用户名: 密码: 验证码:
含稀土镁合金细晶化、塑性变形再结晶、时效脱溶及焊接性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
含稀土元素的镁合金具有铸造性能佳,塑性变形潜力大,比强度高,力学性能优良等诸多优点。作者以Mg-Al-Zn(AZ31、AZ61、AZ91)、ZK60、Mg-0.5%Zn-0.5%Zr系列为基础合金,进行稀土合金化研究,用X射线衍射和扫描电子显微分析方法对含稀土元素的合金进行了物相鉴定,用稀土元素和锆对试验合金铸锭进行细晶化处理,在热/力模拟试验的基础上,对含稀土元素的镁合金进行了轧制、挤压塑性变形,对变形后的合金进行了时效强化研究以及电弧焊焊接性试验。利用光学显微镜、扫描电子显微镜以及透射电子显微镜对试验合金在铸态、塑性变形过程状态以及热处理前后的微观组织进行了观察和分析。
     1、添加稀土元素的镁及镁合金除了基体相α(Mg)和Mg-Al-Zn合金中的Mg_(17)Al_(12)相、Mg-Zn-Zr中的MgZn等相外,还有稀土元素与镁、锌生成的稀土化合物,这些中间相在铸态时主要分布在晶界,挤压变形后沿着挤压方向分布;加入稀土Ce可以明显细化AZ31合金铸态晶粒,加入Nd、Y分别细化了Mg-0.5%Zn-0.5%Zr合金和ZK60合金铸态晶粒。作者认为镁合金凝固过程中,受凝固时扩散动力学条件限制,稀土元素在固/液界面前沿富集,增大了合金的成分过冷,使树枝晶的生长更发达,二次枝晶增多,枝晶间距减小,晶粒细化。凝固过程中溶质再分配造成固/液界面前沿成分过冷度增大是稀土元素细化镁合金的主要机理。
     2、轧制变形使含稀土的Mg-Al-Zn-Ce合金产生了明显的加工硬化,提高了合金强度,轧制变形时被破碎的β相和Al_4Ce稀土相是强化合金的主要原因;Mg-Al-Zn-Ce合金在热塑性变形时有多种变形机制共同作用,大尺寸晶粒产生位错滑移和晶体孪生,小尺寸晶粒产生晶界滑动协调大尺寸晶粒的变形,适量Ce的加入有助于在热轧变形过程中产生大量的动态再结晶小尺寸晶粒,更有效地提高了含稀土镁合金的塑性变形能力。
     3、含1.0%Ce的AZ31、AZ61、AZ91合金在673K温度下的变形激活能均比不含Ce的AZ31、AZ61、AZ91合金低,使得合金在673K温度下的塑性变形能力增加,因而有利于合金的塑性变形;在Mg-0.5%Zn-0.5%Zr合金中添加稀土元素Nd和Y、在ZK60合金中添加稀土元素Y后,形成的含稀土化合物在镁合金基体中弥散分布,阻碍合金塑性变形过程中的位错滑移,使位错发生交滑移和攀移所需能量提高,从而提高了合金发生动态再结晶的温度。
     4、Mg-0.5%Zn-0.5%Zr~2.2%Nd-4.0%Y合金有良好的挤压变形能力和热处理强化能力,挤压后T5处理态的室温力学性能为:σ_b=293.5MPa,σ_(0.2)=281.2MPa,δ=11%;高温瞬时拉伸力学性能250℃为σ_b=228.78MPa,δ=14.8%;330℃为σ_b=211.2MPa,δ=16.4%。作者的研究工作表明,Mg-0.5%Zn-0.5%Zr-2.2%Nd-4.0%Y合金具有良好的室温和高温综合力学性能。
     5、含稀土的镁合金淬火获得镁基过饱和固溶体,在时效脱溶时,Mg-Al-Zn系合金直接析出Mg_(17)Al_(12)平衡相,Mg_(17)Al_(12)相脱溶以两种方式进行,即晶内连续脱溶和晶界不连续脱溶。含稀土的ZK60合金脱溶过程存在预脱溶阶段,在150℃时效时,先析出MgZn′(β′)过渡亚稳相,ZK60合金的时效强化主要来源于过渡相β′对位错运动的阻碍作用,稀土元素Nd、Y对ZK60合金晶粒的细化有利于提高合金中β′相的析出密度,使合金的强化值增大。ZK60-RE合金在150℃时效时的脱溶过程为:SSSS→β′→β(平衡相),Mg-0.5%Zn-0.5%Zr-2.2%Nd-4.0%Y合金在200℃时效时的脱溶过程为:SSSS→β″→β′→β(平衡相)。
     6、GTAW焊接试验表明,AZ31、AZ61Ce合金焊缝金属熔池边缘区域依托母材未熔晶粒形核、长大,即联生生长;稀土Ce能改善AZ31、AZ61合金焊接接头强度及提高焊接接头有效系数,Ce改善Mg-Al-Zn合金焊接性的原因是由于Ce与Al形成了高熔点的Al_4Ce相,减少了粗大的Mg_(17)Al_(12)相的数量和细化了焊缝区的晶粒。ZK60-2.0%Nd-1.0%Y合金焊接接头有效系数比ZK60合金提高明显,原因是稀土元素Nd、Y与镁、锌形成了热稳定性高的第二相稀土化合物,减少了分布在晶界上的粗大MgZn数量。
Magnesium alloys containing rare-earth (RE) are among the bestlightweight structural materials with a good castablity, significant latentplastic deformability, high strength-to-weight ratio and excellentmechanical properties. The author did a lot of researches in rare-earthalloying with Mg-Al-Zn (AZ31 AZ61 AZ91), ZK60 and Mg-RE alloys.The intermetallic phase was identified by X-rays diffraction analysis(XRD) and scan electron microscopy (SEM). The refinement of grainswas carried out by adding RE and Zr. The hot-force compressionsimulation experiment of the investigated alloys was performed beforerolling or extrusion plastic deformation. The aging precipitation andweldability of the investigated alloys was studied and the microstructurewere took observation by optical microscopy (OM), SEM andtransmission electron microscopy (TEM) at casting, during plasticdeformation, before and after heat-treatment. The experimental resultswere analysed and generalized.
     1. The author made three series of Mg-Al-Zn-Ce; ZK60-RE andMg-0.5%Zn-0.5%Zr-RE alloys. The intermetallic phase has Mg-REcompounds besidesα-Mg, Mg_(17)Al_(12) of the Mg-Al-Zn alloys,α-Mg, MgZn of the ZK60-RE andα-Mg of the Mg-0.5%Zn-0.5%Zr-RE alloys.The intermetallic phase distributed on the crystal boundary as-casting and aligned along extrusion direction after extruding. The crystal-size ofAZ31Ce as-casting was refined by adding Ce. The crystal-size of theMg-0.5%Zn-0.5%Zr and ZK60 alloys were refined by adding Nd and Y.The essences of refinement of grains of the Mg alloy were systematicallystudied. It revealed that adding RE can improve the refinement of grains.Through principle of solute elements division principle, the mechanism ofrefinement of grains of Mg alloys containing RE is caused by thecomposition undercooling as solute elements (RE) division again.
     2. After rolling, significant strengthening was emerged fromMg-Al-Zn-Ce alloys. The ultimate tensile strength was improved. Theinvestigated alloys were strengthened chiefly by Al_4Ce andβ-Mg_(17)Al_(12)broken during rolling. The mechanism of plastic deformation of theMg-Al-Zn-Ce alloys is versatile. The slip of dislocation and twinningwere carried on large-size grains. The deformation of large-size grainswere coordinated by the small-size grains. A lot of small-size: dynamicrecrystallization grains were produced during rolling since addingadequate Ce. The deformability of the investigated alloys was increasedmassively.
     3. The deformation activation energy of the AZ31, AZ61, AZ91containing 1.0%Ce are lower than that of AZ31, AZ61, AZ91 alloyswithout Ce. The deformability of the former was improved at 673K. AfterMg-0.5%Zn-0.5%Zr alloys added Nd and Y, ZK60 added Y, the compounds containing RE distributed pervasively on the Mg matrix. Theslip of dislocation was hindered by the compounds particle during plasticdeformation. The energy of dislocation slip increased and the dynamicrecrystallization temperature increased.
     4. Mg-0.5%Zn-0.5%Zr-2.2%Nd-4.0%Y alloy possesses goodextrusion deformability and strengthening ability after heat-treatment.The mechanical properties of this alloy at T5-treatment after extrusion areσ_b=293.5MPa,σ_(0.2)=281.2MPa,δ=11%. The ultimate tensile strengthat 250℃areσ_b=228.78MPa,δ=14.8% andσ_b=211.2MPa,δ=16.4% at 330℃. Mg-0.5%Zn-0.5%Zr-2.2%Nd-4.0%Y alloy possesseshigh mechanical properties comprehensively.
     5. The equilibriumβ-Mg_(17)Al_(12) precipitated directly fromsupersaturated solid solution in Mg-Al-Zn-Ce alloys. Theβphaseprecipitated continuously within crystal grain and precipitateduncontinuously on the crystal boundary. It was found that ZK60 alloysprecipitated beforehand. The transition phase MgZn′(β′) precipitated firstat 150℃treatment. The strengthening of ZK60 alloys originates fromthat hindrance ofβ′to dislocation. The refinement of grains since Zrand RE Nd, Y are beneficial to increase the density ofβ′in Mg matrix.The value of strengthening improved markedly. The precipitation order ofZK60-RE alloys are SSSS→β′→βat 150℃and that ofMg-0.5%Zn-0.5%Zr-RE alloys are SSSS→β″→β′→βat 200℃.
     6. After doing gas tungsten arc welding (GTAW/MIG) experimentwith AZ-Ce, ZK60-RE alloy, the formation of crystal nucleus andcrystalline growth of the welding line melted metal of the investigatedalloy were found. In other word, the new nucleus growth was allied to thegrain of mother stuff crystal, and the heterogeneous nucleation occured inthe centre of the welding line melted metal. RE can improve thetransverse ultimate tensile strength of AZ31 and ZK60 alloys. Theeffectual coefficient of the welding connect increased obviously. Thestrengthening mechanism of the welding connect of AZ31Ce alloys is thatCe and Al combined Al_4Ce compound. Nd and Y reduced the harm of Znto grain boundary while Zn and Mg compound of bulky MgZn phaseduring crystallizing.
引文
[1] 许并社,李明照.镁冶炼与镁合金熔炼工艺.北京:化学工业出版社,2006.
    [2] 陈振华,严红革,陈吉华等.镁合金.北京:化学工业出版社,2004.
    [3] 黎文献,余琨,李松瑞,等.镁及镁合金.长沙:中南大学出版社,2005.
    [4] 陈振华,夏伟军,严红革,等.变形镁合金.北京:化学工业出版社,2005.
    [5] 刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用.北京:机械工业出版社,2002.
    [6] Usk B R S. Magnesium products Design. New York: The International Magnesium Magnesium Association, 1987.
    [7] 中国腐蚀与防腐学会.金属腐蚀手册.上海:上海科学技术出版社,1987.
    [8] G. Song, A. Astrens, Corr. Sci. 1998, Vol. 41(10):1761
    [9] A. Yamamoto; Mater. Sci. Forim, 2000, Vol.350-351:241
    [10] Handbook of Ternary Alloy Phase Diagrams. Vol.3 Rvillars, A.Prince & H.Okarrato, 2001
    [11] Aghion E, Bronfin B. The role of magnesium Industry in protection the environment. J Mater Process Tech, 2001, 117:381-385.
    [12] Friedrich H, Schumann S. Research a "new magnesium stage" in the automotive Industry. J Mater Process Tech, 2001, 117:276-281.
    [13] 余琨.稀土变形镁合金组织性能及加工工艺研究:[博士学位论文].长沙:中南大学,2002
    [14] 孙伯勤.镁合金压铸件在汽车行业中的巨大应用潜力.特种铸造及有色合金,1998,(3):40-44
    [15] B. L. Mordike. Development of highly creep resistant Magnesium alloys. Jounal of materials processing technology, 2001, (117):391-394
    [16] Mabuchi M, Higashi K. Strengthening mechanisms of Mg-Si alloys. Acta Mater, 1996, 44(11):4611-4618.
    [17] 《轻金属材料加工手册》编写组.轻金属材料加工手册(下册).北京:冶金工业出版社,1980
    [18] Gharghouri M A, Weatherly G C, Embury J D, et al. Study of the mechanical properties of Mg-7.7%Al by in-situ neutron diffraction. Phil Mag, 1998, 76A:1671-1695.
    [19] Koike J, Kobayashi T, Mukai T, et al. The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys. Acta mater, 2003, 51:2055-2065.
    [20] Galiyev A, Kaibyshev R, Gottstein G. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60. Acta Mater, 200I, 49:1199-1207.
    [21] H. Watanabe, H. Tsutsui. Grain size control of commercial wrought Mg-Al-Zn alloys utilizing by dynamic recrystallization, Mater. Trans. 2001, 42(7): 1200-1205
    [22] Fleischer R L. Stacking fault energies of hcp metals. Scr Metal, 1986, 20:223-224.
    [23] PERez-Prado M T, Dek Valle J A, Contreras J M, et al. Microstructure evolution during large stain hot rolling of an AM60 Mg alloy. Scr Mater, 2004, 50:661-665.
    [24] Ino S E, Humphreys F J, White S H. Dynamic recrystallisation and the development of microstructure during the high temperature deformation of magnesium. Acta Mater, 1982, 30:1909-1919.
    [25] Serra A, Pond R C, Bacon D J. Computer simulation of the structure and mobility of twining dislocations in hcp metals. Act Metal Mater, 1991, 39(7): 1469-1480.
    [26] 罗成,赵红利,饶晓晓.汽车用新型镁合金材料.金属材料研究,2004,30(4):17-21
    [27] 郭洪河,刘生发,黄尚宇,等.镁合金在汽车中的应用与发展.汽车工艺与材料,2003,(10):34-36
    [28] M. Ericsson, R. Sandstro.m.Influence of welding speed on the fatigue of friction stir welds, and comparison with MIG and TIG. International Journal of Fatigue. 2003, (25):1379-1387
    [29] 阮登林,阮登荣,付建英.铝镁合金焊接新工艺——双弧焊接技术.管道技术与设备,1998(6):21-22
    [30] 关治军.LF5铝镁合金的焊接.焊接,1994(1):21-22
    [31] 王顺花,毕晓敏.铝和铝镁合金熔化极氩弧焊气孔及防止.电焊机,2001,(4):22-25
    [32] 张华,林三宝,赵衍华,等.搅拌摩擦焊在超塑性焊接及成形方面的应用.电焊机,2004,34(1):27-30
    [33] 姚君山,张彦华,王国庆,孟凡新.搅拌摩擦焊技术研究进展.宇航材料工艺,2003,(4):24-29
    [34] 范平章.搅拌摩擦焊在航天工业中的应用与发展.航天制造技术,2003,6(3):32-35
    [35] 何建军,刘明宇,杨宗辉.搅拌头—搅拌摩擦焊的心脏.电焊机,2004,34(1):24-26
    [36] 王元良,周有龙,胡久富,等.解决运载工具铝合金焊接难题的新途径—搅拌摩擦焊.电焊机,2004,34(1):34-38
    [37] 栾国红,柴鹏,孙成彬,等.汽车制造驶上搅拌摩擦焊之路.电焊机,2004,34(1):1-6
    [38] 栾国红,南利辉,孙成彬,等.新型船舶制造技术-搅拌摩擦焊.热加工工艺,2004,(1):53-55
    [39] 张华,林三宝,吴林,等.搅拌摩擦焊研究进展及前景展望.焊接学报,2003,24(3):91-95
    [40] Yutaka S. Sato, Seung Hwan C. Park, Masato Michiuchi, et al. Constitutional liquation during dissimilar friction stir welding of Al and Mg alloys, scripta materialia, 2004, (50): 1233-1236
    [41] R.W. Fonda a, J.F. Bingert b, K.J. Colligan. Development of grain structure during friction stir welding. Scripta Materialia, 2004, (51):243-248
    [42] Seung Hwan C. Park, Yutaka S. Sato, Hiroyuki Kokawa. Effect of micro-texture on fracture location in friction stir weld of Mg alloy AZ61 during tensile test. Scripta Materialia, 2003, (49): 161-166
    [43] K.N. Krishnan. On the formation of onion rings in friction stir welds. Materials Science and Engineering, 2002, (A327):246-251
    [44] 邢丽,柯黎明,孙德超,等.镁合金薄板的搅拌摩擦焊工艺.焊接学报,2001,22(6):18-20
    [45] 罗治平,张少卿.稀土在镁合金溶液中作用的热力学分析.中国稀土学报,1995,13(2):119-122
    [46] Nair K S, Mittal M C. Rare earths in magnesium alloys. Material Science Forum, 1988, 30:89-104
    [47] Wang Qudong, Lu Yizhen. Study on the fluidity of AZ91+xRE magnesium alloy. Materials Science and Engineering, 1999, 271 (1-2): 109-115
    [48] 彭立明,曾小勤.一种新型镁合金的开发及其应用.有色金属加工,2003,32(2):18-22
    [49] 张小明.稀土耐热镁合金的时效析出.稀有金属快报,2000(7):20-21
    [50] 黄伯杰,聂邦盛.Mg-Nd-Zn-Zr耐热高强铸造镁合金.特种铸造及有色合金,1998(6):40-42
    [51] 杨彬.镁合金研究及制备发展概况.铸造设备研究,2001(1):36-38,44
    [52] 《轻金属材料加工手册》编写组.轻金属材料加工手册(上册).北京:冶金工业出版社,1988
    [53] 赵志远.稀土金属在铸造镁合金中的应用.材料工程,1993(12):31-34
    [54] 梁维中 刘洪汇.耐热镁合金的研究现状及发展趋势.特种铸造及有色合金,2003(2):39-41
    [55] 卢志文 汪凌云.新型抗蠕变镁合金的研究.2002年材料科学与工程新进展(上).北京:冶金工业出版社,2003
    [56] Mordike B L, Ebert T. Magnesium properties-applications-potential. Mater Sci Eng A, 2001, 302:37-45.
    [57] Kiryuu, Masao. Corrosion resistance of heat resistant magnesium alloys containing heavy rare earth elements, light metal, 1996, 46 (1): 39-44
    [58] Amy L, Rudd. The corrosion protection afforded by rare earth conversion coatings applied to magnesium. Corrosion Science, 2000, 42 (2): 275-288
    [59] Liu HaifengH, Hou Jun, Liu Yaohu. Development of High Temperature Creep Resistant Die-Casting Magnesium Alloy Contained Rare Earth. Chin. RE. Soc., 2005, 23(3): 7
    [60] Kleiner, S Beffort, O Uggowitzer R Microstructure evolution during reheating of an extruded Mg-Al-Zn alloy into the semisolid state. Scripta Materialia, 2004, 51 (5):405-410
    [61] Czerwinski F, Size evolution of the unmelted phase during injection molding of semisolid magnesium alloys. Scripta Materialia, 2003, 48(4): 327-331
    [62] Jones H, Shaw C. The contributions of different alloying additions to hardening in rapidly solidified magnesium alloys, Materials Science and Engineering: A, 1997, 226-228(15): 856-860
    [63] Takuda H, Fujimoto H, Hatta N. Modelling on flow stress of Mg-Al-Zn alloys at elevated temperatures, Journal of Materials Processing Technology, 1998, 80-81(8): 513-516
    [64] 曾小勤,丁文江,姚正裔.Mg-Zn-Al系合金组织和力学性能.上海交通大学学报,2005,39(1):46-51
    [65] Watanabe H, Mukai T, Kohzu M, et al. Effect of temperature and grain size on the dominant diffusion process for superplastic flow in an AZ61 magnesium alloy. Acta Materialia, 1999, 47(14): 3753-3758
    [66] 张诗昌,蔡启舟,王立世,等.钇和混合稀土对AZ91合金高温力学性能的影响,特种铸造及有色合金,2005,(5):23-27
    [67] Murai, Tsutomu, Matsuoka, et al. Effects of extrusion conditions on microstructure and mechanical properties of AZ31B magnesium alloy extrusions. Journal of Materials Processing Technology, 2003, 141(2): 207-212
    [68] Watanabe H, Tsutsui H.; Mukai T, et al. Deformation mechanism in a coarse-grained Mg-AI-Zn alloy at elevated temperatures. International Journal of Plasticity, 2001, 17(3): 387-397
    [69] Myshlyaev M M, McQueen H J, Mwembela A, et al. Twinning, dynamic recovery and recrystallization in hot worked Mg-Al-Zn alloy. Materials Science and Engineering: A, 337(1-2): 121-133
    [70] Bussiba A, Ben Artzy A, Shtechman A, et al. Grain refinement of AZ31 and ZK60 Mg alloys—towards superplasticity studies. Materials Science and Engineering: A, 2001, 302(1):56-62
    [71] Ma Chunjiang, Liu Manping, Wu Guohua, et al. Tensile properties of extruded ZK60-RE alloys. Materials Science and Engineering: A, 2003, 349(1-2): 207-212
    [72] Skripnyuk V M, Rabkin E, Estrin, The effect of ball milling and equal channel angular pressing on the hydrogen absorption/desorption properties of Mg-4.95 wt% Zn-0.71 wt% Zr (ZK60) alloy. Acta Materialia, 2004, 52(2):405-414
    [73] Watanabe, Hiroyuki, Mukai, et al. Low temperature superplasticity of a fine-grained ZK60 magnesium alloy processed by equal-channel-angular extrusion. Scripta Materialia, 2002, 46(12): 851-856
    [74] Galiyev A, Kaibyshev R. Superplasticity in a magnesium alloy subjected to isothermal rolling. Scripta Materialia, 2004, 51 (2): 89-93
    [75] Ogawa N, Shiomi M, Osakada K. Forming limit of magnesium alloy at elevated temperatures for precision forging. International Journal of Machine Tools and Manufacture, 2002, 42(5): 607-614
    [76] Watanabe, Hiroyuki, Mukai. Superplasticity in a ZK60 magnesium alloy at low temperatures. Scripta Materialia, 1999, 40(4): 477-484
    [77] Galiyev A, Kaibyshev R, Gottstein G. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60. Acta Materialia, 2001, 49(7): 1199-1207
    [78] Chuvil, deev V N, Nieh T G, et al. Low-temperature superplasticity and internal friction in microcrystalline Mg alloys processed by ECAP. Scripta Materialia, 2004, 50(6): 861-865
    [79] Gu Mingyuan, Wu Zhengan, Jin Yanping, et al. Effects of reinforcements on the aging response of a ZK60-based hybrid composite. Materials Science and Engineering: A, 272(2): 257-263
    [80] 张静,潘福生.含锆镁合金中的合金相.兵器材料科学与工程,2002,25(6):50-56
    [81] 李亚国,段劲华.钇稀土在Mg-Zn-Zr镁合金中的强化作用.现代机械,2003,(5):86~88
    [82] D. H. Ping a, K. Hono a, J. F. Nie. Atom probe characterization of plate-like precipitates in a Mg-RE-Zn-Zr casting alloy. Acta Mater, 2003, (48): 1017-1022
    [83] Kun Yu, Wenxian Li, Jun Zhao, et al. Plastic deformation behaviors of a Mg-Ce-Zn-Zr alloy. Scripta Materialia, 2003, (48):1319-1323
    [84] Chunjiang Ma, Manping Liu. Tensile properties of extruded ZK60-RE alloys. Materials ScienceandEngineering, 2003, 349 (1-2):207-212
    [85] Alok Singh, Nakamura M. Quasicrystal strengthened Mg-Zn-Y alloys by extrusion. Scripta Materialia, 2003, 49 (5): 417-422
    [86] Rokhlin L L, Dobatkina T V, Tarytina I E. Peculiarities of the phase relations in Mg-rich alloys of the Mg-Nd-Y system. Journal of Alloys and Compounds, 2004, 367(1-2):17-19
    [87] Sugamata M, Kaneko J, Hanawa S. Structures and mechanical properties of rapidly solidified Mg-Y based alloys. Materials Science and Engineering: A, 1997, 226-228(15):861-866
    [88] Suzuki Mayumi, Sato Hiroyuki, Maruyama, et al. Creep behavior and deformation microstructures of Mg-Y alloys at 550 K. Materials Science and Engineering: A, 252(2): 248-255
    [89] Suzuki, Mayumi, Kimura, et al. Effects of zinc on creep strength and deformation substructures in Mg-Y alloy. Materials Science and Engineering: A, 2004, 387-389(15): 706-709
    [90] Zhang M X, Kelly P M. Morphology and crystallography of Mg_(24)Y_5 precipitate in Mg-Y alloy. Scripta Materialia, 2003, 48(4): 379-384
    [91] Rokhlin L L, Nikitina N I. Recovery after ageing of Mg-Y and Mg-Gd alloys. Journal of Alloys and Compounds, 279(2): 166-170
    [92] Jiang Q C, Wang H Y, Wang Y, et al. Modification of Mg_2Si in Mg-Si alloys with yttrium. Materials Science and Engineering: A, 2005, 392(1-2): 130-135
    [93] Socjusz-Podosek M, Litynska L. Effect of yttrium on structure and mechanical properties of Mg alloys. Materials Chemistry and Physics, 2003, 80(2): 472-475
    [94] Bonhomme F, Yvon K. Synthesis and crystal structure refinement of cubic Mg_(6.8)Y. Journal of Alloys and Compounds, 1996, 232(1-2): 271-273
    [95] Suzuki, Mayumi, Sato, et al. Creep deformation behavior and dislocation substructures of Mg-Y binary alloys. Materials Science and Engineering: A, 2001, 319-321(11): 751-755
    [96] Suzuki M, Kimura T, Koike J, et al. Strengthening effect of Zn in heat resistant Mg-Y-Zn solid solution alloys. Scripta Materialia, 2003, 48(8): 997-1002
    [97] 袁序弟.镁合金在汽车工业的应用前景.汽车制造与装备,2005,(4):66-69
    [98] 刘正,王越,王中光.镁基轻质材料的研究与应用.材料研究学报,2000,14(5):449~456
    [99] Cisar L, Yoshida Y, Kamado S, et al. Development of high strength and ductile magnesium alloys for automobile applications. Mater Sci Forum, 2003, 419-422:249-254.
    [100] Aghion E, Bronfin B. The role of magnesium Industry in protection the environment. J Mater Process Tech, 2001, 117:381-385.
    [101] Friedrich H, Schumann S. Research a "new magnesium stage" in the automotive Industry. J Mater Process Tech, 2001, 117:276-281.
    [102] N.V. Ravi Kumar, Blandin, Desrayaud, et al. Grain refinement in AZ91 magnesium alloy during thermomechanical processing. Materials and Engineering, 2003, (A359): 150-157
    [103] J. Goken, D. Letzig, K. U. Kainer. Measurement of crack induced damping of cast magnesium alloy AZ91. Journal of Alloys and Compounds, 2004, (378):220-225
    [104] T. Sumitomo, C. H. C aceres, M. Veidt. The elastic modulus of cast Mg-Al-Zn alloys. Journal of Light Metals, 2002, (2):49-56
    [105] Asm International. Magnesium and Magnesium Alloy, OH: Metal Park, 1999
    [106] 杜挺.稀土元素在金属材料中的作用和机制.金属功能材料,1996,3(3):81-84
    [107] 杨遇春.稀土漫谈.北京:化学工业出版社,1999
    [108] 吴安如,夏长清,古一.镁-稀土合金的显微组织和力学性能研究.金属热处理,2005,30(8):21-24
    [109] 范才河,陈刚,严红革,等.稀土在镁及镁合金中的作用.材料导报 2005,19(7):61-68
    [110] 张洪杰,孟健,唐定骧.高性能镁稀土结构材料的研制、开发与应用.中国稀土学报,2004,22(1):40-47
    [111] Singh, Alok; Tasi A P. On the cubic W phase and its relationship to the icosahedral phase in Mg-Zn-Y alloys. Scripta Materialia, 2003, 49(2): 143-148
    [112] TAO Chun-Hu, ZHANG Shao-Qing. Rare-earth phase analyse of Mg-Zn-Zr-RE alloys. Journal of Rare Earths, 1990, 8(1): 52-56
    [113] 胡赓祥,钱苗根.金属学.上海:上海科学技术出版社,1980
    [114] 郝士明.材料热力学.北京:化学工业出版社,2004
    [115] 徐祖耀.材料热力学.北京:科学出版社,1999
    [116] 赵志远.稀土金属在铸造镁合金中的应用.材料工程,1993(12):31-34
    [117] 中国机械工程学会铸造专业分会.铸造手册—铸造非铁合金.北京:机械工业出版社,1999
    [118] 王渠东,吕宜振.稀土在铸造镁合金中的应用.特种铸造及有色合金,1999(1):40-43
    [119] 曹明盛.物理冶金基础.北京:冶金工业出版社,1985
    [120] 张世军,黎文献等.铈对镁合金AZ30晶粒大小及铸态力学性能的影响.铸造,2002,15(2):767-771
    [121] 赵志远.稀土金属在铸造镁合金中的应用.材料工程,1993(12):31-34
    [122] 蔡叶,苏华钦,镁合金熔炼中若干问题的研究,能源研究与利用,1994(4):12-15
    [123] M.Hillert.合金中的扩散性相变与合金热力学(李清斌).沈阳:辽宁科学技术出版社,1984
    [124] 冯端.金属物理学——结构与缺陷.北京:科学技术出版社,1998
    [125] David. A. P. Phase Trans In Metals and alloys. Oxford: Alden Press, 1987
    [126] Smallman.R.E. Mordon Physical Metallurgy. Londen: Butterworth Press, 1985
    [127] R.W.Cahn,师昌绪,柯俊.非铁合金的结构与性能.北京:科学出版社,1999
    [128] I.J.Polemer, Mater.Sci.& Tech., 1994,Vol.10:1
    [129] R.S.Busk, Magnesium Products Design, New York: Marcel Dekker Inc: 1987
    [130] 国家标准局.金属拉伸试验试样.GB6397-86
    [131] 哈宽富.金属力学性能.北京:科学出版社,1983
    [132] 曹富荣.崔建忠,温景林.超轻Mg-Li合金熔铸工艺与轧制温度研究.轻合金加工技术,1999,27(9):35-37
    [133] J.Burke,W.Weiss.超细晶粒金属(王应文).北京:国防工业出版社,1982
    [134] 冯忠信,何家文,张建中,等.ZM1镁合金的滚轧形变强化及机理.机械工程学报,1996,2(1):103-106
    [135] 陈进化.位错与强化.沈阳:辽宁教育出版社,1991
    [136] 刘正,刘重阳,王中光,等.固溶和时效对压铸AZ91HP合金力学性能的影响.金属学报,1999,35(8):369-373
    [137] H.R.Shercliff, M.F.Ashby, Acta. Metall.Mater, 1999, 38(10): 1789-1794
    [138] J.P.Poirier.晶体的高温塑性变形(关德林).大连:大连理工大学出版社,1989
    [139] 弗里埃尔德 J.位错.科学出版社,北京,1984:111.
    [140] Vitek V, Igarashi M. Core structure of 1/3<1120> screw dislocation on basal and prismatic planes in hcp metals: an atomistic study. Phil Mag, 1991, 63A:1059-1075.
    [141] Bacon D J, Vitek V. Atomic-scale modeling of dislocation and related properties in the hexagonal-closed-packed metals. Metal Mater Trans, 2002, 33A:721-733.
    [142] Couret A, Caillard D. Prismatic glide in diavent hcp metals, Phil. Mag. A63, (1991), 1045-1057.
    [143] Tonda H, Ando S. Effect of temperature and shear direction on yield stress by {1122}<1123> slip in hcp metals. Metal Mater Trans, 2002, 33A:831-836.
    [144] Yoo M H, Morris J R, Ho K Met al. Nonbasal deformation models of hcp metals and alloys: role of dislocation soure and mobility. Metal Mater Trans, 2002, 33A:813-822.
    [145] Yoo M H, Agnew S R. Non-basal slip system in hcp metals and alloys: source mechanicsms, Mater. Sci. and Eng. 2001,(A319-321): 87-92.
    [146] Minonishi Y, Ishioka S, koiwa M et al. The core structures of 1/3<1123>{1122} edge dislocateion under applied shear stresss in an hcp model crystal. Phil Mag, 1982, 45A:835-850.
    [147] Ando S, Gotoh T, Tonda H. Molecular dynamics simulation of dislocation core structure in hexagonal-packed metals. Metal Mater Trans, 2002, 33A: 823-829.
    [148] Liqnt M H, Bacon D J. Computer simulation of dislocation cores in hcp metals Ⅲ. The effect of applied shear strain. Phil Mag, 1986, 53A(2):205-220.
    [149] Yoo M H. Slip, twining, and fracture in hexagonal closed-packed metals. Metal Mater Trans, 1981, 12A:409-418.
    [150] Couret A, Caillard D. An in situ study of prismatic glide in magnesium-Ⅱ microscopy activation parameters. Acta Matall, 1985, 33(8): 1455-1462.
    [151] Ino S E, Humphreys F J, White S H. Dynamic recrystallisation and the development of microstructure during the high temperature deformation of magnesium. Acta Mater, 1982, 30:1909-1919.
    [152] Gharghouri M A, Weatherly G C, Embury J D et al. Study of the mechanical properties of mg-7.7%al by in-situ neutron diffraction. Phil Mag, 1998, 76A: 1671-1695.
    [153] Serra A, Pond R C, Bacon D J. Computer simulation of the structure and mobility of twining dislocations in hcp metals. Act Metal Mater, 1991, 39(7):1469-1480.
    [154] del Valle J A, Perez-Prado MT, Ruano O A. Texture evolution during large-strain hot rolling of the Mg AZ61 alloy. Mater Sci Eng A, 2003, 335:68-78.
    [155] Serra A, Bacon D J. A new model for {10(?)2} twin growth ih hcp metal. Metal Mater Trans, 1996, 73(2):333-343.
    [156] Serra A, Bacon D J. Computer simulation of screw dislocation interactions with twin boundaries in hcp metals. Acta Mater, 1995, 43(12):4465-4481.
    [157] Christian J W, Mahajan S. Deformation twining, Progress in materials science, 1995, 39: 1-157.
    [158] Yoo M H, Lee J K. Deformation twinning in hcp metals and alloys. Phil Mag, 1991, 63(5):981-1000.
    [159] Myshlyaev M M, McQueen H J, Mwembela Aet al. Twining, dynamic recovery and recrystallization in hot worked Mg-Al-Zn alloy. Mater Sci Eng, 2002, 337(A): 121-133.
    [160] Klimanek P, Prtzsch A. Microstructure evolution under compression plastic deformation of magnesium at different temperature and strain rates. Mater Sci. Eng, 2002, 324(A): 145-150.
    [161] del Valle J A, Perez-Prado MT, Ruano O A. Texture evolution during large-strain hot rolling of the Mg AZ61 alloy. Mater Sci Eng A, 2003, 335:68-78.
    [162] M. T. Perez-Prado, J. A. del Valle. Effect of sheet thickness on the microstructure evolution of an Mg AZ60 alloy during large strain hot rolling. Scr. Mater. 50(2004), 667-671.
    [163] 毛卫民,赵新兵.金属的再结晶与晶粒长大.北京,冶金工业出版社,1994:47.
    [164] R. D. Doherty, D. A. Hughes. Current issues in recrtstallization: a review, Mater. Sci. Eng., A238(1997), 219-274
    [165] 潘复生,张丁非.铝合金及其应用.北京:化学工业出版社,2006
    [166] A. Eliezer, E. M. Gutman. Corrosion fatigue of die-cast and extruded magnesium alloys. Journal of Light Materials, 2001, 1(3): 179-186
    [167] J. Go ken, Riehemann. Dependence of internal friction of fibre-reinforced and unreinforced AZ91 on heat treatment. Materials Science and Engineering, 2002, (A324): 127-133
    [168] D. H. Bae, M. H. Lee. Application of quasicrystalline particles as a strengthening phase in Mg-Zn-Y alloys, Alloys and compound, 2002, 342(1-2):445-450
    [169] Asm International, Magnesium and Magnesium alloy, OH: Metal Park, 1999
    [170] D. Duly and Y. Brechet, Acta Metall. Mater., 1994, (42):3035-3044
    [171] 有色金属及其热处理编写组.有色金属及其热处理.北京:国防工业出版社,1981
    [172] 李金峰,Y对AZ91镁合金组织和力学性能的影响,铸造,2005,154(1):53-56
    [173] Y. Murakami, O. Kawanonand and H. Tamura. Men. Fac. Engng. Kyoto Univ., 24, part4, 1962, 411
    [174] Mwembela, Aaron Absalom. Hot workability of magnesium alloys: [Ph.D]. Canada: Concordia University, 1997
    [175] Islam, Farhana.; Thermodynamic modeling of magnesium-aluminum-calcium system: [Ph.D]. Canada: Concordia University, 2004
    [176] Ma, Nan Gang.;Growth of nanorods or nanostructured eutectic in the formation of magnesium-based metal matrix composites: [Ph.D]. Hong Kong: Chinese University of Hong Kong., 2004
    [177] Dumortier C, Lehert P. ISIJ International, 1999, 39(10):980
    [178] Hodgson P D, Kong L X, Davies C H J. J Mater Proc Teac, 1999, 87:131
    [179] Hidetoshi F, Mackay D J C. ISIJ International, 1999, 39(10): 1317
    [180] Schooling J M, Brown M. Mater Sci Eng, 1999, A260:222
    [181] Seed G M, Murphy G S. Fat Fract Eng Mater Struc, 1998, 21:183
    [182] S. H. Mousavi Anijdan, A. Bahrami. A new method in prediction of TCP phases formation in superalloys. Materials Science and Engineering A 2005 (396) : 138-142
    [183] Myllykoski P, Larkiola J, Nylander J. J Mater Proc Teac, 1996, 60:399
    [184] Liu Z Y, Wang W D, Gao W. J Mater Proc Teac, 1996, 57:332
    [185] Mabuchi M, Higashi K. Strengthening mechanisms of Mg-Si alloys. Acta Mater, 1996, 44(11):4611-4618.
    [186] 李元元,张卫文,刘英,陈维平,倪东惠.镁合金的发展动态和前景展望.特种 铸造及有色合金,2004,136(1):14-17
    [187] 高仑.镁合金成形技术的开发与应用.轻合金加工技术.2004,32(3):5-12
    [188] Singh, Alok, Tasi A P. On the cubic W phase and its relationship to the icosahedral phase in Mg-Zn-Y alloys. Scripta Materialia, 2003, 49(2): 143-148
    [189] M. Suzuki et al.Creep deformation behavior and dislocation substructures of Mg-Y binary alloys. Materials Science and Engineering, 2001, (A319-321): 751-755
    [190] B. L. Mordike. Development of highly creep resistant Magnesium alloys. Jounal of materials processing technology, 2001, (117):391-394
    [191] Amy L. Rudda, Carmel B. Breslina, Florian Mansfeldb. The corrosion protection orded by rare earth conversion coatings applied to magnesium. Corrosion Science, 2000, (42):275-288
    [192] D. Singh, C. Suryanarayana, L. Mertus, R.-H. Chen.Extended homogeneity range of intermetallic phases in mechanically alloyed Mg-Al alloys. Intermetallics, 2003, (11):373-376
    [193] Hiroyuki Watanabe, Hirosuke Tsutsui, Toshiji Mukai, etc. Grain size control of commercial wrought Mg-Al-Zn alloys utilizing dynamic recrystllization. Matrails Transactions, 2001, 42 (7): 1022~1205
    [194] Apps, Karimzadeh, H. King, J. F. Lorimer, G. W. Phase compositions in magnesium-rare earth alloys containing yttrium, gadolinium or dysprosium. Scripta Materialia, 2003, 48, (3): 475-481
    [195] Zhang, M. X, Kelly, P. M. Morphology and crystallography of Mg24Y5 precipitate in Mg-Y alloy. Scripta Materialia, 2003, 48,(2): 379-384
    [196] Nie, J. F, Muddle, B. C. Characterization of strengthening precipitate phases in a Mg-Y-Nd alloy. Acta Materialia, 2000, 48(11): 1691-1703
    [197] Nie, J. F.; Xiao, X. L.; Luo, C.P. ; Muddle, B. C. Characterization of precipitate phases in magnesium alloys using electron microdiffraction. Micron, 2001, 32(1): 857-863
    [198] Claudio Mus. Magnesium Die Casting, History, Principles and State of the Art. Magnesium Industry, 2001, (2):21~25.
    [199] 李金峰.耿浩然.钇对镁合金组织和力学性能的影响.铸造,2005,54(1):53-56
    [200] LUO Zhi-Ping, ZHANG Shao-Qing. Study of the Mg-Rare-Earth Alloys. Materials science and engineering, 1993, 11(4): 38-42
    [201] Bae D H, Lee M H. Application ofquasicrystalline particles as a strengthening phase in Mg-Zn-Y alloys. Joumal of Alloys and Compounds, 2002, 342(1-2): 445-450
    [202] Polmear I J. Recent developments in light alloys. Trans JIM, 1996, 37(1): 12-31
    [203] Idris M H. Precision casting of a magnesium-base alloy. Foundryman, 1997, 90(4): 140~144
    [204] Idris M H. Processing and evalution of investment cast magnesium-base alloy. AFS Trans, 1996, 104(20-23):237~244
    [205] Doege E, Droder K. Sheet metal forming of magnesium wrought alloys-formability and process technology. Journal of Materials Processing Technology, 2001, 115(1): 14~19
    [206] Sanchez C, Nussbaum G.. Elevated temperature behaviour of rapidly solidified magnesium alloys containing rare earths. Materials Science and Engineering, 1996, 221(1-2):48-57
    [207] Doege E, Droder K. Sheet metal forming of magnesium wrought alloys-formability and process technology. Journal of Materials Processing Technology, 2001, 115(1): 14~19
    [208] Mordike B L, Ebert T. Magnesium Properties applications potential. Materials Science and Engineering, 2001, 302 (1): 37-45
    [209] 郭洪河,刘生发,黄尚宇,等.镁合金在汽车中的应用与发展.汽车工艺与材料,2003,(1O):34-36
    [210] 傅定发,张辉,夏伟军,等.细晶镁合金的制备方法.轻合金加工技术,2004,32(3):41-43
    [211] D. Singh, C. Suryanarayana. L. Meaus R-H. Chen Extended homogeneity range of intermetallic phases in mechanically alloyed Mg-Al alloys. Intermetallics, 2003, (11): 373-376
    [212] J. Wang Wu. Zh Q, Shan. Efect of addition of Mn and Co on the hydrogen storage characteristics of microcrystalline Mg. Journal of Alloys and Compounds, 2003, (359): 315-319
    [213] S. Spigarelli, M. Cabibbo, E. Evangelism, M. Talianker, V. Ezersky Analysis of the creep behaviour of a thixoformed AZ91 magnesium alloy. Materials Science and Engineering, 2000. (A289): 172-181
    [214] 李亚江.焊接组织的性能与质量控制.北京:化学工业出版社,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700