用户名: 密码: 验证码:
Mg-9Gd-4Y-1Nd-0.6Zr合金的耐蚀性及铈转化膜研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Mg-9Gd-4Y-1Nd-0.6Zr合金具有轻质、高强、耐热和深冲性能好等优异性能,这是在具有减重需求的航空航天、武器装备和交通运输等领域的应用前提。但该合金较差的耐蚀性,将影响其使用寿命和应用成本。只有提高Mg-9Gd-4Y-1Nd-0.6Zr合金的耐腐蚀性能,才能使该合金得以快速发展。针对这一主要问题,本文采用光学显微镜、带能谱分析的扫描电镜、透射电镜、X射线衍射仪、红外光谱仪、电化学工作站等分析手段,系统研究了Mg-9Gd-4Y-1Nd-0.6Zr合金在不同环境中的腐蚀行为,采用时效热处理、合金化及铈转化膜等途径增强该合金耐蚀性等内容,获得了以下结果:
     1.采用SEM等手段对Mg-9Gd-4Y-1Nd-0.6Zr合金在NaCl溶液中的点腐蚀行为进行研究,揭示了该合金的点蚀形成规律,建立了点腐蚀动力学模型。Mg-9Gd-4Y-1Nd-0.6Zr合金板点蚀的主要原因是合金中的第二相粒子与a-Mg基体存在电势差,在溶液中很容易产生电偶腐蚀效应,粗大的第二相富稀土粒子是诱发点蚀的根源。通过适当的热处理工艺,或添加合金元素Ce,可以改善合金内第二相粒子的尺寸与分布,提高合金的耐腐蚀性能。
     2.探求了时效工艺对Mg-9Gd-4Y-1Nd-0.6Zr合金强度和腐蚀性能的影响规律。过时效合金强度下降很少是由于合金中存在大量β相和β1相。过时效合金耐蚀性显著增强的原因是富稀土粒子在晶界处析出变得细小,分布不连续,有效阻断了腐蚀通道的形成。
     3、在Mg-9Gd-4Y-1Nd-0.6Zr合金中加入Ce后,形成了钝化的表面膜,细化了第二相,使第二相呈连续网状分布,提高了合金的腐蚀电位,增大了镁离子生成镁的反应速率常数,减少了镁的阳极溶解速率常数,合金的腐蚀速率明显下降,提高了合金的耐蚀性。Ce加入量为0.5%时,Mg-9Gd-4Y-1Nd-0.6Zr合金获得了较优化的耐蚀性。
     4.采用正交实验方法在镁稀土合金表面获得了制备铈转化膜的最佳条件:pH值为10.0,成膜时间为30 min,成膜促进剂的浓度为0.05 M,成膜温度为25℃。具体分析了pH值,成膜时间,成膜促进剂的浓度和温度等因素对铈转化膜耐蚀性的影响。
     5.利用LDHs插层组装原理,采用共沉淀法在镁稀土合金表面制备了MgCe-LDHs转化膜,MgCe-LDHs膜层内是共价键结合,不容易被破坏,而层间碳酸根离子经长时间浸泡被氯离子部分置换,膜结构没有改变。因为碳酸根离子一旦嵌入MgCe-LDHs的结构中,其他阴离子很难将其置换,能够增强MgCe-LDHs转化膜在含氯离子溶液中的耐蚀性。
Mg-9Gd-4Y-1Nd-0.6Zr alloy was characterized as light, high strength, heat resistant and good deep drawability etc.It is significant for those fields with a strong demand for weight reduction, such as aerospace components, weapon equipments, and communication and transport tools and so on. But bad corrosion resistance of the Mg alloy made it short life and expensive in its application. Only to improve corrosion resistance of the Mg alloy can the Mg alloy industry develop fast. According to this problem, corrosion resistance of Mg-9Gd-4Y-1Nd-0.6Zr alloy in different environments was investigated. To improve the corrosion resistance of Mg-9Gd-4Y-1Nd-0.6Zr alloy, ageing treatment, alloying Ce and cerium conversion film were studied. All were studied systematically by experimental methods such as optical microscopy (OM), scanning electron microscopy (SEM) with energy dispersive X-ray (EDAX), X-ray diffractometer (XRD), Fourier Transform Infrared Spectrometer (FTIR), electrochemical workstation etc. Draw a conclusion as following:
     (1) To explore the pitting mechanism, the pitting corrosion behavior of Mg-9Gd-4Y-1Nd-0.6Zr alloy was investigated by SEM. The pitting kinetic mode of the Mg alloy was established.The pitting of Mg-9Gd-4Y-1Nd-Zr alloy plate was caused by potential between second phase particles and a-magnesium. The galvanic corrosion occurred in aqueous environment around the coarse second phase particles which riched rare earth in the Mg alloy. The Mg alloy corrosion resistance can be improved by proper heat-treatment or alloying Ce.
     (2) The effect of ageing treatment on the strength and corrosion resistance of Mg-9Gd-4Y-1Nd-0.6Zr alloy was revealed. The high strength over-aged Mg alloy was related to theβ'andβ1 phase. The over-aged sample at the grain boundaries were decorated with small and discontinuously distributed particles. The corrosion channels were blocked by small particles which distributed discontinuously at grain boundaries.
     (3) It is found that by adding Ce into Mg-9Gd-4Y-1Nd-0.6Zr alloy, the Mg alloy corrosion rate decreased by the passivation film. It makes not only second phase particles distribute continuously as net which can restrain corrosion, but also refines the Mg alloy grain with addition of Ce. By adding Ce to Mg-9Gd-4Y-1Nd-0.6Zr alloy, corrosion potential moved positive and the passivation current decreased, which indicate that the corrosion resistance of the Mg alloy has been improved. The positive corrosion potential makes oxidation rate constant decrease and dioxidation rate constant increase. With the addition of 0.5% Ce into Mg-9Gd-4Y-1Nd-0.6Zr alloy, the Mg alloy got the optimum corrosion resistance.
     (4) The optimization of deposition parameters of cerium conversion film was pH 10.0, time 30 min,0.05 M accelerating agent and T 25℃by orthogonal table L (9,34). The effects of corrosion resistance influenced in sequence pH> electrochemical deposition time> concentration of accelerating agent> temperature.
     (5)Mg-Ce hydrotalcite film on Mg-9Gd-4Y-1Nd-0.6Zr magnesium alloy surface provides better corrosion protection than Ce conversion film. The better corrosion resistance can be attributed to the Mg-Ce hydrotalcite exhibiting Cl" and CO32- anion exchangeability without changing its structure in chloride media. The carbonate anion has been proved to be the preferred anion for intercalation, and once intercalated, it was very hard to exchange with other anions。
引文
[1]佟国栋.国内外铝镁材料在汽车零部件上的应用现状及发展趋势[J],汽车工艺与材料,2007,(011):7-12.
    [2]乌志明,马培华.镁,镁资源与镁质材料概述[J],盐湖研究,2007,15(004):65-72.
    [3]苏文清.中国稀土产业竞争力评价和分析[J],稀土,2004,25(005):71-77.
    [4]刘正,王中光,王越,李峰,韩行林,Klein F.压铸镁合金在汽车工业中的应用和发展趋势[J],特种铸造及有色合金,2002,(0S1):300-302.
    [5]镁合金材料在汽车工业中的应用和发展[J],中国汽车制造,2007,(S1):17.
    [6]张春香,陈培磊,陈海军,时爱菊,关绍康.镁合金在汽车工业中的应用及其研究进展[J],铸造技术,2008,29(004):531-535.
    [7]陈一龙.加快镁合金在汽车上应用的几点思考[J],汽车与配件,2009,45:10-11.
    [8]何天禄,轴承.高性能稀土镁合金助力汽车行业迈向绿色环保[J],稀土信息,2008,14(012):19-19.
    [9]余强国,翁国庆.稀土镁合金的发展,应用及开发[J],稀有金属与硬质合金,2006,34(003):36-38.
    [10]Volkova E. F. Modern magnesium-base deformable alloys and composite materials (a review)[J], Metal Science and Heat Treatment,2006,48(11):473-478.
    [11]李克杰,李全安,谢建昌,李建弘,侯麦珍.稀土在耐热镁合金中的研究应用[J],稀土,2009,(003):79-83.
    [12]Mordike B. L. Creep-resistant magnesium alloys[J], Materials Science & Engineering A,2002,324(1-2):103-112.
    [13]Sukhanov V. D., Dobromyslov V., Rokhlin L. L., Dobatkina T. V. Decomposition of supersaturated solid solutions Mg-Ho and Mg-Gd[J], Physics of metals and metallography,2002,94(3):282-289.
    [14]肖阳,张新明,陈健美,蒋浩.Mg-9Gd-4Y-0.6 Zr合金挤压T5态的高温组织与力学性能[J],中国有色金属学报,2006,16(004):709-714.
    [15]闫蕴琪,张廷杰,邓炬,周廉.耐热镁合金的研究现状与发展方向[J],稀有金属材料与工程,2004,33(006):561-565.
    [16]Song G L., Atrens A. Corrosion mechanisms of magnesium alloys[J], Advanced Engineering Materials,1999,1(1):11-33.
    [17]Chen J., Wang J., Han E. H., Ke W. In situ observation of pit initiation of passivated AZ91 magnesium alloy[J], Corrosion Science,2009,51(3):477-484.
    [18]宋光铃,镁合金腐蚀与防护,北京:化学工业出版社,2006.
    [19]Lindstr M. R., Johansson L. G., Thompson G. E., Skeldon P., Svensson J. E. Corrosion of magnesium in humid air[J], Corrosion science,2004,46(5):1141-1158.
    [20]JOnsson M., Persson D., Leygraf C. Atmospheric corrosion of field-exposed magnesium alloy AZ91D[J], Corrosion Science,2008,50(5):1406-1413.
    [21]Makar G. L., Kruger J. Corrosion studies of rapidly solidified magnesium alloys[J], Journal of the Electrochemical Society,1990,137:414-421.
    [22]Song G., Bowles L., Stjohn D. H. Corrosion resistance of aged die cast magnesium alloy AZ91D[J], Materials Science & Engineering A,2004,366(1): 74-86.
    [23]Song G., Atrens A. Understanding Magnesium Corrosion-A Framework for Improved Alloy Performance The CRC for Cast Metal Manufacturing (CAST) was established under, and is supported in part by the Australian Government's Cooperative Research Centers Scheme[J], Advanced Engineering Materials,2003, 5(12) 837-858.
    [24]Song G, Wu X., Zhang B. Corrosion behaviour of AZ21,AZ501 and AZ91D in sodium chloride[J], Corrosion Science,1998,40(10):1769-1791.
    [25]Song G., Atrens A., Stjohn D., Zheng L. Corrosion behaviour of the microstructural constituents of AZ alloys[J], Magnesium Alloys and Their Applications, Munich, Germany,2000:425.
    [26]Song G., Stjohn D. The effect of zirconium grain refinement on the corrosion behaviour of magnesium-rare earth alloy MEZ[J], Journal of Light Metals,2002,2(1): 1-16.
    [27]Sun M., Wu G., Wang W., Ding W. Effect of Zr on the microstructure, mechanical properties and corrosion resistance of Mg-10Gd-3Y magnesium alloy[J], Materials Science & Engineering A,2009,523(1-2):145-151.
    [28]刘生发,刘林艳,黄尚宇,徐萍,王仲范.铈对AZ91镁合金腐蚀性能的影响[J],中国稀土学报,2006,24(002):211-216.
    [29]杨洁,易丹青,邓姝皓,王斌,柳公器.微量Ce对AZ91镁合金微观组织及耐蚀性的影响[J],中国腐蚀与防护学报,2008,28(004):205-209.
    [30]Liu W, Cao F, Chang L, Zhang Z, Zhang J. Effect of rare earth element Ce and La on corrosion behavior of AM60 magnesium alloy[J], Corrosion Science,2009, 51(6):1334-1343.
    [31]廖慧敏,龙思远,肖华强,朱志兵.富铈混合稀土对AZ81合金组织与性能的影响[J],中国稀土学报,2008,26(006):792-796.
    [32]Luo T. J., Yang Y. S., Li Y. J., Dong X. G. Influence of rare earth Y on the corrosion behavior of as-cast AZ91 alloy[J], Electrochimica Acta,2009,54(26): 6433-6437.
    [33]Fan Y, Wu G, Zhai C. Influence of cerium on the microstructure, mechanical properties and corrosion resistance of magnesium alloy[J], Materials Science and Engineering:A,2006,433(1-2):208-215.
    [34]Takenaka T., Ono T., Narazaki Y, Naka Y, Kawakami M. Improvement of corrosion resistance of magnesium metal by rare earth elements[J], Electrochimica Acta,2007,53(1):117-121.
    [35]杨洁,易丹青,邓姝皓.微量稀土Nd对AZ91微观组织及腐蚀性能的影响[J],材料科学与工程学报,2008,26(002):251-255.
    [36]Zhang J., Wang J., Qiu X., Zhang D., Tian Z., Niu X., Tang D., Meng J. Effect of Nd on the microstructure, mechanical properties and corrosion behavior of die-cast Mg-4Al-based alloy[J], Journal of Alloys and Compounds,2008,464(1-2):556-564.
    [37]李肖丰,李全安,陈君,张清,张兴渊.Y,Gd复合稀土对AZ81镁合金耐蚀性的影响[J],特种铸造及有色合金,2009,29(004):368-371.
    [38]Olsen A.L. Corrosion characteristics of new magnesium alloys, Bauteil, Berlin, 1991.
    [39]王益志.杂质对高纯镁合金耐蚀性的影响[J],铸造,2001,50(002):61-66.
    [40]Ballerini G, Bardi U., Bignucolo R., Ceraolo G. About some corrosion mechanisms of AZ91D magnesium alloy[J], Corrosion Science,2005,47(9): 2173-2184.
    [41]Mathieu S., Rapin C., Steinmetz J., Steinmetz P. A corrosion study of the main constituent phases of AZ91 magnesium alloys[J], Corrosion Science,2003,45(12): 2741-2755.
    [42]JOnsson M., Thierry D., Lebozec N. The influence of microstructure on the corrosion behaviour of AZ91D studied by scanning Kelvin probe force microscopy and scanning Kelvin probe[J], Corrosion Science,2006,48(5):1193-1208.
    [43]Perrault G. G. The potential-pH diagram of the magnesium-water system[J], Journal of Electroanalytical Chemistry,1974,51(1):107-119.
    [44]Song G., Atrens A., Stjohn D., Nairn J., Li Y The electrochemical corrosion of pure magnesium in 1 N NaCl[J], Corrosion Science,1997,39(5):855-875.
    [45]Fournier V., Marcus P., Olefjord I. Oxidation of magnesium[J], Surface and Interface Analysis,2002,34(1):494-497.
    [46]Brun C.H. Memoires Scientifiques Revue Metallurgie[J],1976.
    [47]Nordlien J. H., Ono S., Masuko N., Nisancioglu K. A TEM investigation of naturally formed oxide films on pure magnesium[J], Corrosion science,1997,39(8): 1397-1414.
    [48]Hara N., Kobayashi Y., Kagaya D., Akao N. Formation and breakdown of surface films on magnesium and its alloys in aqueous solutions[J], Corrosion Science,2007, 49(1):166-175.
    [49]Santamaria M., Quarto F. D., Zanna S., Marcus P. Initial surface film on magnesium metal:A characterization by X-ray photoelectron spectroscopy (XPS) and photocurrent spectroscopy (PCS)[J], Electrochimica Acta,2007,53(3):1315-1325.
    [50]Chen J., Dong J., Wang J., Han E., Ke W. Effect of magnesium hydride on the corrosion behavior of an AZ91 magnesium alloy in sodium chloride solution[J], Corrosion Science,2008,50(12):3610-3614.
    [51]Perrault G G In encyclopedia of electrochemistry of the elements, Marcel Dekker, New York,1978,262.
    [52]Gray J. E., Luan B. Protective coatings on magnesium and its alloys—a critical review[J], Journal of alloys and compounds,2002,336(1-2):88-113.
    [53]Almeida E. Surface Treatments and Coatings for Metals. A General Overview.2. Coatings:Application Processes, Environmental Conditions during Painting and Drying, and New Tendencies[J], Ind Eng Chem Res,2001,40(1):15-20.
    [54]Zhao H., Huang Z., Cui J. A new method for electroless Ni-P plating on AZ31 magnesium alloy [J], Surface & Coatings Technology,2007,202(1):133-139.
    [55]Sun S., Liu J., Yan C., Wang F. A novel process for electroless nickel plating on anodized magnesium alloy[J], Applied Surface Science,2008,254(16):5016-5022.
    [56]Zhang W. X., Jiang Z. H., Li G. Y, Jiang Q., Lian J. S. Electroless Ni-P/Ni-B duplex coatings for improving the hardness and the corrosion resistance of AZ91D magnesium alloy[J], Applied Surface Science,2008,254(16):4949-4955.
    [57]Mahallawy E. N., Bakkar A., Shoeib M., Palkowski H., Neubert V. Electroless Ni-P coating of different magnesium alloys[J], Surface & Coatings Technology,2008, 202(21):5151-5157.
    [58]Zhang W. X., Huang N., He J. G, Jiang Z. H., Jiang Q., Lian J. S. Electroless deposition of Ni-W-P coating on AZ91D magnesium alloy[J], Applied Surface Science,2007,253(11):5116-5121.
    [59]Xia L., Akiyama E., Frankel G, Mccreery R. L. Storage and Release of Soluble Hexavalent Chromium from Chromate Conversion Coatings[J], J Electrochem Soc, 2000,147(7):2556-2564.
    [60]Gigandet M. P., Faucheu J., Tachez M. Formation of black chromate conversion coatings on pure and zinc alloy electrolytic deposits:role of the main constituents[J], Surface and Coatings Technology,1997,89(3):285-291.
    [61]Lu G., Ada E. T., Zangari G Investigations of the effect of chromate conversion coatings on the corrosion resistance of Ni-based alloys[J], Electrochimica Acta,2004, 49(9-10):1461-1473.
    [62]Wray R. I. Painting Magnesium Alloys[J], Industrial & Engineering Chemistry, 1941,33(7):932-937.
    [63]Rudd A. L., Breslin C. B., Mansfeld F. The corrosion protection afforded by rare earth conversion coatings applied to magnesium[J], Corrosion Science,2000,42(2): 275-288.
    [64]Brunelli K., Dabala M., Calliari I., Magrini M. Effect of HC1 pre-treatment on corrosion resistance of cerium-based conversion coatings on magnesium and magnesium alloys[J], Corrosion science,2005,47(4):989-1000.
    [65]许越,陈湘,吕祖舜,李英杰.AZ91镁合金表面稀土转化膜的制备及耐蚀性能研究[J],中国稀土学报,2005,23(001):40-43.
    [66]钟丽应,曹发和,施彦彦,文强,张昭,张鉴清.AZ91镁合金表面铈基稀土转化膜的制备及腐蚀电化学行为[J],金属学报,2008,44(008):979-985.
    [67]Yi J., Zhang X., Chen M., Gu R. Effect of Na2CO3 on corrosion resistance of cerium conversion film on Mg-Gd-Y-Zr magnesium alloy surface[J], Scripta Materialia,2008,59 (9):955-958.
    [68]雷作铖,胡梦珍.金属的磷化处理,北京:机械工业出版社,1992.
    [69]Kouisni L., Azzi M., Zertoubi M., Dalard F., Maximovitch S. Phosphate coatings on magnesium alloy AM60 part 1:study of the formation and the growth of zinc phosphate films[J], Surface & Coatings Technology,2004,185(1):58-67.
    [70]Avedesian M.M. Magnesium and Magnesium Alloys-ASM Specialty Handbook, ASM international,1999.
    [71]航空航天材料编委会,航空航天材料手册,航空航天出版社,北京,2003,.
    [72]肖阳,高强耐热Mg-Gd-Y-Zr合金的力学行为与耐热机理研究,[博士学位论文],长沙:中南大学,2008.
    [73]Li L., Zhang X., Tang C., Deng Y., Zhou N. Mechanical properties and deep drawability of Mg-Gd-Y-Zr alloy rolling sheet at elevated temperatures[J], Materials Science and Engineering:A,2010,527(4-5):1226-1274.
    [74]萧以德,王光雍,李晓刚,林安,张三平,秦晓洲,王振尧,梁彩凤,郑弃非,毛海荣.我国西部地区大气环境腐蚀性及材料腐蚀特征[J],中国腐蚀与防护学报,2003,23(004):248-255.
    [75]王文兴.中国酸雨成因研究[J],中国环境科学,1994,14(005):323-329.
    [76]Ben-Hamu G, Eliezer D., Shin K. S., Cohen S. The relation between microstructure and corrosion behavior of Mg-Y-RE-Zr alloys[J], Journal of Alloys and Compounds,2007,431(1-2):269-276.
    [77]Chang J., Guo X., He S., Fu P., Peng L., Ding W. Investigation of the corrosion for Mg-xGd-3Y-0.4Zr (x=6,8,10,12 wt%) alloys in a peak-aged condition[J], Corrosion Science,2008,50(1):166-177.
    [78]张学元,韩恩厚.中国的酸雨对材料腐蚀的经济损失估算[J],中国腐蚀与防护学报,2002,22(005):316-319.
    [79]Mendoza R., Corvo F. Outdoor and indoor atmospheric corrosion of non-ferrous metals[J], Corrosion Science,2000,42(7):1123-1147.
    [80]Vera R., Delgado D., Rosales B. M. Effect of atmospheric pollutants on the corrosion of high power electrical conductors:Part 1. Aluminium and AA6201 alloy[J], Corrosion Science,2006,48(10):2882-2900.
    [81]Sun S., Zheng Q., Li D., Wen J. Long-term atmospheric corrosion behaviour of aluminium alloys 2024 and 7075 in urban, coastal and industrial environments [J], Corrosion Science,2009,51(4):719-727.
    [82]El-Mahdy G A., Kim K. B. AC impedance study on the atmospheric corrosion of aluminum under periodic wet-dry conditions[J], Electrochimica Acta,2004,49(12): 1937-1948.
    [83]Lindstrom R., Johansson L. G, Svensson J. E. The influence of NaCl and CO2 on the atmospheric corrosion of magnesium alloy AZ91[J], Materials and Corrosion, 2003,54(8):587-594.
    [84]Zhao M. C., Liu M., Song G L., Atrens A. Influence of pH and chloride ion concentration on the corrosion of Mg alloy ZE41[J], Corrosion Science,2008,50(11): 3168-3178.
    [85]Yi J., Zhang X., Chen M., Gu R., Deng Y. Corrosion resistance of cerium conversion film electrodeposited on Mg-Gd-Y-Zr magnesium alloy[J], Journal of Central South University of Technology,2009,16(1):38-42.
    [86]李瑛,张涛,王福会.AZ91D镁合金手汗腐蚀机理研究:Ⅰ.手汗模拟液中AZ91D镁合金腐蚀的动力学规律[J],中国腐蚀与防护学报,2004,24(005):276-279.
    [87]Song G, Atrens A., Dargusch M. Influence of microstructure on the corrosion of die cast AZ80D[J], Corrosion Science,1999,41(5):249-273.
    [88]Apps P. J., Karimzadeh H., King J. F., Lorimer G. W. Phase compositions in magnesium-rare earth alloys containing yttrium, gadolinium or dysprosium[J], Scripta Materialia,2003,48(5):475-481.
    [89]F.W.芬克W K博,海洋环境中金属的腐蚀,科学出版社,1976年06月第1版
    [90]Nie J. F. Effects of precipitate shape and orientation on dispersion strengthening in magnesium alloys[J], Scripta Materialia,2003,48:1009-1015.
    [91]Nie J. F., Muddle B. C. Characterisation of strengthening precipitate phases in a Mg-Y-Nd alloy[J], Acta Materialia,2000,48(8):1691-1703.
    [92]Honma T., Kamado S., Hono K. Effect of Zn additions on the age-hardening of Mg-2.0Gd-1.2Y-0.2Zr alloys[J], Acta Materialia,2007,55:4137-4150.
    [93]Polmear I. J., Light alloys:from traditional alloys to nanocrystals, Butterworth-Heinemann,2006.
    [94]Mccafferty E. Sequence of steps in the pitting of aluminum by chloride ions[J], Corrosion Science,2003,45(7):1421-1438.
    [95]Antion C., Donnadieu P., Perrard F., Deschamps A., Tassin C., Pisch A. Hardening precipitation in a Mg-4Y-3RE alloy[J], Acta Materialia,2003,51(18): 5335-5348.
    [96]肖阳,张新明,陈健美,蒋浩,邓桢桢.高强耐热Mg-9Gd-4Y-0.6 Zr合金的性能[J],中南大学学报:自然科学版,2006,37(005):850-855.
    [97]He S. M., Zeng X. Q., Peng L. M., Gao X., Nie J. F., Ding W. J. Precipitation in a Mg-10Gd-3Y-0.4 Zr (wt.%) alloy during isothermal ageing at 250 C[J], Journal of Alloys and Compounds,2006,421(1-2):309-313.
    [98]Wang J., Meng J., Zhang D., Tang D. Effect of Y for enhanced age hardening response and mechanical properties of Mg-Gd-Y-Zr alloys[J], Materials Science & Engineering A,2007,456(1-2):78-84.
    [99]Apps P. J., Karimzadeh H., King J. F., Lorimer G. W. Precipitation reactions in Magnesium-rare earth alloys containing Yttrium, Gadolinium or Dysprosium[J], Scripta materialia,2003,48(8):1023-1028.
    [100]Nie J. F., Gao X., Zhu S. M. Enhanced age hardening response and creep resistance of Mg-Gd alloys containing Zn[J], Scripta materialia,2005,53(9): 1049-1053.
    [101]Guo X. W., Chang J. W., He S. M., Ding W. J., Wang X. Investigation of corrosion behaviors of Mg-6Gd-3Y-0.4 Zr alloy in NaCl aqueous solutions[J], Electrochimica Acta,2007,52(7):2570-2579.
    [102]Rokhlin L. L., Dobatkina T. V., Tarytina I. E., Timofeev V. N., Balakhchi E. E. Peculiarities of the phase relations in Mg-rich alloys of the Mg-Nd-Y system[J], Journal of Alloys and Compounds,2004,367(1-2):17-19.
    [103]Honma T., Ohkubo T., Hono K., Kamado S. Chemistry of nanoscale precipitates in Mg-2.1 Gd-0.6 Y-0.2 Zr (at.%) alloy investigated by the atom probe technique[J], Materials Science & Engineering A,2005,395(1-2):301-306.
    [104]郭旭涛,李培杰,曾大本.Mg-Y合金的电子理论研究[J],中国稀土学报,2003,21(006):672-676.
    [105]Tang B.Y., Yu W.Y., Zeng X.Q., Ding W.J. Theoretical investigation of typical fcc precipitates in Mg-based alloys[J], Acta Materialia,2008,56:3353-3357.
    [106]Brunelli K., Dabal M., Calliari I., Magrini M. Effect of HCl pre-treatment on corrosion resistance of cerium-based conversion coatings on magnesium and magnesium alloys[J], Corrosion Science,2005,47(4):989-1000.
    [107]蔡素玲,谭彦显.AZ31-xCe镁合金组织和力学性能的研究[J],热处理技术与装备,2008,29(004):27-31.
    [108]刘生发,黄尚宇,徐萍.Ce对AZ91镁合金铸态组织细化的影响[J],金属学报,2006,42(004):443-448.
    [109]周海涛,曾小勤,刘文法,丁文江,朱燕萍.稀土铈对AZ61变形镁合金组织和力学性能的影响[J],中国有色金属学报,2004,14(001):99-104.
    [110]王少武,夏长清,吴安如.稀土铈对AZ31镁合金显微组织和力学性能的影响[J],矿冶工程,2006,26(004):76-78.
    [111]赵鸿金,张迎晖,康永林.稀土元素Ce对AZ91D镁合金燃点的影响[J],轻合金加工技术,2008,36(002):42-44.
    [112]赵霞,王永东,朱艳,刘万辉.稀土铈和镁对热浸铝镀层耐蚀性能的影响[J],材料保护,2008,41(011):14-15.
    [113]李党国,冯耀荣,白真权,郑茂盛.稀土铈对Fe-3Cr钝化膜电化学腐蚀行为的影响[J],中国腐蚀与防护学报,2008,28(006):363-368.
    [114]钟丽应,刘文娟,曹发和,张昭,张鉴清.稀土铈,镧合金化对AZ91腐蚀行为的影响[J],腐蚀科学与防护技术,2009,21(002):91-93.
    [115]Peng Z. K., Zhang X. M., Chen J. M., Xiao Y., Jiang H. Grain refining mechanism in Mg-9Gd-4Y alloys by zirconium[J], Materials Science and Technology, 2005,21(6):722-726.
    [116]Bruno C., Mies T. Characterisation by EIS of ternary Mg alloys synthesized by mechanical alloying[J], Electrochimica Acta,2006,51(8-9).
    [117]Morlidge J. R., Skeldon P., Thompson G. E., Habazaki H., Shimizu K., Wood G C. Gel formation and the efficiency of anodic film growth on aluminium[J], Electrochimica Acta,1999,44(14):2423-2435.
    [118]曹楚南,张鉴清,电化学阻抗谱导论,科学出版社,2002.
    [119]Baril G, Blanc C., Pebere N. AC impedance spectroscopy in characterizing time-dependent corrosion of AZ91 and AM50 magnesium alloys characterization with respect to their microstructures[J], Journal of the Electrochemical Society,2001,148: B489-496.
    [120]Makar G. L, Joshi A. Advances in Magnesium Alloys and composites, TMS, H. G. Paris,1988.
    [121]曹楚南,腐蚀电化学原理,化学工业出版社,1985.
    [122]Stern M. Electrochemical polarization[J], Journal of the Electrochemical Society,1957,104:645-650.
    [123]肖纪美,不锈钢的金属学问题,冶金工业出版社,1983.
    [124]张祖训,汪尔康,电化学原理和方法,北京:科学出版社,2000.
    [125]Winston A.W., Gross W.H. surface preparation and painting of magnesium alloys[J], industrial and engineering chemistry,1935,27:1333-1337.
    [126]Hagans P. L., Chromate conversion coatings, materials park, ohio,1990.
    [127]Dabal M., Brunelli K., Napolitani E., Magrini M. Cerium-based chemical conversion coating on AZ63 magnesium alloy[J], Surface and Coatings Technology, 2003,172(2-3):227-232.
    [128]Bonora P. L., Andrei M., Eliezer A., Gutman E. M. Corrosion behaviour of stressed magnesium alloys[J], Corrosion science,2002,44(4):729-749.
    [129]孙伟成,张淑荣,侯爱芹,稀土在铝合金中的行为,兵器工业出版社,1992.
    [130]Montemor M. F., Simoes M., Carmezim M. J. Characterization of rare-earth conversion films formed on the AZ31 magnesium alloy and its relation with corrosion protection[J], Applied Surface Science,2007,253(16):6922-6931.
    [131]Ardelean H., Marcus P., Fiaud C. Enhanced corrosion resistance of magnesium and its alloys through the formation of cerium(and aluminium) oxide surface films[J], Materials and Corrosion,2001,52(12):889-895.
    [132]Xiao Y., Zhang X.M., Deng Y.L. Superplasticity of Mg-Gd-Y alloy in tensile test at elevated temperature[J], Trans Nonferrous Met Soc China,2007,17(6): s372-375.
    [133]Yi J.L., Zhang X.M., Chen M.A., Gu R. Effect of Na2CO3 on corrosion resistance of cerium conversion film on Mg-Gd-Y-Zr magnesium alloy surface[J], Scripta Materialia,2008,59(9):955-958.
    [134]Montemor M. F., Simoes M., Ferreira M. G. S., Carmezim M. J. Composition and corrosion resistance of cerium conversion films on the AZ31 magnesium alloy and its relation to the salt anion[J], Applied Surface Science,2008,254(6): 1806-1814.
    [135]Lin J. K., Uan J. Y. Formation of Mg, Al-hydrotalcite conversion coating on Mg alloy in aqueous HCO3-/CO32- and corresponding protection against corrosion by the coating[J], Corrosion Science,2009,51(5):1181-1188.
    [136]Yang W., Kim Y, Liu P. K. T., Sahimi M., Tsotsis T. T. A study by in situ techniques of the thermal evolution of the structure of a Mg-Al-CO3 layered double hydroxide[J], Chemical Engineering Science,2002,57(15):2945-2953.
    [137]Heyns M., Prinsloo L. C., Range K. J., Stassen M. The Vibrational Spectra and Decomposition ofa-Calcium Nitride (a-Ca3N2) and Magnesium Nitride (Mg3N2)[J], Journal of Solid State Chemistry,1998,137(1):33-41.
    [138]Das J., Das D., Parida K. M. Preparation and characterization of Mg-Al hydrotalcite-like compounds containing cerium[J], Journal of colloid and interface science,2006,301(2):569-574.
    [139]段雪,张法智,插层组装与功能材料,化学工业出版社,2007.
    [140]赵芸,陆春华.双羟基复合金属氧化物的晶面生长选择性及晶粒尺寸控制[J],无机化学学报,2001,17(004):573-579.
    [141]Zheludkevich M. L., Serra R., Montemor M. F., Salvado I. M.M., Ferreira M. G S. Corrosion protective properties of nanostructured sol-gel hybrid coatings to AA2024-T3[J], Surface & Coatings Technology,2006,200(9):3084-3094.
    [142]Lamaka S. V, Montemor M. F., Galio F., Zheludkevich M. L., Trindade C., Dick L. F., Ferreira M. G. S. Novel hybrid sol-gel coatings for corrosion protection of AZ31B magnesium alloy[J], Electrochimica Acta,2008,53(14):4773-4783.
    [143]Yang X. F., Tallman D. E., Gelling V. J., Bierwagen G P., Kasten L. S., Berg J. Use of a sol-gel conversion coating for aluminum corrosion protection[J], Surface & Coatings Technology,2001,140(1):44-50.
    [144]李海滨,梁开明,梅乐夫,顾守仁.溶胶-凝胶法制备的ZrO2涂层对低碳钢腐蚀的防护[J],腐蚀科学与防护技术,2002,14(2):92-94.
    [145]王禹慧,赵景茂,左禹.铝合金耐蚀膜的制备及其性能研究[J],腐蚀与防护,2005,26(010):432-435.
    [146]Maggio R. D., Fedrizzi L., Rossi S., Scardi P. Dry and wet corrosion behaviour of AISI 304 stainless steel coated by sol-gel ZrO2 CeO2 films[J], Thin Solid Films, 1996,286(1-2):127-135.
    [147]Baumard J., Cales B. Mixed conduction and defect structure of ZrO2-CeO2-Y2O3 solid solutions[J], J Electrochem Soc,1984,131:2407-2412.
    [148]Wang H., Akid R. Encapsulated cerium nitrate inhibitors to provide high-performance anti-corrosion sol-gel coatings on mild steel[J], Corrosion Science, 2008,50(4):1142-1148.
    [149]Khramov N., Balbyshev V. N., Kasten L. S., Mantz R. A. Sol-gel coatings with phosphonate functionalities for surface modification of magnesium alloys[J], Thin Solid Films,2006,514(1-2):174-181.
    [150]Li Q., Zhong X., Hu J., Kang W. Preparation and corrosion resistance studies of zirconia coating on fluorinated AZ91D magnesium alloy[J], Progress in Organic Coatings,2008,63(2):222-227.
    [151]Schem M., Schmidt T., Gerwann J., Wittmar M., Veith M., Thompson G E., Molchan I. S., Hashimoto T., Skeldon P., Phani R. CeO2-filled sol-gel coatings for corrosion protection of AA2024-T3 aluminium alloy[J], Corrosion Science,2009, 51(10):2304-2315.
    [152]Shane M., Mecartney M. L. Sol-gel synthesis of zirconia barrier coatings[J], Journal of Materials Science,1990,25(3):1537-1544.
    [153]朱明,李美栓,李亚利,周延春.溶胶-凝胶高温氧化涂层[J],腐蚀科学与防护技术,2004,1(1):33-37.
    [154]Santos D. M. L., Lima R. C., Riccardi C. S., Tranquilin R. L., Bueno P. R., Varela J. A., Longo E. Preparation and characterization of ceria nanospheres by microwave-hydrothermal method[J], Materials Letters,2008,62(30):4509-4511.
    [155]曾荣昌,韩恩厚,材料的腐蚀与防护,北京:化学工业出版社,2006.
    [156]Ravi K. N. V., Blandin J. J., Suery M., Grosjean E. Effect of alloying elements on the ignition resistance of magnesium alloys[J], Scripta materialia,2003,49(3): 225-230.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700