用户名: 密码: 验证码:
石墨、氧化铝及碳纤维增强镁基复合材料的组织和磨损
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金作为目前可应用的最轻的金属结构材料,具有低密度、高比强度和比刚度等优点,被广泛的应用于汽车、航天和电子领域,但其高温强度低,耐磨性和耐蚀性差,使其应用范围受到很大的限制。通过加入纤维或颗粒制备复合材料可大大提高镁合金的耐磨性。由于复合材料的研究主要集中在硬质颗粒增强方面,对于润滑在摩擦过程中的作用,特别是固体润滑剂对摩擦副的减摩耐磨作用以及润滑膜的形成机制研究较少。因此本论文设计制备自润滑镁基复合材料,研究增强相对复合材料组织和性能的影响,分析复合材料的磨损性能及润滑膜形成机制,从而为自润滑镁基复合材料的发展和应用提供可靠的依据。
     对于Gr/Al2O3/AZ91D-Cex复合材料,研究了不同稀土含量、石墨含量和粒度对复合材料组织、显微硬度和磨损性能的影响。分析稀土相的形成机理及Ce对基体组织的细化机理。研究不同载荷和速度下系列复合材料的磨损性能并总分析磨损机制。对于CF /Al2O3/AZ91D-Cex复合材料,研究了不同Ce含量对复合材料的组织、显微硬度、拉伸性能和磨损性能的影响。分析复合材料的断裂机制、亚表层塑性变形和润滑膜的形成机制,确定复合材料由轻微磨损向严重磨损的转变载荷。最后对比颗粒和纤维对复合材料性能的影响。
As the lightest metal structural materials magnesium alloy has low density and high performance in specific strength and stiffness. It is widely used in automobile, aerospace and electric area. But its low strength as increasing the temperature and low resistance in corrosion and wear property limits its application area. One method to solve problem is to make magnesium matrix composite.
     Using fibers、particles and whisker as reinforcement fabricating magnesium matrix composite can increase its wear property. Usually the researches force on hard particle like SiC or TiC particles reinforced composites, after adding these reinforcement can increase the strength of the matrix, moreover, increase its wear resistance. But the investigation on lubricating effect during friction and wear process is less, especially the effect of solid lubricant which can decrease friction coefficient and wear loss on friction pair and the form mechanism of lubricating film. This article designs self-lubricating magnesium matrix composite. The composites reinforced by graphite particles and Al2O3 short fibers can be fabricated by combining perform with squeeze-infiltration technique. The effect of reinforcements on microstructure、microhardness、tensile and wear properties of the composites along with wear mechanism is investigated. The research gives the proof of the development and application of self-lubricating magnesium matrix composite.
     For graphite/Al2O3/AZ91D-Cex composite, investigates different Ce content, different graphite content and particle size on microstructure and properties of the composite. The results show that:
     (1) For Gr/Al2O3/AZ91D-Cex composite with different Ce content, the composite can be fabricated by combining perform with squeeze-infiltration technique. The graphite particle and Al2O3 short fibers combine closely with the matrix and no obviously defect can be found. For the reason of difference in element electronegativity, Ce forms Al11Ce3 with Al. Adding Ce in the matrix can affect the grain size by affecting the nucleation rate of the composite, refine the dendrite and form rare earth phase. The grain size of the composite decreases as increasing Ce content, but microhardness and wear resistance increase as increasing Ce content, and the composite with 1.0% Ce has the best wear resistance. When the wear test load changes the wear loss of the composite increases as increases load, at low load the mechanism is mainly abrasive wear and oxidation wear; at high load it changes to delamination wear. When velocity changes at 0.1m/s the composites have similar wear loss and the wear mechanism is mainly oxidation wear, but as increasing the velocity it changes to abrasive wear along with oxidation wear, at 2.0m/s the wear mechanism of all the composites transform to delaminaiton wear.
     (2) For Gr/Al2O3/AZ91D-0.8Ce composite with different graphite content, when the graphite content increases from 5% to 10% the grain size changes less, when the graphite content come up to 15% the grain size becomes less. The graphite particle affects the grain size of the composite by increasing nucleation rate and embarrassing grain size from growing up, so the composite with more graphite content has little grain size. The microhardness decreases as increasing the graphite content, and the wear resistance increases as increasing graphite content, the composite with 20% graphite has the best wear resistance. Analysis the wear loss under different wear test load, at 20N the worn surface has oxidative film mixed with graphite on it which can work as lubricate and decrease wear loss; but as increasing the load the worn surface can form oxidative film and the wear mechanism is abrasive wear and oxidation wear; at high load some broken Al2O3 short fibers are found in the subsurface which decreases the strength of the matrix, so the graphite is easier been peeled of from the worn surface and can’t still work as lubricant, the wear loss increases sharply and the wear mechanism changes to delamination wear.
     (3) For Gr/Al2O3/AZ91D-0.8Ce composite with different graphite particle size, as decreasing the graphite particle size the grains become uniform but the grains size changes less and the effect of graphite particle size affect the process of nucleation and growth less. The microhardness decreases as increasing the graphite particle size, but the wear resistance increases as increasing the graphite particle size, the composite with graphite particle size of 240μm has the best wear resistance. When the wear test load changes, the composite with graphite particle size of 240μm has bare graphite on the worn surface which increases the lubricating effect of the friction pair, so its wear loss increases slowly as increasing the load. At low load the wear mechanism is abrasive wear and oxidation wear; at high load except the composite with graphite particle size of 240μm is still abrasive wear and oxidation wear, the wear mechanism of others change to delamination wear.
     (4) For CF/Al2O3/AZ91D-Cex composite, the effect of Ce on microstructure、microhardness、tensile and wear properties of the composite are investigated. The results show that: When the Ce content increases from 0.0% to 1.5%, the grain size of the composite decreases at first then increases, and the composite with 1.0% Ce has the less grain size. After adding Ce some rod liked Al11Ce3 are found in the matrix, but when the Ce content increases to 1.5% the shape of rare earth phase changes to block. The microhardness、tensile strength and wear resistance of the composite increase at first then increase as increasing Ce content, the properties of the composite with 1.0% Ce is better than the others. Analysis the fracture surface of the composite, when carbon fibers are pull out some groove are left on the fracture, there are rare earth in the groove which decreases the combination between carbon fibers and matrix. Because the dislocation pile-up can form tiny hole and decrease the tensile strength of the composite. Although adding Ce can increase the toughness of the matrix, the fracture mechanism is still brittle fracture.
     When the wear test load changes the wear loss increases as increasing load, and the composite with 1.0% Ce has the best wear resistance but the composite without Ce is the lowest. Choosing these two composite investigate the wear property under different test load and sliding velocity. At low load the oxide film mixed with C element appears on the worn surface of the composite with 1.0% Ce, analysis the formation mechanism of the oxidative film; at high load the worn surface has melting phenomenon along with the wear mechanism of delaminaiton wear. Investigate the effect of test load and velocity on the subsurface of wear specimen and analysis its wear mechanism, the results shows that after adding Ce the changes between mild wear to severe wear is delayed. Finally the effect of properties is compared between graphite and carbon fibers reinforced composites.
引文
[1] AGHION E, BRONFIN B, ELIEZER D. The role of the magnesium industry in protecting the environment[J]. Journal of Materials Processing Technology, 2001, 117(3):381-385.
    [2] DOBRZA?SKI L A, TA?SKI T, ?í?EK L, et al. Structure and properties of magnesium cast alloys[J]. Journal of Materials Processing Technology, 2007, 192-193: 567-574.
    [3] HORT N, HUANG Y, FECHNER D, et al. Magnesium alloys as implant materials– Principles of property design for Mg–RE alloys[J]. Acta Biomaterialia, 2010, 6(5): 1714-1725.
    [4] DU J D, HAN W J, PENG Y H. Life cycle greenhouse gases, energy and cost assessment of automobiles using magnesium from Chinese Pidgeon process[J]. Journal of Cleaner Production, 2010, 18(2):112-119.
    [5]陈振华.镁合金[M].北京:化学工业出版社,2004.
    [6] CATON P D. Magnesium—an old material with new applications[J]. Materials & Design, 1991, 12(6):309-316.
    [7] MORDIKE B L, EBERT T. Magnesium: Properties-applications-potential[J]. Materials Science and Engineering A, 2001, 302(1):37-45.
    [8] DREYER C E, CHIU W V, WAGONER R H, et al. Formability of a more randomly textured magnesium alloy sheet: Application of an improved warm sheet formability test[J]. Journal of Materials Processing Technology, 2010, 210(1):37-47.
    [9]刘兵.加强技术创新,为经济结构调整提供强大动力—论实施“镁合金开发应用及产业化”重大专题的战略意义[J].材料热处理学报,2001, 22(增刊):1.
    [10] MEHTA D S, MASOOD S H, SONG W Q. Investigation of wear properties of magnesium and aluminum alloys for automotive applications[J]. Journal of Materials Processing Technology, 2004, 155-156:1526-1531.
    [11]谭欣平,龙思远,李建华等.镁合金在摩托车上的应用可行性研究[J].材料热处理学报,2001, 22(增刊):141.
    [12] ALDERLIESTEN R, RANS C, BENEDICTUS R. The applicability of magnesium based Fibre Metal Laminates in aerospace structures[J]. Composites Science and Technology, 2008, 68(14):2983-2993.
    [13] XIE J C, LI Q A, WANG X Q, et al. Microstructure and mechanical properties of AZ81 magnesium alloy with Y and Nd elements[J]. Transactions of Nonferrous Metals Society of China, 2008, 18(2):303-308.
    [14] CAI J, MA G C, LIU Z, et al. Influence of rapid solidification on the mechanical properties of Mg-Zn-Ce-Ag magnesium alloy[J]. Materials Science and Engineering: A, 2007, 456(1-2):364-367.
    [15] JIAN W W, KANG Z X, LI Y Y. Effect of hot plastic deformation on microstructure and mechanical property of Mg-Mn-Ce magnesium alloy[J]. Transactions of Nonferrous Metals Society of China, 2007, 17(6):1158-1163.
    [16] PENG Q M, WU Y M, FANG D Q, et al. Microstructures and properties of Mg–7Gd alloy containing Y[J]. Journal of Alloys and Compounds, 2007, 430(1-2):252-256.
    [17] PENG Q M, DONG H W, WANG L D, et al. Aging behavior and mechanical properties of Mg–Gd–Ho alloys[J]. Materials Characterization, 2008, 59(8):983-986.
    [18] DU Z M, GUO C P, LI C R, et al. Thermodynamic modeling of the La-Mg-Y system and Mg-based alloys database[J]. Rare Metals, 2006, 25(5):492-500.
    [19] GUO C P, DU Z M, LI C R. A thermodynamic description of the Gd–Mg–Y system[J]. Calphad, 2007, 31(1):75-88.
    [20] LIU X J, WANG C P, WEN M Z, et al. Thermodynamic database of the phase diagrams in the Mg-Al-Zn-Y-Ce system[J]. Rare Metals, 2006, 25(5):441-447.
    [21] PENG Q M, WANG J L, WU Y M, et al. The effect of La or Ce on ageing response and mechanical properties of cast Mg–Gd–Zr alloys[J]. Materials Characterization, 2008, 59(4):435-439.
    [22] YAMASAKI M, HAYASHI N, IZUMI S, et al. Corrosion behavior of rapidly solidified Mg–Zn–rare earth element alloys in NaCl solution[J]. Corrosion Science, 2007, 49(1):255-262.
    [23] NEUBERT V, STULíKOVáI, SMOLA B, et al. Thermal stability and corrosion behaviour of Mg–Y–Nd and Mg–Tb–Nd alloys[J]. Materials Science and Engineering: A, 2007, 462(1-2):329-333.
    [24] LIU M, PETER J. WITZER U, et al. Calculated phase diagrams and the corrosion of die-cast Mg–Al alloys [J]. Corrosion Science, 2009, 51(3):602-619.
    [25]潘复生,张津,张喜燕等.轻合金材料新技术[M].北京:化学工业出版社,2008.
    [26]张玉龙,赵中魁.实用轻金属材料手册[M].北京:化学工业出版社,2006.
    [27]张发云,闫洪,周天瑞等.金属基复合材料制备工艺的研究进展[J].锻压技术,2006,(6):100-105.
    [28] FENG A H, XIAO B L, MA Z Y. Effect of microstructural evolution on mechanical properties of friction stir welded AA2009/SiCp composite[J]. Composites Science and Technology, 2008, 68(9):2141-2148.
    [29] MINAK G, CESCHINI L, BOROMEI I, et al. Fatigue properties of friction stir welded particulate reinforced aluminium matrix composites[J]. International Journal of Fatigue, 2010, 32(1):218-226.
    [30] XIE W, LIU Y, LI D S, et al. Influence of sintering routes to the mechanical properties of magnesium alloy and its composites produced by PM technique[J]. Journal of Alloys and Compounds, 2007, 431(1-2):162-166.
    [31]吴承建,陈国良,强文江.金属材料学[M].北京:冶金工业出版社,2001.
    [32] HU L X, WANG E D. Fabrication and mechanical properties of SiCw/ZK51A magnesium matrix composite by two-step squeeze casting[J]. Materials Science and Engineering A, 1999, 278(1-2):267-271.
    [33] TROJANOVáZ, G?RTNEROVáV, J?GER A, et al. Mechanical and fracture properties of an AZ91 Magnesium alloy reinforced by Si and SiC particles[J]. Composites Science and Technology, 2009, 69(13):2256-2264.
    [34] INEM B, POLLARD G. Interface structure and fractography of a magnesium-alloy, metal-matrix composite reinforced with SiC particles[J]. Journal of Material Science, 1993, 28(16):4427-4434.
    [35] ZHENG M Y, WU K, KAMADO S, et al. Aging behavior of squeeze cast SiCw/ AZ91 magnesium matrix composite[J]. Materials Science and Engineering A, 2003, 348:67-75.
    [36] CHUA B W, LU L, LAI M O. Influence of SiC particles on mechanical properties of Mg based composite[J]. Composite Structures, 1999, 47:595-601.
    [37] ZHENG M Y, WU K, YAO C K. Effect of interfacial reaction on mechanical behavior of SiCw/AZ91 magnesium matrix composites[J]. Materials Science and Engineering A, 2001, 318:50-56.
    [38] ZHANG X Q, WANG H W, LIAO L H, et al. The mechanical properties of magnesium matrix composites reinforced with (TiB2 + TiC) ceramic particulates[J]. Materials Letters, 2005, 59(17):2105-2109.
    [39] SHEN B L, YAMASAKI T, OGINO Y, et al. Effect of liquid phase on superplastic deformation and diffusion bonding of Cu-Mg-TiC nanocrystalline composite[J].Scripta Materialia, 2001, 44(8-9):2133-2136.
    [40] CHEN L Q, DONG Q, ZHAO M J, et al. Synthesis of TiC/Mg composites with interpenetrating networks by in situ reactive infiltration process[J]. Materials Science and Engineering A, 2005, 408(1-20):125-130.
    [41] CHEN Y F, LIN Y C. Surface modifications of Al–Zn–Mg alloy using combined EDM with ultrasonic machining and addition of TiC particles into the dielectric[J]. Journal of Materials Processing Technology, 2009, 209(9):4343-4350.
    [42] WANG H Y, JIANG Q C, LI X L, et al. In situ synthesis of TiC/Mg composites in molten magnesium[J]. Scripta Materialia, 2003, 48(9):1349-1354.
    [43] GUAN Q F., WANG H Y, LI X L, et al. Effect of compact density on the fabrication of in situ Mg-TiC composites[J]. Journal of Materials Science, 2004, 39(16-17): 5569-5572.
    [44] DING H M, LI H, LIU X F. Different elements-induced destabilisation of TiC and its application on the grain refinement of Mg–Al alloys[J]. Journal of Alloys and Compounds, 2009, 485(1-2):285-289.
    [45] CONTRERAS A, LóPEZ V H, BEDOLLA E. Mg/TiC composites manufactured by pressureless melt infiltration[J]. Scripta Materialia, 2004, 51(3):249-253.
    [46] MOLINS R, BARTOUT J, BIENVENU Y. Microstructural and analytical characterization of Al2O3-(Al-Mg) composite interfaces[J]. Materials Science and Engineering A, 1991, 135-137(1-2):111-117.
    [47] HASSAN S F, GUPTA M. Development of high performance magnesium nano-composites using nano-Al2O3 as reinforcement[J]. Materials Science and Engineering A, 2005, 392:163-168.
    [48] HASSAN S F, GUPTA M. Effect of particulate size of Al2O3 reinforcement on microstructure and mechanical behavior of solidification processed elemental Mg[J]. Journal of Alloys and Compounds, 2006, 419:84-90.
    [49] HASSAN S F, GUPTA M. Effect of length scale of Al2O3 particulates on microstructural and tensile properties of elemental Mg[J]. Materials Science and Engineering A, 2006, 425:22-27.
    [50] KHAN K B, KUTTY T R G, SURAPPA M K. Hot hardness and indentation creep study on Al–5% Mg alloy matrix–B4C particle reinforced composites[J]. Materials Science and Engineering A, 2006, 427(1-2):76-82.
    [51] WOLFENSTINE J, GONZáLEZ-DONCEL G, SHERBY O D. Tension versuscompression superplastic behavior of a Mg-9wt.%Li-5wt.%B4C composite[J]. Materials Letters, 1992, 15(4):305-308.
    [52] LEE K B, SIM H S, CHO S Y, et al. Reaction products of Al–Mg/B4C composite fabricated by pressureless infiltration technique[J]. Materials Science and Engineering A, 2001, 302(2): 227-234.
    [53] JIANG Q C, WANG H Y, MA B X, et al. Fabrication of B4C particulate reinforced magnesium matrix composite by powder metallurgy[J]. Journal of Alloys and Compounds, 2005, 386(1-2):177-181.
    [54] CHEN Y X, LI D X. Microstructure and orientation relationships of Mg alloy matrix composite reinforced with SiC whiskers and B4C particles[J]. Materials Letters, 2007, 61(27):4884-4886.
    [55] SASAKI G, WANG W G, HASEGAWA Y, et al. Yanagisawa.Surface treatment of Al18B4O33 whisker and development of Al18B4O33/ZK60 magnesium alloy matrix composite[J]. Journal of Materials Processing Technology, 2007, 187-188:429-432.
    [56] LI H J, LI Z J, QI L H, et al. Effect of extrusion on the thermal expansion behavior of Al18B4O33 whisker–Mg composites[J]. Scripta Materialia, 2009, 61(5):512-515.
    [57] TU J P, YANG Y Z. Tribological behaviour of Al18B4O33-whisker-reinforced hypoeutectic Al-Si-Mg-matrix composites under dry sliding conditions[J]. Composites Science and Technology, 2000, 60(9):1801-1809.
    [58] CHEN R, LI X G.A study of silica coatings on the surface of carbon or graphite fiber and the interface in a carbon/magnesium composite[J]. Composites Science and Technology, 1993, 49(40):357-362.
    [59] LANCIN M, MARHIC C. TEM study of carbon fiber reinforced aluminium matrix composites: influence of brittle phases and interface on mechanical properties[J]. Journal of Europe Ceramic Society, 2000, 20:1493-1503.
    [60] ABRAHAM S, PAI BC, SATYANARAYANA KG, et al. Copper coating on carbon fibers and their composites with aluminium matrix[J]. Journal of Material Science, 1992, 27:3479-3486.
    [61] MARSHALL D B. An indentation method for measuring matrix-fiber frictional stresses in ceramic composites[J]. Journal of Amarican Ceramic Society, 1984, 67:C259-260.
    [62] WU F, ZHU J, IBE K, et al. Analysis of the interface in graphite/magnesium composites at the nanometer scale[J]. Composites Science and Technology, 1998,58(1):77-82.
    [63] WU F, ZHU J. Morphology of second-phase precipitates in carbon-fiber-and graphite- fiber-reinforced magnesium-based metal-matrix composites[J]. Composites Science and Technology, 1997, 57(6):661-667.
    [64] WU F, ZHU J, CHEN Y, et al. The effects of processing on the microstructures and properties of Gr/Mg composites[J]. Materials Science and Engineering A, 2000, 277(1-2):143-147.
    [65] UOZUMI H, KOBAYASHI K, NAKANISHI K, et al. Fabrication process of carbon nanotube/light metal matrix composites by squeeze casting[J]. Materials Science and Engineering: A, 2008, 495(1-2):282-287.
    [66] COFER C G, ECONOMY J, XU Y, et al. Characterization of fiber/matrix interfaces in composites with a boron nitride matrix[J]. Composites Science and Technology, 1996, 56(8):967-975.
    [67] SAHIN Y, MURPHY S. Wear performance of aluminium alloy composites containing unidirectionally-oriented silicon carbide coated boron fibres[J]. Wear, 1996, 197(1-2):248-254.
    [68] VINCENT H, BOUBEHIRA M, BOUIX J. Preparation of aluminium matrix composite materials reinforced by titanium diboride-coated boron fibers[J]. Materials Chemistry and Physics, 1986, 15(2):113-130.
    [69] BRENNAN J J, MCCARTHY G. Interfacial studies of refractory glass-ceramic- matrix/advanced-SiC-fiber-reinforced composites[J]. Materials Science and Engineering: A, 1993, 162(1-2):53-72.
    [70] JAYALAKSHMI S, KAILAS S V, SESHAN S. Tensile behaviour of squeeze cast AM100 magnesium alloy and its Al2O3 fibre reinforced composites[J]. Composites Part A: Applied Science and Manufacturing, 2002, 33(8):1135-1140.
    [71] YANG J, Schaller R. Mechanical spectroscopy of Mg reinforced with Al2O3 short fibers and C nanotubes[J]. Materials Science and Engineering A, 2004, 370(1-2): 212-515.
    [72] HALLSTEDT B, LIU Z K, GREN J ?. Fiber-matrix interactions during fabrication of Al2O3-Mg metal matrix composites[J]. Materials Science and Engineering: A, 1990, 129(1):135-145.
    [73]黄明志,石德珂,金志浩.金属力学性能[M].陕西:西安交通大学出版社,1986.
    [74]鲁云,朱世杰,马鸣图等.先进复合材料[M].北京:机械工业出版社,2003.
    [75]刘家浚.材料磨损原理及其耐磨性[M].北京:清华大学出版社, 1990.
    [76] CHAPMAN T R, NIESZ D E, FOX R T, et al. Wear-resistant aluminum–boron– carbide cermets for automotive brake applications[J]. Wear, 1999, 236(1-2):81-87.
    [77] LECH J. SITNIK. Wear kinetics theory and its potential application to assessment of wear of machine parts[J]. Wear, 2008, 265(7-8):1038-1045.
    [78]张清.金属磨损和金属耐磨材料手册[M].北京:冶金工业出版社,1991.
    [79]束德林.工程材料力学性能[M].北京:机械工业出版社, 2007.
    [80]李长虹.梯度铜石墨自润滑材料及摩擦性能研究[D].北京:北京交通大学,2006.
    [81] BHATTACHARYA A K, HONG S I. Modelling of compressive stiffness of a multilayered graphite-reinforced magnesium-matrix composite[J]. Scripta Metallurgica et Materialia, 1993, 28(11):1311-1316.
    [82] LIN C B, CHANG R J, WENG W P. Study on process and tribological behaviour of Al alloy/Grp composite[J]. Wear, 1998, 271:167-174.
    [83] LENG J F, JIANG L T, WU G H, et al. Effect of Graphite Particle Reinforcement on Dry Sliding Wear of SiC/Gr/Al Composites[J]. Rare Metal Materials and Engineering, 2009, 38(11):1894-1898.
    [84] RODRíGUEZ-GUERRERO A, SáNCHEZ S A, NARCISO J, et al. Pressure infiltration of Al-12wt.% Si-X (X=Cu, Ti, Mg) alloys into graphite particle preforms[J]. Acta Materialia, 2006, 54(7):1821-1831.
    [85] HOCHENG H, YEN S B, ISHIHARA T, et al. Fundamental turning characteristics of a tribology-favored graphite/aluminum alloy composite material[J]. Composites Part A: Applied Science and Manufacturing, 1997, 28(9-10):883-890.
    [86] EPSTEIN J S, RAWAL S, MISRA M. Microplasticity phenomena in graphite magnesium metal matrix composites[J]. Optics and Lasers in Engineering, 1990, 12(1):1-17.
    [87] GUI M C, KANG S B. Aluminum hybrid composite coatings containing SiC and graphite particles by plasma spraying[J]. Materials Letters, 2001, 51(5):396-401.
    [88] SHARMA S C, GIRISH B M, KAMATH R, et al. Graphite particles reinforced ZA-27 alloy composite materials for journal bearing applications[J]. Wear, 1998, 219(2): 162-168.
    [89] ROHATGI P K, LIU Y, YIN M, et al. A surface-analytical study of tribodeformed aluminum alloy 319-10vol.% graphite particle composite[J]. Materials Science and Engineering: A, 1990, 123(2):213-218.
    [90] QI Q J. Evaluation of sliding wear behavior of graphite particle-containing magnesium alloy composites[J]. Transactions of Nonferrous Metals Society of China, 2006, 16(5):1135-1140.
    [91] RIGATO V, MAGGIONI G, PATELLI A, et al. Properties of sputter-deposited MoS2/metal composite coatings deposited by closed field unbalanced magnetron sputter ion plating[J]. Surface and Coatings Technology, 2000, 131(1-3):206-210.
    [92] SUN K K, YOUNG H A, KWANG H K. MoS2-Ti composite coatings on tool steel by d.c. magnetron sputtering[J]. Surface and Coatings Technology, 2003, 169-170: 428-432.
    [93] FOX V C, RENEVIER N, TEER D G, et al. The structure of tribologically improved MoS2–metal composite coatings and their industrial applications[J]. Surface and Coatings Technology, 1999, 116-119:492-497.
    [94] CHEN B M, BI Q L, YANG J, et al. Tribological properties of solid lubricants (graphite, h-BN) for Cu-based P/M friction composites[J]. Tribology International, 2008, 41(12):1145-1152.
    [95] SHANGGUAN Q Q, CHENG X H. Tribological properties of lanthanum treated carbon fibers reinforced PTFE composite under dry sliding condition[J]. Wear, 2007, 262(11-12):1419-1425.
    [96] XIANG D H, SHAN K L. Friction and wear behavior of self-lubricating and heavily loaded metal–PTFE composites[J]. Wear, 2006, 260(9-10):1112-1118.
    [97] WANG Y X, YAN F Y. A study on tribological behaviour of transfer films of PTFE/bronze composites[J]. Wear, 2007, 262(7-8):876-882.
    [98] RAFTENBERG M N, MOCK J W, KIRBY G C. Modeling the impact deformation of rods of a pressed PTFE/Al composite mixture[J]. International Journal of Impact Engineering, 2008, 35(12):1735-1744.
    [99]刘全坤.材料成形基本原理[M].北京:机械工业出版社,2004.
    [100] HUMBLE P, Towards a cheap creep resistance magnesium alloys[J]. Materials Forum, 1997, 21:45-56.
    [101]王彦. TiB2颗粒增强镁基复合材料制备及其凝固行为的研究[D].吉林:吉林大学,2007.
    [102]刘生发. Mg-9Al基合金组织细化技术及性能研究[D].湖北:武汉理工大学,2004.
    [103]顾家琳,杨志刚,邓海金等.材料科学与工程概论[M].北京:清华大学出版社,2004.
    [104]张景怀.镁-铝-稀土系耐热压铸合金的组织和性能研究[D].吉林:中国科学院长春应用化学研究所,2008.
    [105]崔忠析.金属学与热处理[M].北京:机械工业出版社,1997.
    [106]孙伟成,张淑荣,侯爱芹.稀土在铝合金中的行为[M].北京:兵器工业出版社,1992.
    [107] LIU Y B, ROHATGI P K, RAY S. Tribological characteristics of aluminum-50% graphite composite[J]. Metallurgical Transactions A, 1993, 24(1):151-159.
    [108] HU Q, MCCOLL I R, HARRIS S J, et al. The role of debris in the fretting wear of a SiC reinforced aluminium alloy matrix composite[J]. Wear, 2000, 245(1-2):10-21.
    [109] LI X Y, TANDON K N. Microstructural characterization of mechanically mixed layer and wear debris in sliding wear of an Al alloy and an Al based composite[J]. Wear, 2000, 245(1-2):148-161.
    [110] DOBRIYAL R P, DHINDAW B K, S.MUTHUKUMARAN, et al. Microstructure and properties of friction stir butt-welded AE42 magnesium alloy[J]. Material Science and Engineering A, 2008, 477:243-249.
    [111]王迎新. Mg-Al合金晶粒细化、热变形行为及加工工业的研究[D].上海:上海交通大学,2006.
    [112]吴安如.含稀土镁合金细晶化、塑性变形再结晶、时效脱溶及焊接性研究[D].湖南:中南大学, 2006.
    [113]王业双,张咏波,王渠东等. Mg-9Al合金铸造凝固模型[J].金属学报,2002,38(5):539-543.
    [114]石德珂,高守义,柴惠芬等.材料科学基础[M].北京:机械工业出版社,1999.
    [115] BEER S, FROMMEYER G, SCHMID E. Magnesium alloys and their applications[M]. Oberusel: DGM Informations Gesellschaft, 1992.
    [116]居志兰,花国然,许晓静等. SiCp尺寸及含量对Al基复合材料磨损表层、亚表层形貌的影响[J].润滑与密封,2004,165(5):19-22.
    [117] LI J L, XIONG D S. Tribological properties of nickel-based self-lubricating composite at elevated temperature and counterface material selection[J]. Wear, 2008, 265(3-4): 533-539.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700