用户名: 密码: 验证码:
微能耗变压边力系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压边是板材拉深成形的重要工艺手段;压边力是压边的最基本、最重要参数之一。与恒压边力和不可控变压边力压边相比,可控变压边力压边可进一步提高拉深成形极限和工件几何精度,其中的液压可控变压边力压边,不但可以提供较大的压边力,而且易于借助计算机实现变压边力的高性能控制,已成为变压边力压边发展的主要方向。压边的能量消耗问题尚未引起足够重视,能源的持续紧张使节能压边具有重要意义。为此,本文提出了一种微能耗变压边力系统,并通过理论分析、数值模拟和实验,对其节能机理及控制方法进行了系统的研究,以实现节能、液压可控变压边力的高性能控制。
     应用能量法对微能耗变压边力系统的能量损失进行了解析,以此为基础,分析和对比了微能耗变压边力系统和液压垫压边系统的压边能量损失,由此阐明了微能耗变压边力系统的节能机理。
     对于微能耗变压边力系统的两种封闭容腔压力控制方式,即伺服阀直接控制方式和伺服阀—伺服液压缸控制方式,针对系统的高度非线性建立了非线性数学模型和PID控制的闭环系统基础仿真模型,研究了系统的响应特性及主要参数的影响规律,考察了系统对多种典型变压边压力加载曲线的跟踪性能,并验证了压边能量损失的理论分析结果,从而确定了系统节能变压边力控制的可行性。
     针对微能耗变压边力系统的参数不确定性,应用模糊智能控制理论设计了模糊控制器、模糊PID开关切换控制器、模糊PID混合控制器和模糊PID自适应控制器;分别建立了对应上述控制器的系统仿真模型,通过对比系统在不同控制器下的控制性能,优选了系统的控制方法。
     为实现系统的节能、高性能变压边力控制,建立了微能耗变压边力系统的仿射非线性数学模型,利用微分几何理论对模型进行了全维精确线性化,设计了线性二次型状态调节器,最终建立了系统的线性二次型最优控制仿真模型,获得了兼顾最少能量和最佳性能的系统优化控制方法。
     研制了微能耗变压边力系统物理模拟装置,应用LabVIEW软件编制了实时测控程序,并与其它相关控制硬件集成,建立了微能耗变压边力实验系统;实验结果与仿真结果吻合,验证了仿真研究的有效性。
     研究结果表明,微能耗变压边力系统节能效果显著,静动态特性符合应用要求,具有工程应用价值;研究工作从原理,方法及其物理实现几方面为微能耗变压边力系统的工程应用奠定了基础。
Blank holder force(BHF) is one of most fundamental and predominant parameters of blank holding which is an important technologic measure for deep drawing in sheet metal forming processes. Blank holding with controlled variable blank holder force(CVBHF) is can further improve deep drawing forming limits and geometrical precision of sheet metal parts,compared with blank holding with constant and uncontrolled BHF. Hydraulic CVBHF has become major development direction of blank holding with VBHF, because it can not only provide greater BHF, but also achieve high performance when controlled by computer. The energy consumption in providing BHF is not taken into enough consideration, and the energy saving blank holding will have great significance for the increasingly severe condition of energy sources. In this paper, a low energy consumption VBHF system is proposed, and the energy saving mechanism and the control strategy for the system are researched into by methods of theoretical analysis, numerical simulation and experiment, aiming at achieving energy saving blank holding and high performance Hydraulic CVBHF control.
     The energy consumption of the low energy consumption VBHF system is analyzed theoretically using the energy method, and the blank holding energy consumption is compared between the low energy consumption VBHF system and hydraulic cushion blank holding system, clarifying the energy saving mechanism of low energy consumption VBHF system.
     Base on two control modes, the closed chamber controlled by a servo valve and the closed chamber controlled by a servo valve through servo cylinder of low energy consumption VBHF system, for high nonlinearity of the system, the nonlinear mathematical models and the PID controlled fundamental simulation models of closed-loop system are built, and a series of researches including the response characteristics, the main parameters and its influence, the tracking performance to typical VBHF loading curves, and the blank holding energy consumption of the system are carried out to confirm the energy saving and VBHF control feasibility of the system.
     Because the low energy consumption VBHF system includes uncertain parameters, the Fuzzy controller, Fuzzy-PID switch controller, Fuzzy-PID hybrid controller and Fuzzy-PID adaptive controller are designed by using the fuzzy intelligent control theory, and corresponding simulation models are established. The relative best control strategy is determined by comparing the control effects of them.
     In order to realize energy saving and high performance VBHF control of the low energy consumption VBHF system, an Affine Nonlinear mathematical model for this system is established, a exact linearization of the model is made by using the differential geometry theory, and the linear quadratic state regulator is presented, finally simulation model of the system base on LQR optimal control is set up to gain the system optimal control method considering both minimum energy and optimal performance.
     A low energy consumption VBHF experiment system is built by integrating physical simulation equipment, a real-time data acquisition and control program on LabVIEW and other correlative control hardware. The results from experiments and the simulations are in a reasonable agreement, and the validity of simulation research is confirmed.
     The research results demonstrate that the low energy consumption VBHF system has remarkable energy saving effect, static and dynamic characteristics conforming to the application requirements, and a high value for engineering application. The works lay a foundation for the engineering application of low energy consumption VBHF system in some aspects of principle, method and physical realization.
引文
1马瑞.盒形件智能化拉深压边力控制规律的研究和实时预测. [燕山大学博士学位论文]. 2006:1,5
    2朱伟,林启权,张质良.板料拉深成形过程中变压边力的数值模拟方法.湘潭大学自然科学学报, 2004, 26(3):103-107
    3罗亚军.板料拉深成形变压边力理论和数值模拟. [上海交通大学博士学位论文]. 2003:1
    4 E. Doege, et al.. Optimierung der Niederhalterkraft beim Tiefziehen Rechteckiger Teile. Stahl Eisen, 1983,103(3):139-142
    5秦泗吉.压边力控制技术研究现状及伺服数控压边方法可行性探讨.中国机械工程, 2007, 18(1):120-125
    6 Klause Siegert. New Concept for Hydraulic Production Presses. Papers of the International Conference“New Development in Sheet Metal Forming”, Germany, 2000:83-85
    7王东哲.板料拉深成形变压边力理论和实验研究. [上海交通大学博士学位论文]. 2001:2
    8夏琴香.冲压成形工艺及模具设计.广州:华南理工大学出版社, 2004:275
    9王东哲,娄臻亮,何丹农,等.单动压力机压边组件的新技术及应用.制造技术与机床, 2000, (4):16-18
    10孙卫和,宋福民,于连仲.一种弹簧垫恒力压边装置.模具工业, 1988, (4):6-8
    11秦泗吉,马丽霞,李硕本.恒力拉伸压边装置的设计.模具工业, 1997, (4):22-23
    12田福祥.新型恒压边力落料拉伸复合模.模具工业, 2005, (10):18-20
    13胡建华,黄涛,张迎.可调式恒压边力拉伸模设计.模具工业, 2006, 32(2):31-33
    14李永堂,付建华,白墅洁,等.锻压设备理论与控制.北京:国防工业出版社, 2005:237-238, 309
    15张举东.氮气弹簧在冲压模具中的应用.模具技术, 2000, (4):46-48
    16任雪岩.氮气弹簧的结构及在模具设计中的应用.汽车工艺与材料, 2000, (12):34-37
    17 Lars Gunnarsson, Nader Asnafi, Erik Schedin. In-process Control of Blankholder Force in Axi-symmetric Deep Drawing with Degressive Gas Springs. Journal of Materials Processing Technology, 1998, 73(1-3):89-96
    18池大杰.氮气缸在汽车覆盖件模具设计中的应用.汽车工艺与材料, 1998, (2):38-41
    19 S. Thiruvarudchelvan, F. W. Travis. Experimental Investigation of a Short-stroke Device forDeep Drawing. Journal of Materials Processing Technology, 1992, 36(1):69-78
    20秦金莲,杨秀莲.伺服式液压压边拉延模具的设计.山西机械, 1996, (3):25-27
    21彭庚新,刘红石,刘跃南,等.变力压边拉伸模设计.模具工业, 1999, (9):20-21
    22杨连发,李和平.变压边力拉伸模设计.模具工业, 2002, (9):20-22
    23史东才,吴华英,魏公际.一种新型的变压边力装置.模具工业, 2006, 32(4):34-36
    24陶友瑞,吴安如,何爱贵.一种在单动液压机上调节压边力的方法.锻压技术, 2007, 32 (6):122-124
    25余银柱.变压边力拉伸模设计.模具工业, 2007, 33(1):17-19
    26李振杰,李炳贤.一种变压边力实验装置.机械工程师, 2007, (3):127-128
    27 D. E. Hardt et al.. Real-time Control of Binder Force During Stamping. Proceedings of the 16th Biennial Congress of the IDDRG. International Deep Drawing Research Group, 1990:17-27
    28 S. Yossifon, K. Sweeney, M. A. Ahmetoglu, et al.. On the Acceptable Blank Holder Force Range in the Deep Drawing Process. Journal of Materials Processing Technology, 1992, 33 (1-2):175-194
    29 M. A. Ahmetoglu, T. Altan, G. L. Kinzel. Improvement of Part Quality in Stamping by Controlling Blank-holder Force and Pressure. Journal of Materials Processing Technology, 1992, 33(1-2):195-214
    30 M. A. Ahmetoglu, T. Altan. Improving Drawability by Using Variable Blank Holder Force and Pressure in Deep Drawing of Round and Non-symmetric Parts. SAE Paper, 930287, 1993:428-435
    31 M. A. Ahmetoglu, T. R. Broek, et al.. Control of Blank Holder Force to Eliminate Wrinkling and Fracture in Deep Drawing Rectangular Parts. CIRP Annals-Manufacturing Technology, 1995, 44(1):247-250
    32 M. A. Ahmetoglu, Gary Kinzel, Taylan Altan. Forming of aluminum alloys-application of computer simulations and blank holding force control. Journal of Materials Processing Technology, 1997, 71 (1):147-151
    33 K. Siegert, E. Doege. CNC-hydraulic Multipoint Blankholder System for Sheet Metal Forming Presses.Ann.CIRP, 1993, 42(1):319-322
    34 K. Siegert, E. Dannenmann, S. Wagner. Closed-loop Control System for Blank Holder Forces in Deep Drawing. CIRP Annals-Manufacturing Technology, 1995, 44(1):251-254
    35 K. Siegert. Recent Developments in Hydroforming Technology. Journal of Materials Processing Technology, 2000, 98(2):251-258
    36 Leonid B. Shulkin, Ronald A. Posteraro, et al.. Blank Holder Force Control in Viscous Pressure Forming of Sheet Metal. Journal of Materials Processing Technology, 2000, 98:7-16
    37 T. Yagami, K. Manabe, M. Yang. Intelligent Sheet Stamping Process Using Segment Blankholder Modules. Journal of Materials Processing Technology, 2004, 155-156(2):2099-2105
    38 T. J. Kim, D. Y. Yang, S. S. Han. Numerical Modeling of the Multi-stage Sheet Pair Hydroforming Process. Journal of Materials Processing Technology, 2004, 151:48-53
    39姜海峰,刘玉峰.变压边力拉深的原理及实验系统.塑性工程学报, 1999, 6(1):30-33
    40余海燕,孙成智,林忠钦.多点变压的压边力控制系统开发.中国机械工程, 2004, 15(8):659-661
    41吴道建,阳林,直妍.一种通用板料液压成形装置的设计.广东工业大学学报, 2005, 22(2):37-40
    42 K. Manabe, S. Yoshihara, M. Yang, et al..Technical Papers of NAMRC, 1995:41–46.
    43 K. Manabe, S. Yoshihara, N. Hisashi. Theoretical Analysis of Punch Speed and Blank Holder Force Control in Deep Drawing Process of Strain-Rate-Sensitive Materials. Proceedings of the 1996 ASME International Mechanical Engineering Congress and Exposition, 1996, 58:175-182
    44 S. Yoshihara, K. Manabe, et al.. Fuzzy Adaptive Control of Circular-cup Deep Drawing Process Using Variable Blank Holder Force Technique. Journal of JSTP, 1997, 38:348-353
    45 K. Manabe, M. Yang, S. Yoshihara. Artificial Intelligence Identification of Process Parameters and Adaptive Control System for Deep-drawing Process. Journal of Materials Processing Technology, 1998, 80-81:421-426
    46 K. Manabe, H. Koyama, et al.. Development of a Combination Punch Speed and Blank-holder Fuzzy Control System for the Deep Drawing Process. Journal of Materials Processing Technology, 2002:440-445
    47 S. Yoshihara, K. Manabe, H. Nishimura. Effect of Blank Holder Force Control in Deep-drawing Process of Magnesium Alloy Sheet. Journal of Materials Processing Technology, 2005, 170(3):579-585
    48 T. Yagami, K. Manabe, Y. Yamauchi. Effect of Alternating Blank Holder Motion of Drawing and Wrinkle Elimination on Deep-drawability. Journal of Materials Processing Technology, 2007,187-188:187-191
    49杨明,真锅健一.板材成形的智能传感与控制系统.第八届全国塑性加工学术年会及全球华人先进塑性加工技术研讨会论文集.北京, 2002:743-747
    50湛从昌,吴晓晖.液压拉深机压边力控制的实现.液压与气动, 2002, (5):11-13
    51 E. Doege, H. J. Seidel, et al.. Contactless On-line Measurement of Material Flow for Closed Loop Control of Deep Drawing. Journal of Materials Processing Technology, 2002, 130-131:95-99
    52 E. Doege, R. Schmidl, et al.. Development of an Optical Sensor for the Measurement of the Material Flow in Deep Drawing Processes. CIRP Annals-Manufacturing Technology, 2003, 52(1):225-228
    53 Hiroshi Koyama, Robert H. Wagoner, et al.. Blank Holding Force Control in Panel Stamping Process Using a Database and FEM-assisted Intelligent Press Control System. Journal of Materials Processing Technology, 2004, 152(2):190-196
    54刘礴,王仲奇.基于模糊控制算法的多点压边力控制系统的设计与实现.科学技术与工程, 2006, 6(17):2697-2701
    55朱伟,董湘怀,张质良.板料拉深成形液压系统模糊控制建模.控制理论与应用, 2007, 24(1):122-131
    56杨嵩.锥形件智能化拉深仿真系统的研究. [燕山大学博士学位论文]. 2007:74-99
    57张晓斌,孙宇,樊红梅,等.板料成形压边力控制技术研究现状及发展趋势.锻压技术, 2007, 32(6):6-12
    58 D. E. Hardt, C. G. Y. Lee. Closed-loop Control of Sheet Metal Stability During Stamping. Proceedings of the 13th North American Manufacturing Research Conference. Society of Manufacruring Engineers, Dearborn, 1986:315-322
    59 E. Doege, N. Sommer. Blank-holder Pressure and Blank-holder Layout in Deep Drawing of Thin Sheet Metal. Advanced Technology of Plasticity: Proceedings of the Second International Conference on Technology of Plasticity, 1987:1305-1314
    60 B. Maker, S. K. Samanta, N. Triantafyllidis. An Analysis of Drawbeads in Sheet Metal Forming PartⅡ-problem Formulation. Journal of Materials Processing Technology, 1986, 108:321-327
    61 T. B. Stoughton. Model of Drawbead Forces in Sheet Metal Forming. Proc. of 15th Biennial IDDRG Congress, 1988:205-214
    62 K. Manabe, H. Hamano and H. Nishimura. A New Variable Blank Holding Force Method in Deep-drawing of Sheet Materials. J. Jpn. Soc. Technol. Plast , 1988:740
    63 S. Thiruvaruchelvan, W. G. Lewis. Deep Drawing with Blank Holder Force Approximately Proportional to the Punch Force. Transactions of ASME, Journal of Engineering for Industry, 1990, 112:278-285
    64 S. Yossifon, K. Sweeney, M. A. Ahmetoglu. On the Acceptable Blank-holder Force Range in the Deep-drawing Process. Journal of Materials Processing Technology, 1992, 33(1-2):175-194
    65 K. Manabe, Kentaro Soeda, et al.. Adaptive Control Method of Deep Drawing Using the Variable Blank Holding Force Technique. Journal of Materials Processing Technology, 1992, 33:423-428
    66 R. Kergen, P. Jodogne. Computerized Control of the Blankholder Pressure on Deep Drawing Presses. SAE Paper, 920433, 1992:234-242
    67 Y. Hishida, R.H. Wagoner. Analysis of Blank Holding Force Control Forming Using Hydraulic Forming Simulator, in: Proceedings of the Fourth ICTP, 1993, (3):740
    68 Y. Hishida, R.H. Wagoner. Experimental Analysis of Blank Holding Force Control in Sheet Forming, SAE Paper, 930285, 1993:409-414
    69 Y. Hishida, R. H. Wagoner. Experimental Analysis of Blank Holding Force Control in Sheet Forming. SAE Paper, 930285, 1993:145-156
    70 R. Kergen, B. Dauby. Computerised Control of The Blank Holder Force in Deep Drawing: a System Allowing Independent Closed Loop Control of the Blank Holder Force on Several Zone of the Blank Holder. IDDRG WG95 Paper DDR/WG, 1993:75-80
    71 K. J. Weinmann, J. R. Michler, V. D. Rao. Development of a Computer Controlled Drawbead Simulator for Sheet Metal Forming. Annals of the CIRP, 1994, 43:257-261
    72 S.Serdars, Tufekci, Chuan-Tao Wang, et al.. Estimation and Control of Drawbead Forces in Sheet Metal Forming. SAE Paper, 940941, 1994:738-747
    73 Murata, M. Matsui. Effects of Control of Local Blank-holding Force on Deep Drawability of Square Shell. Proceedings of the 18th Biennial Congress of the IDDRG, 1994:503-12
    74 E. Doege, G. Stock. Locked tool deep drawing process and examples of operation with elastic blank-holders. Warrendale, SAE Paper, 950917, 1995:335-340
    75 Taisuke Akamatsu, Shizuo Ukita, et al.. Deep Drawing of Commercially Pure Titanium Sheets. ISIJ International, 1995, 35(1):56-62.
    76 S. Thiruvarudchelvan. A Novel Hydraulic Pressure Augmented Deep-drawing Process for High Draw Ratios. Journal of Materials Processing Technology, 1995, 54(1-4):355-361
    77 W. Kubli, J. Reissner. Optimization of Sheet-metal Forming Processes Using the Special-purpose Program AUTOFORM. Journal of Materials Processing Technology, 1995, 50:292-305
    78 K. Siegert, M. Ziegler, S. Wagner. Closed Loop Control of the Friction Force. Deep Drawing Process. Journal of Materials Processing Technology, 1997, 71(1):126-133
    79 Klaus Jurgen Pahl. New Developments in Multi-point Die-cushion Technology. Journal of Materials Processing Technology, 1997, 71:168-173
    80 S. Thiruvarudchelvan, F. W. Travis. An Exploration of the Hydraulic-pressure Assisted Redrawing of Cups. Journal of Materials Processing Technology, 1997, 72(1):117-123
    81 Hans-Wilfried Wagener. New Developments in Sheet Metal Forming: Sheet materials, Tools and Machinery. Journal of Materials Processing Technology, 1997, 72(3):342-357
    82 E. J. Obermeyer, S. A. Majlessi. A Review of Recent Advances in the Application of Blank-holder Force towards Improving the Forming Limits of Sheet Metal Parts. Journal of Materials Processing Technology, 1998, 75(1-3):222-234
    83 Michael J. Saran, Mahmoud Y. Demeri. Formability Improvements via Variable Binder Pressure. Aotomotive Engineering International, 1998, (2):101-103
    84 K. Siegert, J. Hohnhaus, S. Wagner. Combination of Hydraulic Multipoint Cushion System and Segment-Elastic Blankholders (SP-1322), SAE Paper, 980077, 1998:741
    85 R. Di Lorenzo, G. Perrone, S. Noto La Diega. Design of a Fuzzy Controller for the Deep Drawing Process by Using Gas. International Conference on Knowledge-Based Intelligent Electronic Systems, Proceedings, KES, 1998, 3:102-108
    86 C. Tuncer, T. A. Dean. Surface Stress Measurement Techniques in Metal Forming. J. Mech Tools. Manufacture, 1998, 15(1):417-427
    87 R. Singh, G. S. Sekhon. An Expert System for Optimal Selection of a Press for a Sheet Metal Operation. Journal of Materials Processing Technology, 1999, 86:131-138
    88 K. Siegert, D. Haller, S. Wagner, Michael Ziegler. Tendencies in Presses and Dies for Sheet Metal Forming Processes. Journal of Materials Processing Technology, 2000, 98(2):259-264
    89王东哲,娄臻亮.薄板拉深工艺中压边力闭环控制的研究现状.机械工程师, 2000, (7):7-10
    90 S. Thiruvaruchelvan, H. Wang. Investigations into the Hydraulic Pressure Augmented DeepDrawing Process. Journal of Materials Processing Technology, 2001, 110:112-126
    91 LUO Yajun, ZHAO Jun, et al.. The Key Technology in Intelligent Control for Sheet Metal Deep Drawing. Journal of Shanghai Jiaotong University(English Edition), 2001, 6(1):27-30
    92 C. B. Andersen, B. G. Ravn, T. Wanheim. Development of a Commercial Transducer for Measuring Pressure and Friction on a Model Die Surface. Journal of Materials Processing Technology, 2001, 115:205-211
    93 C. W. Hsu, A. G. Uisoy, M. Y. Demeri. Development of Process Control in Sheet Metal Forming. Journal of Materials Processing Technology, 2002, 127(3):361-368
    94 L. H. Lang, J. Danckert, K.B. Nielsen. Key Technologies of the Simulation of the Hydrodynamic Deep Drawing of Irregular Parts. Journal of Materials Processing Technology, 2004, 150(1):40-47
    95 M. Ahmetoglu, Jiang Hua, Srikanth Kulukuru. Hydroforming of Sheet Metal Using a Viscous Pressure Medium. Journal of Materials Processing Technology, 2004, 146(1):97-107
    96 Z. Q. Sheng, S. Jirathearanat, T. Altan. Adaptive FEM Simulation for Prediction of Variable Blank Holder Force in Conical Cup Drawing. International Journal of Machine Tools and Manufacture, 2004, 44(5):487-494
    97周士侃,娄臻亮,龚红英,等.基于新型组合压边圈的变压边力控制.模具工业, 2004, (8):31-33
    98孙成智.基于变压边力的薄板冲压成形理论与实验研究. [上海交通大学博士学位论文]. 2004:2
    99徐尚德.板料拉深过程中的压边力控制技术.锻压装备与制造技术, 2004, (2):51-54
    100 Hassan M A, Suenaga R, Takakura N. A Novel Process on Firiction Aided Deep Drawing Using Tapered Blank Holder Divided Into Four Segments. Journal of Materials Processing Technology, 2005, 159(3):418-425
    101孙成智,罗思东,王东川,等.拉伸过程中压边力分布实验测量方法与数值模拟.锻压技术, 2005, 30(6):18-21
    102吴有生,王新云.带多点压边的油箱充液拉深的研究.锻压装备与制造技术, 2005, 40(3):59-61
    103吕盾,陈炜,姜银方,等.变压边力控制技术的研究现状和发展趋势.模具工业, 2006, 32(4):37-41
    104 Benny Endelt, Karl Brian Nielsen, Joachim Danckert. New Framework for On-line Feedback Control of a Deep-drawing Operation. Journal of Materials Processing Technology, 2006, 177(1-3):426-429
    105 S. H. Zhang, K. Zhang, et al.. Deep-drawing of Magnesium Alloy Sheets at Warm Temperatures. Journal of Materials Processing Technology, 2007, 185(1-3):147-151
    106 Ho Choi, Muammer Koc, Jun Ni. Determination of Optimal Loading Profiles in Warm Hydroforming of Lightweight Materials. Journal of Materials Processing Technology, 2007, 190(1-3):230-242
    107 S. Thiruvarudchelvan, M. J. Tan. Fluid-pressure-assisted Deep Drawing. Journal of Materials Processing Technology, 2007, 192-193:8-12
    108 R. Padmanabhan, M. C. Oliveira, L. F. Menezes. Deep Drawing of Aluminium-steel Tailor-welded Blanks. Materials & Design, 2008, 29(1):154-160
    109 L. Lang, G. Gu, et al.. Numerical and Experimental Confirmation of the Calibration Stage’s Effect in Multi-operation Sheet Hydroforming Using Poor-formability Materials. Journal of Materials Processing Technology, 2008, 201(1-3):97-100
    110朱伟,董湘怀,张质良.板材拉深成形液压系统模糊控制建模.控制理论与应用, 2007, 24(1):122-126
    111 Liu Wei, Yang Yuying. Multi-objective Optimization of Sheet Metal Forming Process Using Pareto-based Genetic Algorithm. Journal of Materials Processing Technology, 2008:1-8
    112唐景林.圆锥形件充液拉深过程中的上限液池压力.机械工程学报, 2002, 38(2):131-133
    113李壮云.中国机械设计大典第五卷机械控制系统设计.南昌:江西科学技术出版社, 2002:92,193,409,411,425,496
    114唐景林,王丽薇.单动拉深液压机压边能量损耗分析.锻压技术, 2006, 31(6):91-93
    115王春行.液压伺服控制系统.北京:机械工业出版社, 1981:4, 122,161-166, 224
    116飞思科技产品研发中心. MATLAB7辅助控制系统设计与仿真.北京:电子工业出版社, 2005:2-3
    117方一鸣,焦晓红.基于MATLAB(SIMULINK)的模糊控制系统计算机仿真.自动化与仪器仪表, 2000, (2):19-21
    118胡兵.基于Matlab的Boost电路仿真分析及其试验研究.电工技术杂志, 2004, (10):76-80
    119王益群,孔祥东.控制工程基础.北京:机械工业出版社, 2001:7
    120张利平.液压传动系统及设计.北京:化学工业出版社, 2005:1-3
    121赵丙龙.考虑管道影响的阀控电液伺服系统建模、仿真及应用研究. [太原理工大学硕士学位论文]. 2005:23
    122 W.霍夫曼.液压元件及系统的动态仿真.浙江:浙江大学出版社, 1988:5
    123蒋海明.升降机液压动力系统建模仿真及计算. [哈尔滨工程大学硕士学位论文]. 2007:52-54
    124吴根茂,邱敏秀,王庆丰,等.新编实用电液比例技术.浙江:浙江大学出版社, 2006:26-27
    125蔡亦钢.流体传输管道动力学.浙江:浙江大学出版社, 1990:1-5,16-19
    126 Watton J, Tadmori M J.A Comparison of Techniques for the Analysis of Transmission Line Dynamics in Electrohydraulic Control Systems. Applied Math. Modeling, 1988, (12):457-466
    127 Woods R L. A First—Order Square Root Approximation for Fluid Transmission Lines, in Fluid Transmission Line Dynamics. ASME, 1983:56-60
    128 Hullender D A, Healey A J. Rational polynomial approximations for fluid transmission line model. Fluid Transmission Line Dynamics, ASME Special Publication, New York, 1981:23-35
    129 Hsue C Y, Hullender D A. Modal approximations for the fluid dynamics of hydraulic and pneumatic transmission lines. Fluid Transmission Line Dynamics, ASME Special Publication, New York, 1983:174-180
    130 Hullender D A, Woods R L, Hsu C H. Time Domain Simulation of Fluid Transmission Lines Using minimum order state variables models. Fluid Transmission Line Dynamics, ASME Special Publication, New York, 1983:43-62
    131 Ynag W C, Tobler W E. Dissipative Modal Approximation of Fluid Transmission Lines Using Linear Friction Model. ASME Journal of Dynamics Systems, Measurement, and Control, 1991, (113):152-163
    132 Krus P, Weddfelt K, Palmberg J O. Fast Pipeline Models for Simulation of Hydraulic Systems. ASME Journal of Dynamic Systems. Measurement and Control, 1994, (116):167-175
    133高钦和.液压系统动态仿真中的一种管道模型及其实现. 2005系统仿真技术及其应用学术交流会论文选编.广州, 2005:70-72
    134王沫然. Simulink4建模及动态仿真.北京:电子工业出版社, 2002:11-12
    135张志涌,刘瑞桢.掌握和精通MATLAB.北京:北京航空学院出版社, 1997:251-252
    136黄永安,马路,刘慧敏. MATLAB7.0/Simulink 6.0建模仿真开发与高级工程应用.北京:清华大学出版社, 2005:158-159
    137陶永华.新型PID控制及其应用.北京:机械工业出版社, 1998:32-33,95-100,113-128
    138刘金琨.先进PID控制MATLAB仿真(第二版).北京:电子工业出版社, 2004:1,102-104,115
    139王芳.模糊自调整PID控制在锅炉汽包水位控制中的应用. [山东大学硕士学位论文]. 2007:7-12,21-23
    140刘培玉.最优控制系统设计.大连:大连理工大学出版社, 2000:1-3,105
    141何衍庆.控制系统分析、设计和应用—MATLAB语言的应用.北京:化学工业出版社, 2002:285-286,
    142黄文梅,杨勇,熊桂林.系统仿真分析与设计—MATLAB语言工程应用.长沙:国防科技大学出版社, 2001:182
    143胡跃明.非线性控制系统理论与应用.北京:国防工业出版社, 2002:89,106
    144曹建福.非线性理论及应用.西安:西安交通大学出版社, 2001:111-136
    145李运华,王孙安.液压伺服系统的非线性控制.机床与液压, 1994, (1):21-25
    146杨乐平,李海涛,杨磊. LabVIEW程序设计与应用.北京:电子工业出版社, 2005:1,4
    147 National Instruments Corporation. LabVIEW User Manual, 1996:70-85
    148石博强,赵德永,李畅. LabVIEW6.1编程技术实用教程.北京:中国铁道出版社, 2002:174

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700