologica Sinica,2011,63(2):115~23
    17Guo HC, Guo F, Zhang LN, et al. Enhancement of Na/K pump activity bychronic intermittent hypobaric hypoxia protected against reperfusioninjury. Am J Physiol Heart Circ Physiol,2011,300(6): H2280~7
    18Zhang Y, Zhong N, Zhou ZN. Effects of chronic intermittent hypobarichypoxia on the L-type calcium current in rat ventricular myocytes. HighAlt Med Biol,2010,11(1):61~7
    19Song S J, Xu Y, Li FF, et al. Effect of chronic intermittent hypobarichypoxia on contractile activity of arteries in rats. Sheng Li Xue Bao,2011,63(3):205~10
    20Wei Y, Zhou JJ, Zhang Y. Effect of Polydatin on L-type Ca2+current in ratventricular myocytes. Acta Physiologica Sinica,2010,62(suppl.1):273
    21Zhou JJ, Wei Y, Zhang Y, et al. Cardioprotection of chronic intermittenthypobaric hypoxia in fructose induced-metabolic syndrome rat. ActaPhysiologica Sinica,2010,62(suppl.1):274
    22Wood JG, Mattioli LF,Gonzalez NC. Hypoxia causes leukocyte adherenceto mesenteric venules in nonacclimatized, but not in acclimatized rats. JAppl Physiol,1999,87(3):873~81
    23Gonzalez NC,Wood JG. Leukocyte-endothelial interactions in environmen-tal hypoxia. Adv Exp Med Biol,2001,502:39~60
    24Beidleman BA, Muza SR, Fulco CS, et al. White blood cell and hormonalresponses to4,300m altitude before and after intermittent altitudeexposure. Clin Sci (Lond),2006,111(2):163~9
    25Serebrovskaia TV, Safronova OS, Gordiy SK. Free radical processes underdifferent oxygen supply conditions. Fiziol J,1999,45(6):92~103
    26Serebrovskaia TV, Man'kovskaia IN, Lysenko GI, et al. A method forintermittent hypoxic exposures in the combined treatment of bronchialasthma patients. Lik Sprava,1998,(6):104~8
    27Gore CJ, Rodríguez FA, Truijens MJ, et al. Increased serum erythropoietinbut not red cell production after4wk of intermittent hypobaric hypoxia(4,000-5,500m). J Appl Physiol,2006,101(5):1386~93
    28Koistinen PO, Rusko H, Irjala K, et al. EPO, red cells, and serumtransferrin receptor in continuous and intermittent hypoxia. Med SciSports Exerc,2000,32(4):800~4
    29Abellan R, Ventura R, Remacha AF, et al. Intermittent hypoxia exposure ina hypobaric chamber and erythropoietin abuse interpretation. J Sports Sci,2007,25(11):1241~50
    30Wehrlin JP, Zuest P, Hallén J, et al. Live high-train low for24daysincreases hemoglobin mass and red cell volume in elite endurance athletes.J Appl Physiol,2006,100(6):1938~45
    31Ishii M, Iwamoto T, Nagai A, et al. Polycythemia and changes in erythro-poietin concentration in rats exposed to intermittent hypoxia. Adv ExpMed Biol,2010,662:121~6
    32Clark SA, Quod MJ, Clark MA, et al. Time course of haemoglobin massduring21days live high:train low simulated altitude. Eur J Appl Physiol,2009,106(3):399~406
    33Bauge M. Sickle-cell anemia complicated by sudden splenomegaly duringhigh altitude flight. Sang,1955,26(6):620~1
    34Lomonaco T. Influence of high altitude flight on drepanocytic anemia. RivMed Aeronaut,1955,18(4):922~34
    35Hittmair A. High altitude treatment of anemia.Wien Med Wochenschr,1956,106(9):208~11
    36Hurtado A. Some clinical aspects of life at high altitudes. Ann intern med,1960,53:247~58
    37Almerekova AA. Cytochemical properties of the hematopoietic cells inhyporegenerative anemia under high mountain conditions. ZdravookhrKirg,1976,(6):15~9
    38Almerekova AA. Effect of high-altitude hypoxia on the qualitative makeupof the erythrocytes in animals with hyporegenerative anemia. ZdravookhrKirg,1978,(4):30~6
    39Krasiuk AN, Barabo VA, Orel VE,et al. Certain mechanisms restoringhematopoiesis at high altitudes in anemias induced by exposure toalkylating agents. Fiziol Zh,1980,26(1):110~5
    40Mirrakhimov MM, Raimzhanov AR, Popova OI. Characteristics ofkinetics of acid erythrograms in healthy persons and in patients withhypoplastic anemia in high altitude. Sov Med,1985,(12):81~3
    41Mirrakhimov MM, Raimzhanov AR. Hemopoiesis regulation in healthysubjects and in patients with aplastic anemia at high altitudes.Vestn AkadMed Nauk SSSR,1990,(9):41~7
    42Raimzhanov AR, Chaltabaev KS. Serum ferritin level in patients withhypoplastic anemia at high altitudes.Gematol Transfuziol,1987,32(9):36~8
    43Raimzhanov AR. Changes in hematopoiesis in patients with hypoplasticanemia at high altitudes.Ter Arkh,1987,59(6):52~6
    44Dang SN, Yan H, Wang XL. Study on the hemoglobin levels of childrenunder the age of three years and the prevalence of anemia at high altitudein Tibet of China. Zhonghua Liu Xing Bing Xue Za Zhi,2003,24(12):1108~11
    45Ramirez-Cardich ME, Saito M, Gilman RH,et al. Effect of maternalanemia at high altitude on infant hematocrit and oxygenation. Am J TropMed Hyg,2004,70(4):420~4
    46Kolsteren P, van der Stuyft P. Diagnosis of anemia at high altitude:problems encountered in Tibet. Ann Soc Belg Med Trop,1994,74(4):317~22
    47Wilson R. Anemia at high altitude. Alaska Med,1977,19(4):49~52
    48Addae S, Adzaku F, Mohammed S,et al. Survival of patients with sicklecell anemia living at high altitude. South Med J,1990,83(4):487
    49Semenza GL, Dureza RC, Traystman MD, et al. Human erythropoietingene expression in transgenic mice: multipletranscription initiation sitesand cis-acting regulatory elements. Mol Cell Biol,1990,10(3):930~8
    50Manalo DJ, Rowan A, Lavoie T, et al. Transcriptional regulation ofvascular endothelialcell responses to hypoxia by HIF-1. Blood,2005,105(2):659~69
    51Haddad JJ, Harb HL. Cytokines and the regulation of hypoxia-induciblefactor (HIF)-1alpha. Int Immunopharmacol,2005,5(3):461~83
    52Lee JW, Bae SH, Jeong JW, et. al. Hypoxia-inducible factor (HIF-1)alpha:its protein stability and biological functions. Exp Mol Med,2004,36(1):1~12
    53Hellwig-Burgel T, Rutkowski K, Metzen E, et al. Interleukin-1beta andtumor necrosis factor-alpha stimulate DNA binding of hypoxia-induciblefactor1. Blood,1999,94(5):1561~7
    54Zinkernagel AS, Johnson RS, Nizet V. Hypoxia inducible factor (HIF)function ininnate immunity and infection. J Mol Med,2007,85(12):1339~46
    55Walmsley SR, Print C, Farahi N, et al. Hypoxia-induced neutrophilsurvival ismediated by HIF-1alpha-dependent NF-kappaB activity. J ExpMed,2005,201(1):105~15
    56Zarember KA, Malech HL. HIF-1alpha: a master regulator of innate hostdefenses? J Clin Invest,2005,115(7):1702~4
    57Weidemann A, Kerdiles YM, Knaup KX, et al. The glial cell response isan essential component of hypoxia-induced erythropoiesis in mice. J ClinInvest,2009,119(11):3373~83
    58Bachmann S, Le Hir M, Eckardt KU. Co-localization of erythropoietinmRNA and ecto-5’-nucleotidase immunoreactivity in peritubular cells ofrat renal cortex indicates that fibroblasts produce erythropoietin. JHistochem Cytochem,1993,41(3):335~41
    59Maxwell PH, Osmond MK, Pugh CW, et al. Identification of the renalerythropoietin-producing cells using transgenic mice. Kidney Int,1993,44(5):1149~62
    60Obara N, Suzuki N, Kim K, et al. Repression via the GATA box isessential for tissue-specific erythropoietin gene expression. Blood,2008,111(10):5223~32
    61Fandrey J. Oxygen-dependent and tissue-specific regulation of erythro-poietin gene expression. Am J Physiol Regul Integr Comp Physiol,2004,286(6): R977~88
    62Stopka T, Zivny JH, Stopkova P, et al. Human hematopoietic progenitorsexpress erythropoietin. Blood,1998,91(10):3766~72
    63Weidemann A, Johnson RS. Nonrenal regulation of EPO synthesis.Kidney Int,2009,75(7):682~8
    64Abbrecht PH, Littell JK. Plasma erythropoietin in men and mice duringacclimatization to different altitudes. J Appl Physiol,1972,32:54~8
    65Meerson F, Pozharov V, Minyailenko T. Superresistance against hypoxiaafter preliminary adaptation to repeated stress. J Appl Physiol,1994,76(5):1856~61
    66Nanduri J, Nanduri RP. Cellular mechanisms associated with intermittenthypoxia. Essays Biochem,2007,43:91~104
    67Carlsen H, Alexander G, Austenaa LM, et al. Molecular imaging of thetranscription factor NF-kappaB, a primary regulator of stress response.Mutat Res,2004,551(1-2):199~211
    68Huxford T, Ghosh G. A structural guide to proteins of the NF-kappaBsignaling module. Cold Spring Harb Perspect Biol,2009,1(3): a000075
    69Makarov SS. NF-kappa B in rheumatoid arthritis: a pivotal regulator ofinflammation, hyperplasia, and tissue destruction. Arthritis Res,2001,3(4):200~6
    70Koul D, YaoY, Abbmzzese JL, et al. Tum or suppressor MMAC/PTENinhibits cytokine-induced NF-Kappa B activation without interfering withthe I Kappa B degradation pathway. J Biol Chem,2001,276(14):11402~8
    71Karin M, Delhase M. The I kappa B kinase (IKK) and NF-kappa B: keyelements of proinflammatory signalling. Semin Immunol,2000,12(1):85~98
    72Nanduri J, Yuan G, Kumar GK, et al. Transcriptional responses tointermittent hypoxia. Respir Physiol Neurobiol,2008,164(1-2):277~81
    73Han J, Lee JD, Bibb SL, et al. AMAP k inase targeted by endotoxin andhyperosmolarity in mammalian cells. Science,1994,265(5173):808~11
    74Enslen H,Raingeaud J, Davis RJ. Selective activation of p38mitogen-activated protein (MAP) kinaseiso forms by the MAP kinase kinasesMKK3and MKK6. J Biol Chem,1998,273(3):1741~8
    75Han J, Sun P. The pathways to tumor suppression via route p38. TrendsBiochem Sci,2007,32(8):364~71
    76Obata T, Brown GE, Yaffe MB. MAP kinase pathways activated by stress:the p38MAPK pathway. Crit Care Med,2000,28(4):67~77
    77Geest CR, Coffer PJ. MAPK signaling pathways in the regulation ofhematopoiesis. J Leukoc Biol,2009,86(20):237~50
    78Hideshima T, Akiyama M, Hayashi T, et al. Targeting p38MAPK inhibitsmultiple myeloma cell growth in the bone marrow milieu. Blood,2003,101(2):703~5
    79Ito K, Hirao A, Arai F, et al. Reactiveoxygen species act through p38MAPK to limit the life span of hematopoietic stem cells. Nat Med,2006,
    12(4):446~51
    80Virginia Probin, Yong Wang, Daohong Zhou. Busulfan-induced senes-cence is dependent on ROS production upstream of the MAPK pathway.Free Radic Biol Med,2007,42(12):1858~65
    81Efstratios Katsoulidis, Yongzhong Li, Patrick Yoon, et al. Role of the p38mitogen-activated protein kinase pathway in cytokine-mediated hemato-poietic suppression in myelodysplastic syndromes. Cancer Res,2005,65(19):9029~37
    82Tony A, Navas, Mani Mohindru, et al.Inhibition of overactivated p38MAPK can restore hematopoiesis in myelodysplastic syndromeprogenitors. Blood,2006,108(13):4170~77
    83Dyugovskaya L, Polyakov A, Cohen-Kaplan V, et al. Bax/Mcl-1balanceaffects neutrophil survival in intermittent hypoxia and obstructive sleepapnea: effects of p38MAPK and ERK1/2signaling. J Transl Med,2012,22(10):211
    84Lan A, Liao X, Mo L, et al. Hydrogen sulfide protects against chemicalhypoxia-induced injury by inhibiting ROS-activated ERK1/2and p38-MAPK signaling pathways in PC12cells. PLoS One,2011,6(10): e25921
    85Lan AP, Xiao LC, Yang ZL, et al. Interaction between ROS andp38MAPK contributes to chemical hypoxia-induced injuries in PC12cells.Mol Med Rep,2012,5(1):250~5
    86Zhou YH, Cai XH, Zhang CX, et al. The effect of chronic intermittenthypoxia on p38MAPK in cerebral tissues of weanling rats. Zhongguo YingYong Sheng Li Xue Za Zhi,2009,25(1):45~8
    87Powell CS, Wright MM, Jackson RM. P38mapk and MEK1/2inhibitioncontribute to cellular oxidant injury after hypoxia. Am J Physiol Lung CellMol Physiol,2004,286(4): L826~3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700