用户名: 密码: 验证码:
大豆蛋白源对不同食性鱼类的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以鲤鱼、埃及胡子鲇、草鱼为试验对象,在相同饲养环境条件下,利用去皮豆粕和分离提纯的大豆抗原蛋白分别进行了两个饲养试验。
     试验Ⅰ:
     以健康的鲤鱼(体重50.13±0.41g)、埃及胡子鲇(体重22.40±0.30g)、草鱼(体重50.63±0.43g)为试验对象,在三种鱼类幼鱼的饲料中以去皮豆粕分别替代0%、15%、30%、45%、60%的鱼粉蛋白,配制5个等蛋白(鲤鱼36%、埃及胡子鲇40%、草鱼30%)等能(鲤鱼15.2KJ/g、埃及胡子鲇15.8KJ/g、草鱼15.6KJ/g)的半精制饲料。研究去皮豆粕对不同食性鱼类的生长性能及饲料利用、肌肉质量和健康状况、消化性能(消化酶活力、肠道组织)的影响。并寻求大豆蛋白在不同食性鱼类饲料中的适宜替代量。
     结果表明:
     1对生长性能和饲料利用的影响
     在鲤鱼饲料中,当大豆蛋白替代鱼粉蛋白15%、30%、45%时,其特定生长率(SGR)、饲料效率(FER)、蛋白质效率(PER)、蛋白质沉积率(PPV)高于对照组或与对照组差异不显著(P>0.05);但都显著高于60%组(P<0.05)。因此,本试验条件下,鲤鱼饲料中大豆蛋白对鱼粉蛋白的最大替代量为45%。
     在埃及胡子鲇的饲料中,15%、30%、45%组的特定生长率、饲料效率、蛋白质效率、蛋白质沉积率逐渐增加,但都低于对照组,与对照组差异不显著(P>0.05);可是都显著高于60%组(P<0.05)。因此,本试验条件下,埃及胡子鲇饲料中大豆蛋白对鱼粉蛋白的最大替代量为45%。
     在草鱼的饲料中,各组之间特定生长率差异不显著(P>0.05);随着大豆蛋白替代水平的增加,饲料效率、蛋白质效率、蛋白质沉积率逐渐增加,60%组饲料效率、蛋白质效率开始下降,但仍显著高于对照组(P<0.05)。因此,本试验条件下,草鱼饲料中大豆蛋白对鱼粉蛋白的最大替代量为60%。可见,三种鱼类中草鱼对大豆蛋白利用效果最好。此外,不同鱼种对大豆蛋白的利用差异显著(P<0.05),鱼种与饲料的互作效应对鱼类生长及饲料利用影响显著(P<0.05)。
     2对肌肉质量和健康状况的影响
     饲料中大豆蛋白对不同食性鱼类肌肉中的粗蛋白、粗脂肪、水分含量有显著影响,对灰分和氨基酸含量影响不显著。随着大豆蛋白替代比例的增加,不同食性鱼类肌肉中粗蛋白含量呈下降趋势,鲤鱼60%组粗蛋白含量显著下降(P<0.05),埃及胡子鲇和草鱼粗蛋白含量极显著下降(P<0.01);鲤鱼肌肉中粗脂肪含量呈下降趋势,60%组与对照组差异显著(P<0.05),埃及胡子鲇和草鱼各组之间差异不显著(P>0.05);三种鱼类肌肉中水分含量呈上升趋势,鲤鱼45%、60%组与对照组差异极显著(P<0.01),埃及胡子鲇、草鱼60%组与对照组差异显著(P<0.05)。随着大豆蛋白替代水平的增加,鲤鱼和草鱼各组之间的氨基酸总量、必需氨基酸总量、鲜味氨基酸总量差异不显著(P>0.05);埃及胡子鲇的氨基酸总量、风味氨基酸总量均呈上升趋势,45%、60%组与对照组差异显著(P<0.05),必需氨基酸呈上升趋势,45%组与对照组差异显著(P<0.05),60%组与对照组差异极显著(P<0.01)。
     此外,肌肉主要营养成分鱼种之间差异显著(P<0.05),鲤鱼和埃及胡子鲇肌肉中粗蛋白含量显著高于草鱼(P<0.05)。三种鱼类之间粗脂肪含量差异显著(P<0.05),鲤鱼最高,草鱼最低。埃及胡子鲇氨基酸含量较高;鱼种与饲料互作效应对肌肉中粗蛋白、粗脂肪、氨基酸总量、必需氨基酸总量、鲜味氨基酸总量有显著的影响(P<0.05)。
     在本试验条件下,从鱼类血液的主要生化指标来看,在不同食性鱼类的人工配合饲料中,添加一定量的大豆蛋白对鱼类健康无不良影响。不同食性鱼类血液主要生化指标差异显著(P<0.05),鱼种与饲料互作对血液中甘油三酯和谷草转氨酶有显著影响(P<0.05)。
     3对消化性能的影响(消化酶活力)
     随着大豆蛋白替代鱼粉蛋白比例的增加,鲤鱼的肝胰脏和肠道蛋白酶活力逐渐降低,当大豆蛋白替代鱼粉蛋白45%时,鲤鱼的后肠和肝胰脏蛋白酶活力极显著低于对照组(P<0.01);后肠淀粉酶活力60%组极显著低于对照组(P<0.01);而大豆蛋白对鲤鱼肝胰脏、前肠、中肠、后肠脂肪酶活力影响不显著(P>0.05)。
     随着大豆蛋白替代鱼粉比例的增加,埃及胡子鲇胃、肝胰脏、肠道蛋白酶活力逐渐降低,埃及胡子鲇胃大豆蛋白组都极显著低于对照组(P<0.01),中肠和肝胰脏30%、45%、60%组都极显著低于对照组(P<0.01);埃及胡子鲇胃、肝胰脏、前肠、中肠各组之间淀粉酶活力差异不显著(P>0.05),后肠45%和60%组显著低于对照组(P<0.05);大豆蛋白对埃及胡子鲇肝胰脏、前肠、中肠、后肠脂肪酶活力影响不显著(P>0.05)。
     随着大豆蛋白替代鱼粉蛋白的增加,草鱼肝胰脏和肠道蛋白酶活力逐渐降低,60%组与对照组差异显著(P<0.05)。草鱼肝胰脏淀粉酶活力15%、30%、45%组极显著高于对照组(P<0.01),60%组与对照组差异不显著(P>0.05),中肠45%和60%显著低于对照组(P<0.05),前肠和后肠大豆蛋白组与对照组差异不显著(P>0.05);而大豆蛋白对草鱼肝胰脏、前肠、中肠、后肠脂肪酶活力影响不显著(P>0.05)。
     此外,从鱼种与饲料的互作效应来看,大豆蛋白对不同种鱼类的肝胰脏、前肠、中肠、后肠蛋白酶活力、淀粉酶活力影响显著(P<0.05),对脂肪酶活力影响不显著(P>0.05);鱼种与饲料的互作对肝胰脏、前肠、中肠、后肠蛋白酶活力和中肠、后肠淀粉酶活力影响显著(P<0.05),对肝胰脏、前肠、中肠、后肠脂肪酶影响不显著(P>0.05)。
     4对消化性能的影响(肠道组织)
     当大豆蛋白替代鱼粉蛋白45%、60%时,鲤鱼前肠皱襞高度极显著低于对照组(P<0.01),中肠皱襞高度45%、60%显著低于对照组(P<0.05),后肠皱襞高度60%组显著低于对照组(P<0.05)。
     埃及胡子鲇前肠和后肠皱襞高度30%、45%、60%组极显著低于对照组(P<0.01);中肠皱襞高度60%组极显著低于对照组(P<0.01)。
     草鱼前肠、后肠皱襞高度60%组极显著低于对照组(P<0.01),中肠60%组显著低于对照组(P<0.05)。
     鲤鱼45%组前肠、60%组后肠,埃及胡子鲇30%组前肠和后肠,草鱼60%组前肠和后肠肠道结构组织完整性被破坏,部分肠绒毛脱落,部分上皮细胞与固有层分离,固有层结缔组织疏松,固有层变宽。
     在本试验条件下,鲤鱼、埃及胡子鲇、草鱼之间肠重、肠长、肠体指数、肠长指数、前肠、中肠、后肠皱襞高度差异显著(P<0.05),鱼种与饲料互作效应对肠重、前肠、中肠、后肠皱襞高度影响显著(P<0.05)。
     试验Ⅱ:
     以健康的鲤鱼(体重31.34±0.29g)、埃及胡子鲇(体重15.14±0.05g)、草鱼(体重50.66±0.26g)为试验对象,以鱼粉和大豆抗原蛋白为蛋白源,每种鱼分别配制3个等蛋白(鲤鱼36%、埃及胡子鲇40%、草鱼30%)等能(鲤鱼15.2KJ/g、埃及胡子鲇15.8KJ/g、草鱼16.0KJ/g)的半精制饲料。其中β-伴大豆球蛋白添加量40mg/g,大豆球蛋白添加量60mg/g,研究大豆抗原蛋白对不同食性鱼类的生长及饲料利用、肌肉质量、消化性能(肠道组织)的影响。
     结果表明:
     1对生长和饲料利用的影响
     鲤鱼β-伴大豆球蛋白和大豆球蛋白组特定生长率、饲料效率、蛋白质效率、蛋白质沉积率低于对照组,但与对照组差异不显著(P>0.05);埃及胡子鲇β-伴大豆球蛋白和大豆球蛋白组特定生长率、饲料效率、蛋白质效率显著下降(P<0.05),蛋白质沉积率极显著下降(P<0.01);草鱼β-伴大豆球蛋白组和大豆球蛋白组特定生长率、饲料效率、蛋白质效率、蛋白质沉积率极显著下降(P<0.01)。
     另外,在本试验条件下,不同食性鱼类生长及饲料利用方面,鱼种之间差异显著(P<0.05);鱼种与饲料的互作效应对饲料效率、蛋白质效率、蛋白质沉积率影响显著(P<0.05),对特定生长率影响不显著(P>0.05)。
     2对肌肉质量的影响
     大豆抗原蛋白对不同食性鱼类肌肉中一般营养成分有显著影响,对肌肉中氨基酸含量影响不显著。鲤鱼β-伴大豆球蛋白和大豆球蛋白组粗蛋白含量下降,但与对照组差异不显著(P>0.05);粗脂肪和灰分与对照组差异不显著(P>0.05),β-伴大豆球蛋白组的水分增加与对照组差异极显著(P<0.01),大豆球蛋白组的水分与对照组差异不显著(P>0.05);β-伴大豆球蛋白和大豆球蛋白组组氨基酸总量与对照组差异不显著(P>0.05)。
     埃及胡子鲇β-伴大豆球蛋白和大豆球蛋白组粗蛋白含量极显著下降(P<0.01),粗脂肪和灰分与对照组差异不显著(P>0.05),β-伴大豆球蛋白水分含量极显著增加(P<0.01),大豆球蛋白组水分含量极显著下降(P<0.01)。
     草鱼β-伴大豆球蛋白和大豆球蛋白组粗蛋白含量极显著下降(P<0.01),水分、粗脂肪和灰分与对照组差异不显著(P>0.05)。
     鱼种之间肌肉一般营养成分差异显著(P<0.05),鱼种与饲料互作对肌肉中水分和粗蛋白含量的影响显著(P<0.05)。氨基酸总量鱼种之间差异显著(P<0.05),必需氨基酸总量、鲜味氨基酸总量鱼种之间差异不显著(P>0.05);鱼种与饲料互作效应对氨基酸总量、必需氨基酸总量、鲜味氨基酸总量影响不显著(P>0.05)。
     3对消化性能的影响(肠道组织)
     鲤鱼和埃及胡子鲇中肠和后肠肠道皱襞高度β-伴大豆球蛋白和大豆球蛋白组极显著低于对照组(P<0.01),而前肠肠道皱襞高度各组之间差异不显著(P>0.05);草鱼前肠、中肠、后肠皱襞高度β-伴大豆球蛋白和大豆球蛋白组极显著低于对照组(P<0.01)。β-伴大豆球蛋白和大豆球蛋白组肠道组织结构完整性被破坏,部分肠道绒毛脱落,部分上皮细胞与固有层分离,固有层变宽。
     从鱼种与饲料互作效应来看,本试验条件下,不同种鱼类之间肠重、肠长、肠体指数、肠长指数、前肠、中肠、后肠皱襞高度差异显著(P<0.05)。鱼种与饲料互作效应对前肠、中肠、后肠皱襞高度和肠长影响显著(P<0.05)。
To investigate effects of soybean protein source on fishes with different feedinghabits,two growth experiment were conducted on juvenile Cyprinus carpio,Clarias lazera andCtenopharyngondon idellus feeding by semi-purified diets formulated protein source withdehulled soybean meal and the purified soybean antigen,respectively.Growth experimentⅠ:
     Juvenile Cyprinus carpio(initial weight 50.13±0.41g),Clarias lazera(initial weight22.40±0.30g)and Ctenopharyngondon idellus(initial weight 50.63±0.43g)were cultured for eightweeks and fed by five isonitrogenous(Cyprinus carpio 36%,Clarias lazera 40%,Ctenopharyngondon idellus 30%) and isoenergetic(Cyprinus carpio 15.2 KJ/g,Clarias lazera 15.8KJ/g,Ctenopharyngondon idellus 15.6KJ/g)diets which formulated with replacement level 0%,15%,30%,45% and 60% dehulled soybean meal for fish meal protein.The effects of differentreplacement level of dehulled soybean on growth performance,feed utilization,meat quality,health condition,digestibility (digestive enzyme activities and intestinal tissue) in differentfeeding habits fishes were determined and optimum replacement level of soybean meal wassuggested.
     The results were as follows:
     1 Effects on growth performance and feed utilization
     The specific growth rate (SGR),feed efficiency rate(FER),protein efficiency rate(PER)andproductive protein value (PPV) in treated groups of Cyprinus carpio were not significantlydifferent from control group(P>0.05)when the replacement levels of soybean protein were 15%,30 % and 45 % in the diet,but they were significantly higher than that of 60% group(P<0.05).It suggests that the maximum replacement level of soybean protein for fish meal might be45 % in diet of Cyprinus carpio.
     Though SGR,FER,PER and PPV in 15%,30%,45% groups of Clarias lazera graduallyincreased,they were lower than that in control group and no significant differences wereobserved(P>0.05).SGR,FER,PER and PPV in 15%,30%,45% groups were significantlyhigher than that in 60% group (P<0.05).This suggests that the maximum replacement level ofsoybean protein for fish meal might also be 45 % in diet of Clarias lazera.
     There were no significant differences in SGR of Ctenopharyngondon idellus amongtreatments (P>0.05).FER、PER in 60% group decreased,but they were significantly higherthan that in control group(P<0.05).FER,PER,PPV in the other treated groups graduallyincreased concomitantly with increased replacement level of soybean protein.The resultsuggests that the maximum replacement level of soybean protein for fish meal might be 60 % indiet of Ctenopharyngondon idellus and it could be the best one in utilizing soybean protein inthree fish species.Moreover,there were significant(P<0.05)differences in soybean proteinutilization among fish species.Growth performance and feed utilization in different species.were significantly (P<0.05)affected by interaction effects between species and feed.
     2 Effects on meat quality and health condition
     Soybean protein has significant impact on protein content,fat content and water content,but not in the contents of ash and amino acids,in muscle of different feeding habits fishes.Withthe replacement ratio increased,protein content in muscle of different feeding habit fish showeda declining trend and it significantly decreased(P<0.05)in 60% groups of Cyprinus carpio.protein content in muscle of Clarias lazera and Ctenopharyngondon idellus significantlydecreased(P<0.01);fat content in muscle of Cyprinus carpio showed a declining trend,therewere significant differences between 60% group and control group(P<0.05).No significantdifferences among groups of Clarias lazera and Ctenopharyngondon idellus were observed(P>0.05).Water content in muscle showed a increasing trend in three species,there were significantdifferences in 45%、60% groups compared with control group in Cyprinus carpio(P<0.01),there were significant differences in 60% groups of Clarias lazera and Ctenopharyngondon idellus compared with control groups(P<0.05).With increasing of replacement level,nosignificant differences in total amino acids,total essential amino acids and total flavor aminoacids were observed between Cyprinus carpio and Ctenopharyngondon idellus(P>0.05).Totalamino acids and total flavor amino acids in muscle of Clarias lazera showed an increasing trend,there were significant differences in 45%、60% groups compared with control group(P<0.05),total essential amino acids in muscle also showed an increasing trend,there were significantdifferences in 45% (P<0.05)and 60% (P<0.01)groups compared with control group.
     In addition,significant differences in main nutritional component of muscle amongdifferent species were found.The crude protein in muscle of Cyprinus carpio and Clarias lazerawere significantly higher than that of Ctenopharyngondon idellus(P<0.05).There weresignificant differences in fat content among three species(P<0.05).The highest fat content wasobserved in muscle of Cyprinus carpio,the lowest fat content was found in muscle ofCtenopharyngondon idellus,higher content of amino acids was found in muscle of Clariaslazera.The crude protein,crude fat,total amino acids,total essential amino acids and totalflavor amino acids were significantly influenced by interaction effects between species andfeed(P<0.05).
     The results of blood biochemical index showed that there was no negative impact on fishheath when a certain amount of soybean protein was added to diets.There were significantdifferences in main biochemical parameters in blood among different fish species(P<0.05).Triglyceride and GOT in blood of different species were significantly affected by interactioneffects between species and feed(P<0.05).
     3 Effects on digestibility (digestive enzyme activities)
     The hepatopancreas and intestinal protease activities gradually declined concomitantly withincreased replacement ratio of soybean protein in Cyprinus carpio.hepatopancreas and posteriorintestine protease activities in 45% group were significantly lower than that in control group(P<0.01).Amylase activities of posterior intestine in 60 % group were significant lower than thatin control group(P<0.01);there were no significant differences in lipase activities inhepatopancreas,anterior intestine,mid-intestine and posterior intestine among treatments inCyprinus carpio.(P>0.05).
     Protease activities in hepatopancreas and intestinal tract of Clarias lazera graduallydeclined concomitantly with increased replacement level of soybean protein.Protease activitiesin stomach of treated groups were significantly lower than that in stomach of control group(P< 0.01),and protease activities in mid-intestine and hepatopancreas of 30%,45%and 60%groups were significantly lower than that of control group(P<0.01).No significant differencesin amylase activities of stomach,hepatopancreas,anterior intestine,mid-intestine were foundamong treatments(P>0.05),amylase activities in posterior intestine of 45 %and 60% groupwere significantly lower than that of control group(P<0.05).There was no significantdifferences in lipase activities in hepatopancreas,anterior intestine,mid-intestine,posteriorintestine among treatments in Clarias lazera(P>0.05).
     Protease activities in hepatopancreas and intestinal tract of Ctenopharyngondon idellusgradually declined concomitantly with increased replacement level of soybean protein.Therewere significant differences between 60 % group and control group(P<0.05).Amylase activitiesin hepatopancreasin of 15%,30% and 45% groups were significantly higher than that of controlgroup(P<0.01),there were no significant differences between 60%group and control group(P>0.05).Amylase activities in mid-intestine in 45% and 60% groups were significant lower thancontrol group(P<0.05),there were no significant differences in anterior intestine and posteriorintestine in treated groups compared with control groups(P>0.05).No significant differences inlipase activities of hepatopancreas、anterior intestine,mid-intestine,posterior intestine wereobserved among treatments(P>0.05).
     The statistical results of interaction effects between species and feed showed that proteaseand amylase activities in hepatopancreas,anterior intestine,mid-intestine,posterior intestinewere significantly affected by replacement level of soybean protein(P<0.05),but lipaseactivities were not significantly influenced(P>0.05);protease activities in hepatopancreas,anterior intestine,mid-intestine,posterior intestine were significantly influenced by interactioneffects between species and feed(P<0.05).The interaction effects between species and feedsignificantly affected amylase activities in mid-intestine and posterior intestine(P<0.05),butdid not affect lipase activities in hepatopancreas、anterior intestine、mid-intestine、posteriorintestine(P>0.05).
     4 Effects on digestibility (intestinal tissue)
     The entero-plica height of 45% and 60% groups were significantly lower than that ofcontrol group in anterior intestine(P<0.01)and in mid-intestine (P<0.05),and the entero-plicaheight of 60% group was significantly lower than that of control group in posterior intestine(P<0.05)for three species.
     The entero-plica height of anterior intestine in 30%,45% and 60% groups were significantly lower than that in control group in Clarias lazera(P<0.01);the entero-plica height ofmid-intestine in 60% group was significantly lower than that in control group(P<0.01);theentero-plica height of posterior intestine in 30%,45% and 60% group were significantly lowerthan that in control group in Clarias lazera(P<0.01).
     The entero-plica height of anterior intestine and posterior intestine in 60% group weresignificantly lower than that in control group(P<0.01)and the entero-plica height ofmid-intestine in 60% group was significantly lower than that in control group inCtenopharyngondon idellus(P<0.05).
     The structural integrity were damaged in anterior intestine of 45% group of Cyprinus carpio,in posterior intestine of 60% group of Cyprinus carpio,in anterior intestine and posteriorintestine of 30% group of Clarias lazera,and in anterior intestine and posterior intestine of 60%group of Ctenopharyngondon idellus.The part of intestinal villi shed,the part of epithelial cellsand proper layer separated,and the proper layer became wider for three species.
     Intestine weight,intestine length,parameters of intestine/body,the entero-plica height ofanterior intestine,mid-intestine and posterior intestine were significantly different among threespecies(P<0.05).The interaction effects between species and feed significantly affected on theentero-plica height of anterior intestine,mid-intestine and posterior intestine for three species(P<0.05).
     Growth experimentⅡ:
     Semi-synthesised diets of three isonitrogenous (Cyprinus carpio 36%,Clarias lazera 40%,Ctenopharyngondon idellus 30%) and isoenergetic (Cyprinus carpio 15.2 KJ/g,Clarias lazera15.8KJ/g,Ctenopharyngondon idellus 15.6KJ/g) diets were formulated with fish meal andsoybean protein as protein.Juvenile Cyprinus carpio(initial weight 31.34±0.29g),Clariaslazera(initial weight 15.14±0.05g)and Ctenopharyngondon idellus (initial weight 50.66±0.26g)were cultured for six weeks and fed by the same semi-purified diets which formulated withpurifiedβ-conglycinin 40mg/g diet and glycinin 60mg/g diet,respectively.The effects ofβ-conglycinin and glycinin on growth performance,feed utilization,meat quality,digestibility(intestinal tissue) in different feeding habits fishes were determined.
     The results were as follows:
     1 Effects on growth performance and feed utilization
     SGR、FER,PER and PPV of Cyprinus carpio treated withβ-conglycinin and glycinin werelower,but not significantly,than control group(P>0.05);The SGR,FER and PER of Clariaslazera treated withβ-conglycinin and glycinin significantly decreased(P<0.05),and PPVsignificantly declined(P<0.01).The SGR,FER,PER,and PPV in Ctenopharyngondon idellustreated withβ-conglycinin and glycinin were significantly decline(P<0.01).
     In addition,growth performance and feed efficiency were significantly affected by differentspecies(P<0.05);The FER,PER and PPV were significantly influenced by interaction effectsbetween species and feed(P<0.05),and SGR were not significantly influenced by theinteraction effects for three species(P>0.05).
     2 Effects on meat quality
     Main nutritional components in muscle were significantly influenced by soybean antigen,in contrast,the content of amino acids in muscle were not significantly influenced for differentfeeding habits fishes.Protein content in muscle of Cyprinus carpio treated withβ-conglycininand glycinin declined,but there were no significant differences between treated groups andcontrol group(P>0.05).Comparing with control group,no significant differences were found infat and ash content in treated groups(P>0.05).The water content significantly increased intreated groups compared to control group(P<0.01),there were no significant differences inwater content between groups treated with glycinin and control(P>0.05).Total amino acidscontent of treated groups were not significantly different from control groups in Cyprinuscarpio(P>0.05).
     Protein content of Clarias lazera treated withβ-conglycinin and glycinin significantlydecreased(P<0.01).Comparing with control groups,no significant differences were observedin fat and ash content in treated groups(P>0.05).The water content in group treated withβ-conglycinin significantly increased(P<0.01),but it in group treated with glycininsignificantly decreased in Clarias lazera(P<0.01).
     Protein content of Ctenopharyngondon idellus treated withβ-conglycinin and glycininsignificantly decreased(P<0.01).The contents of water、fat and ash were not significantlydifferent between treated groups and control groups(P>0.05).
     There were significant differences in main nutritional components of muscle among species(P<0.05).The contents of water and crude protein in muscle were significantly influenced byinteraction effects between species and feed(P<0.05).Total amount of amino acids weresignificantly different among species(P<0.05),but total essential amino acids,total flavor amino acids were not(P>0.05).The total amino acids,total essential amino acids and totalflavor amino acids were not significantly influenced by interaction effects between species andfeed(P>0.05).
     3 Effects on digestibility (intestinal tissue)
     The entero-plica height of mid-intestine and posterior intestine in groups treated withβ-conglycinin or glycinin were significantly lower than that in control group in Cyprinus carpioand Clarias lazera(P<0.01),but there were no significant differences in entero-plica of anteriorintestine among groups(P>0.05).The entero-plica height of anterior intestine,mid-intestine andposterior intestine of Ctenopharyngondon idellus in treated groups were significantly lower thanthat in control group.The structural integrity of intestines in different species treated withβ-conglycinin or glycinin was destroyed,parts of intestinal villi shed,parts of epithelial cellsand proper layer separated,and the proper layer became wider.
     The statistical results of interaction effects between species and feed showed that intestineweight,intestine length,the parameters of intestine/body weight,the parameters ofintestine/body length,the entero-plica height of anterior intestine,mid-intestine and posteriorintestine were significantly affected(P<0.05).The interaction effects between species and feedalso significantly affected on anterior intestine,mid-intestine and posterior intestine in differentfeeding habits fishes(P<0.05).
引文
[1]Hardy R.Evaluating oilseed proteins for finfish diets.J Feed Int.1996,172:22-26.
    [2]Hardy R H.Aquacalture's rapid growth requirements for alternate protein sources.J.Feed Mana.1999,50:25-28.
    [3]Hardy R W,Kissil,G W M.Trends in aquaculture feeding.J.Feed Mix.1997,5:31-33.
    [4]Willson R P.Amino acids and proteins In:Halver J E ed,Fish Nutrition,Academic Press.J New York,1989,111-151.
    [5]李爱杰.水产动物营养与饲料学[M].北京:中国农业出版社,1994.
    [6]赵卫红.鱼类营养研究概述[J].盐城工学院学报,2002,15(2):43-49.
    [7]林鼎,毛永庆,蔡发盛.幼鲩Ctenopharyngondon idellus(C.et.V)鱼种生长阶段蛋白质最适需要量的研究[J].水生生物学集刊,1980,7(3):207-212.
    [8]邹志清,苑福熙,陈双喜.团头鲂饲料中最适蛋白质含量[J].淡水渔业,1987,3:21-24。
    [9]李远友,孙泽伟,杨云霞.尼罗罗非鱼在淡水和海水中的生长及对蛋白质需求的比较[J].水产科学,2004,23(10):1-4.
    [10]李瑾,何瑞国.斑点叉尾鮰幼鱼最适能蛋比[J].饲料世界,2003,109(7):56-60.
    [11]王胜林,何瑞国.澎泽鲫春片鱼种适宜生长的能量、蛋白质和磷水平的研究[J].饲料工业,2000,21(7):23-25.
    [12]向枭,陈运生,聂科,等.饲料中适宜动植物蛋白对淡水白鲳生长的影响[J].饲料工业,2004,25(10):52-54.
    [13]林利民,冯开文.银鲈配合饲料蛋白质需要量的初步研究[J].科学养鱼,2004(4):57-58.
    [14]王贵英,曾可为,高银爱,等.鳜配合饲料的最适蛋白质含量[J].水生生物学报,2005,29(2):189-192.
    [15]陈建明,叶金云,王友慧,等.翘嘴红鲌对蛋白质的需要量[J].水产学报,2005,29(1):83-86.
    [16]王桂芹,周洪琪,陈建明,等.翘嘴红鲌对蛋白的营养需求及豆粕对鱼粉的适宜替代量[J].中国水产科学,2006,13(2):277-285.
    [17]陈四清,马爱军,雷霁霖,等.大菱鲆幼鱼的蛋白质与能量需求[J].水产学报,2004,28(4):425-430.
    [18]杨代勤,陈芳,李道霞,等.黄鳝的营养素需要量及饲料最适能量蛋白比[J].水产学报,2000,24(3):259-262.
    [19]刘永坚,刘栋辉,田丽霞,等.饲料蛋白质和能量水平对红姑鱼生长和鱼体组成的影响[J].水产学报,2002,26(3):242-246.
    [20]姜才根,王玮玮,谢夏全,等.眼斑拟石首鱼养殖全程的饲料蛋白质最适含量[J].福建农业学报,2005,20(增刊):7-12.
    [21]彭士明,陈立侨,叶金云,等.饵料蛋白能量对黑鲷幼鱼生长和体成分的影响[J].中国水产科学,2005,12(4):465-470.
    [22]李敬伟,李文宽,骆小年,等.黄颡鱼幼鱼对饲料中蛋白质和能量需要量的研究[J].水产科学,2005,24(9):17-19.
    [23]邹祺,何瑞国.黄颡鱼鱼苗对不同营养水平饵料利用效果的研究[J].中国饲料,2005,1:24-26.
    [24]韩庆,夏维福,罗玉双.不同营养水平对黄颡鱼春片鱼种生长的影响[J].饲料工业,2002,23(7):43-45.
    [25]周秋白,吴华东,吴凤翔,等.黄颡鱼蛋白需求量的研究[J].江西农业大学学报,2003,25(5):763-765.
    [26]蒋蓉,宋学宏,叶元土,等.黄颡鱼饲料中适宜的蛋白质含量和能量蛋白比[J].大连水产学院学报,2004,19(4):252-257.
    [27]王武,石张东,甘炼.江黄颡鱼幼鱼最适蛋白质需求量的研究[J].上海水产大学学报,2003,12(2):185-188.
    [28]邹庆均,苏小风,许梓荣,等.饲料蛋白水平对宝石鲈生长和体组成影响研究[J].水生生物学报,2004,28(4):367-372.
    [29]宋理平,朱永安,师吉华,等.宝石鲈幼鱼蛋白质需要量的研究[J].长江大学学报,2006,3(1):165-167.
    [30]陈喜斌,庄平,曾翠平,等.中华鲟幼鱼蛋白质营养最适需要量[J].中国水产科学,2002,9(1):60-64.
    [31]林利民,王重庆.俄罗斯鲟配合饲料蛋白质最适水平的研究[J].集美大学学报(自然科学版),2006,11(3):208-211.
    [32]曹振杰,杨玲,巩俊霞.乌鳢对蛋白质、脂肪、糖类、混合无机盐适宜需求量的初步研究[J].内陆水产,2003,8:12-13.
    [33]黄凯.月鳢蛋白质需要量的研究[J].中国饲料,1999,23:8-10.
    [34]许国换,丁庆秋,王燕.饲料中不同能量蛋白比对大口鲶生长及体组成的影响[J].浙江海洋学院学报(自然科学版),2001,20(增刊):94-97.
    [35]张文兵,谢小军,付世建,等.南方鲇的营养学研究:饲料的最适蛋白质含量[J].水生生物学报,2000,24(6):603-609.
    [36]杨州,杨家新.暗纹东方鲀幼鱼对蛋白质的最适需要量[J].水产学报,2003,27(5):451-454.
    [37]冷向军,王道尊.青鱼的营养与饲料配制技术[J].上海水产大学学报,2003,12(3):265-270.
    [38]魏清和.水生动物营养与饲料(M).北京:中国农业出版社,2002.
    [39]叶元土.鱼粉的质量控制及其在淡水鱼饲料中的应用[J].饲料工业,2007,28(8):1-6.
    [40]周歧存,麦康森,刘永坚,等.动植物蛋白源替代鱼粉研究进展[J].水产学报,2005,29(3):404-410.
    [41]Tacon A G J.Dominy W G Overview of world aqucculture and aqucfeed production A.World Aquaculture '99C,26April 2 May 1999,Sydney,Australia.World Aquaculture Society,Baton Rouge,LA,853.
    [42]Tacon A G J.Global trends in aquacculture production with particular reference to low income food deficit countries M.FAO Technical Paper No.12.Rome,Italy.1998.
    [43]Starkey T J.Status of fish meal supplies and market demand R.Miscellaneous report.H.J.Baker and Bro.,Stamford,CT,USA,1994,28.
    [44]Pongmaneerat J,Watanabe T,takeuchi T,et al.Use of different protein meals as partial ortotal substitution for fish meal in carp diets.J.Bull Jap Soc Sci Fish,1993,59:1249-1257.
    [45]Oliva Teles A,Gouveia A J,Gomes E,et al.The effect of different processing treatments on soybean meal utilization byrainbow trout,Oncorhynchus mykiss.J.Aquaculture,1994,124:343-349.
    [46]Olli J J,Krogdahl A.Nutritive value of four soybean products asprotein sources in diets for rainbow trout(Oncorhynchus mykiss,Walbaum)reared in freshwater.J.Acta Agric Scand Sect A Anim Sci,1993,44:185-192.
    [47]Olli J J,Krogdahl A,Vabeno a.Dehulled solvent extracted soybean meal as a protein source in diets for Atlantic salmon,Salmo salar L.J.Aquaculture Res,1995,26:167-174.
    [48]Storebakken T,Kvien I S,Shearer K D,et al.The apparentdigestibility of diets containing fish meal,soybean meal or bacterial meal fed to Atlantic salmon(Salmo salar):evaluation of different faecal collection methods.J.Aquaculture,1998,169:195-210.
    [49]张旭彬.水产养殖业中大豆制品使用现状和前景[J].渔业经济研究,2005(2):26-30.
    [50]Buttle L G.Burrells A C,Good J E,et al.The binding of soybean agglutinin (SBA) to the intestinal epithelium of Atlantic salmon,Salmo salar and Rainbow trout,Oncorhynchus mykiss,fed high levels of soybean meal.Veterinary Immunology and Immunopathology,2001,80:237-244.
    [51]Olive-Teles A,Gouveia A J,Gomes E,et al.The effect of different processing treatments on soybean meal utilization by rainbow trout,Oncorhynchus mykiss.J.Aquaculture,1994,124:343-349.
    [52]Sandholm M,Smith R R,Shih J C H,et al.Determination of antitryp sinactivity on agar plates:relationship between antitrypsin and biological value of soybeans for trout.J.Jnutr.1976,106:761-766.
    [53]Sanden M,Berntssen M H G,Krogdahl A,et al.An examination of the intestinaltract of Atlantic salmon,Salmo salar L,parr fed different varieties of soy and maize.J.Journal of Fish Diseases,2005,28:317-330.
    [54]Bakke-Mckellep A M.Changes in immune and enzyme bistochemical phenotypes of cells in the intestinal mucosa of Atlantic salmon Salmo salar L.with soybean meal-induced entedtis.J.Journal of Fish Diseases,2000,(23):115-127.
    [55]Krogdahl A,Bakke-mckellep A M,& Baeverfjord G.Effects of graded levels of standard soybean meal on intestinal structure mucosal enzyme activities,and pancreatic response in Atlantic salmon(Salmo salar L.).J.Aquaculture Nutrition,2003,9:361-371.
    [56]Van den Ingh T S G,Krogdahl A M A,Olli J J,et al.Effects of soybean-containing diets on the proximal and distal intestine in Atlantic salmon(Salmo salar):a morphological study.J.Aquaculture,1991,94:297-305.
    [57]Abel H J,Becker K,Meske C H R,et al.Possibilities of using heat-treated full-fat soybeans in carp peeding.J.1984,42:97-108.
    [58]Takeshymuray,Hiroshi ogata.Pairatkosutarak and Shigeruarai.Effects of Amino Acid Supplementation and Methanol Treatment on Utilization of Soy Flour by Fingerling Carp.J.Aquaculture,1986,56:197-206.
    [59]Viola S,Mokady S.Rappaport U,et al.Partial and complete replacement of fishmealbysoybean meal in feeds for intensive culture of carp.J.Aquaculture,1981/1982,26:223-236.
    [60]Konrad dabrowski and Balazskozak.The use of fish meal and soyabean meal as a protein source in the diet of grass carp fry.J.Aquaculture,1979,18:107-144.
    [61]艾庆辉,谢小军.南方鲇的营养学研究:饲料中大豆蛋白水平对生长的影响[J].水生生物学报,2002,26(1):58-64.
    [62]Day O J & Plascencia H G.Gonz Alez.Soybean protein concentrate as a protein source for turbot Scophthalmus maximus L.J.Aquaculture Nutrition,2000,6:4-10.
    [63]Elangovan A and K F Shim.The influence of replacing fish meal partially in the diet with soybean meal on growth and body composition of juvenile tin,foil barb (Barbodes altus).J.Aquaculture,2000,189:133-144.
    [64]Van der PoelA F B.Effects of processing on antinutrifinoal factors (ANF) and nutritional valus of legume seeds for non-ruminant feeding.In:J.Huisman,T.F.B.Van der Poel and I.E.Liener (Editors),Recent Advances of Research in An-finutfitional Factors in Legume Seeds.Pudoc,Wagengingen,1983,pp:27-38.
    [65]Reigh R,Cand G,Ellis C.Effects of dietary soybean and fish-protein ratios on growth and body composition of red drum (Sciaenops ocellatus) fed isonitrogenous diets.J.Aquaculture,1992,104(3/4):279-292.
    [66]Evans J J,Pasnik D,Peres H et al.No apparent differences in intestinal histology of channel catfish(Ictalurus punctatus) fed heat-treated and non-heat-treated raw soybean meal.J.Aquaculture Nutrition,2005,11:123-129.
    [67]Webster C D,Yancey D H,and James H T.Effect of partially or totally replacing fish meal with soybean meal on growth of blue catfish (Ictalurus furcatus).J.1992,103:141-152.
    [68]Chou R L,Her B Y,Su M S,et al.Substituting fish meal with soyb eanmeal in diets of juvenile cobia Rachycentron canadum.J.Aquaculture,2004,229:325-333.
    [69]Boonyaratpalin M,suraneiranat P,Tunpibal T.Replacement of fish mean with various types of soybean produces in diets for the Asian seabass,Lares calcarifer.J.Aquaculture,1998,161:67-78.
    [70]Carl D Webster,Daniel H Yancey and James H.Tidwell.Effect of partially or totally replacing fish meal with soybean meal on growth of blue catfish(Ictalurus furcatus).J.Aquaculture,1992,103:141-152.
    [71]LUO Zhi,LIU Yong-jian,MAI Kang-sen,er al.Parfial replacement of fish meal by soybean protein in diets for grouper Epinephelus coioides juveniles[J].水产学报,2004 (28) 2:175-181.
    [72]Grisdale-helland B,Helland S J,Baevetfjord G,et al.Full-fat soybean meal in diets for Atlantic halibut:growth,metabolism and intestinal histology.J.Aquaculture Nutrition,2002,8:265-270.
    [73]Kikuchi K,Kikuchi U.Use of defatted soybean meal as a substitute for meal in diets of Japanese flounder(Paralichthys olivaaceus ).J.Aquaculture,1999,179:3-11.
    [74]Viola S,Mokady S,Arieli Y.Effects of soybean processing methods on the growth of carp(Cyprinuscarpio).J.Aquaculture 1983,32:27-38.
    [75]Shian S Y,Lin S F,Yu S L,et al.Defatted and full-fat soybean meal as partialreplacements for fish meal in tilapia(Oreochromis niloticus×O.aureus)diets at low protein level.J.Aquaculture,1990,86:401-407.
    [76]Viyakam V,Watanabe T,Aoki H,et al.Use of soybean meal as a substitute for fish meal in a newly developed soft-dry pellet for yellowtail.J.Nippon Suisan Gakkaishi,1992,58:1991-2000.
    [77]陈乃松,艾庆辉,王道尊.欧洲鳗鲡配合饲料中大豆蛋白替代鱼粉的研究[J].水产学报,1998,22(3):283-287.
    [78]Day O J,Gonzaklez H G P.Soybean protein concentrate as a protein source for turbot Scophthalmusmaximus L.J.Aquacult.Nutr.2000,6:221-228.
    [79]Arndt R E,Hardy R W,Sugiura S H.Effects of heat treatment and substitution levelon palatability and nutritional value of soy defatted flour in feeds for Coho Salmon Oncorhynchus kisutch.J.A quaculture,1999,180:129-145.
    [80]Xie S,Jokumsen A.Effects of dietary incorporation of potato protein concentrate and supplementation of methionine on growth and feed utilization of rainbow trout.J.Aquaccult.Nutr.1998,4:183-186.
    [81]Reigh R C,Ellis S C.Effects of dietary soybean and fish protein ratios on growth and body composition of red drum(Sciaenopsocellatus) fed isonitrogenous diets.J.Aquaculture,1992,104:279-292.
    [82]Viola S,Viola U,Mokady U.Partial and complete replacement of fish meal by soybean meal in feeds for intensive culture of catp.J.Aquaculture,1982,26:223-236.
    [83]艾庆辉,谢小军.南方鲇的营养学研究:饲料中大豆蛋白水平对消化率及摄食率的影响[J].水生生物学报,2002,26(3):215-219.
    [84]叶继红,吴文化,孙大江.豆粕部分替换鱼粉对西伯利亚幼鲟生长的影响[J].水利渔业,2002,22(4):52-54.
    [85]张锦秀,周小秋,刘扬.去皮豆粕对幼建鲤生长性能和肠道的影响[J].中国水产科学,2007,14(2):315-319.
    [86]王广军,吴锐全,谢骏,等.军曹鱼饲料中用豆粕代替鱼粉的研究[J].大连水产学院学报,2005,20(4):304-307.
    [87]叶富良.鱼类学[M].北京:高等教育出版社,1990.
    [88]周萌,崔弈波,朱晓鸣,等.豆粕和土豆蛋白替代饲料中鱼粉对异育银鲫生长及能量收支的影响[J].水生生物学报,2002,26(4):370-377.
    [89]Krogdahl A,Lea T B,olli J.Soybean proteinase inhibitors affect intestinal trypsinactivites and amino acid digestibilities in rainbow trout Oncorhynchus mykiss.J.Comp Biochem Physiol,1994A,107:215-219.
    [90]Berg Lea T,Brattas L.-E.and Krogdahl A.Soybean proteinase inhibitors affect nutrient digestion in rainbow trout.In:J.Huisman,T.F.B.Van der poel and I.E.Liener(Editors)Recent Advances of Research in Antinutritional Factors in Legume Seeds.Pudoc,Wagengingen,1989,pp:99-102.
    [91]Escaffre A M.Infante J L Z,Cahu C L.Nutritional value of soy protein concentrate for larvae of eommon carp (Cypfinus carpio) based on growth performance and digestive enzyme activities.J.Aquaculture,1997,153:63-80.
    [92]Hymowitz T.Anti-nutritional facors in soybeans:genetics and breeding.In:Shibles R,ed.Proc.World Soybean Research Conference Ⅲ,1984,368-372.
    [93]杨丽杰,李素芬,张永成,等.黑龙江几个大豆品种中抗营养因子含量分析[J].大豆科学,1999,18(10):77-80.
    [94]李振田.大豆凝集素的检测、纯化和对大鼠的抗营养作用及机理研究[D].北京:中国农业大学,2003.
    [95]Gatel F,Protein quality of legume seeds for monogastric animals.In:Proc.1st Eus.Conf.grain legumes.Anger:European association for grain legume research,1992,461-473.
    [96]秦贵信.饲料抗营养因子及其消除方法.国外畜牧学—猪与禽[J].2003,23(3):10-13.
    [97]Buttle L G,Burrells A C,JGood J E,et al.The binding of soybean agglutinin (SBA) to the intestinal epithelium of Atlantic salmon,Salmo salar and Rainbow trout,Oncorhynchus mykiss,fed high levels of soybean meal.J.Veterinary Immunology and Immunopathology,2001,80:237-244.
    [99]Burrells C P D,Williams P J,Southgate V O,et al.Immunological,Physiological and pathological response of rainbow trout (Oncorhynchus mykiss)to increasing dietary concentrations of soybean proteins.J.Vet Immunol Immunopathol.1999,72:277-288.
    [100]Hendriks H G C J M,Van den Ingh T S G A M,Krogdahl A et al.Binding of soybean agglutinin to small intestinal brush border membranes and brush border membrane enzyme activities in Atlantic salmon(Salmo salar).J.Aquaculture,1990,91:163-170.
    [101]Refstie S,Storebakken T,Baeverfjord G,et al.Long-term protein and lipid growth of Atlantic salmon (Satmo salar) fed diets with partial replacement of fish meal by soy protein products at medium or high lipid level.J.Aquaculture,2001.193,91-106.
    [102]Ksudhik S J,Coves D,Dutto G.Almost total replacement of fish meal by plant protein sources in the diet of a marine teleost,the European seabass,Dicentearchus Labrax.J.Aquaculture,2004,230:391-404.
    [103]Krogdahl A M,Bakke M,Baeverfjord G.Effects of graded levels of standard soybean meal on intestinal structure,mucosal enzyme activities,and pancreatic response in Atlantic salmon(Salmo salar L).J.Aquaculture,Nutrition,2003,9:361-371.
    [104]张锦秀.大豆蛋白源对幼建鲤生长性能及肠道免疫的影响[D].四川:四川农业大学,2003.
    [105]贺建华.植酸磷和植酸梅研究进展[J].动物营养学报,2005,17(1):2-7.
    [106]吉红.鱼用植物性蛋白饲料的抗营养因子[J].水利渔业,1999,19(4):22-24.
    [107]Kaushik S J,Cravedi J P,Lalles J P,et al.Partial or total replacement of fish meal by soybean protein on growth,proteinutilization,potential estrogenic of antigenic efects,cholesterolemia and flesh qualityin rainbow trout,Oncorhynchus mykiss.J.Aquaculture,1995.133,257-274.
    [108]杨勇,解绶启,刘健康.鱼粉在水产饲料中的应用研究[J].水产学报,2004,28(5):573-578.
    [109]Tacon A G.Feed ingredients for warmwater fish:meal and other processed feedstuffs[R].FAO Fisheries Circular No865.1994,FAO Rome.
    [110]Halver J E,Hardy R W.Fish Nutrition(Third edition)[M].New York:Academy Press.2002.
    [111]El-Sayed A-F M.Alternative dietary protein sources for farmed tilapia,Oreochromis spp.J.Aquaculture,1999,179:149-168.
    [112]Nengas I,Alexia M N,Davies S J.High inclusion levels of poultry meals and related byproducts in diets for gilthead seabream Sparus aurata L.J.Aquaculture,1999,179:13-23.
    [113]戴大章,陈妙月,叶均安,等.理化处理对大豆凝集素活性的影响[J].营养学报,2004,26(3):223-226.
    [114]Viola S,Mokady S,Rappaport U.Partial and complete replacement of fish meal by soybean meal feeds for intensive culture of carp.J.Aquaculture 1981,26:223-236.
    [115]Gallagher M L.The use of soybean meal as a replacement for fish meal in diets for hybrid striped bass(Moronesaxatillis×M.chrysops).J.Aquaculture,1994,126:119-127.
    [116]Halver J E.Fish Nutrition(2~(nd) edn.).San Diego:Academic Press,Inc.,1989.
    [117]Dabrowski and Balazskozak.The use of fish meal and soyabean meal as a protein source in the diet of grass carp fry.J.Aquaculture,1979,18:107-144.
    [118]Wee K L,Sun S-W.The Nutritive Value of Boiled Full-Fat Soybean in Pelleted Feed for Nile Tilapia.J.Aquaculture,1989,81:304-314.
    [119]Dabrowski K,Poczynskip.Effect of Partially or Totally Replacing Fish Meal Protein by Soybean Meal Protein on Growth,Food Utilization and Proteolytic Enzyme Activities in Rainbow Trout(Salmo gairdneri).New in Vivo Test for Exocrine Pancreatic Secretion.J.Aquaculture,1989,77:29-49.
    [120]Opstvedt J,Aksnes A.,Hope B.Efficiency of feed utilization in Atlantic salmon(Salmo salar L.)fed diets with increasing substitution of fish meal vegetable proteins.J.Aquaculture,2003,221:365-379.
    [121]Olli J J,Krogdahl A.Alcohol soluble components of soybeans seem to reduce fat digestibility in fish meal based diets for Atlantic salmon salar L.J.A quaculture.Res.1995,26:831-835.
    [122]Kikuchi K.Partial replacement of fish meal with com gluten meal in diets for Japanese flounder Paralichthys olivaceus.J.World A quaculture.Soc.1999,30:357-363.
    [123]林浩然.鱼类生理学[M].广东高等教育出版社,1998.
    [124]Agrawal V P,Sastry K V and Kaushab S K S.Digestive enzymes of three teleost fishes.J.Acta Physiol Hunq,1975,46:93-98.
    [125]Hsu Y,Land L Wu.The relationship between feeding habits and digestive proteases of some fresh water fishes.J.Bull Inst Zool Acad Sim,1979,18(1):45-53.
    [126]JonasE.Proteolytic digestive enzymes of camivorous(Silurus qlanis L.)herbivorous(Hypophthalmichetysmolitrixval),and omnivorus(Cyprinus carpio L.)fishes.J.Aquaculture,1982,19:145-154.
    [127]Bitterlich G.Digestive enzymepattern of two stomachless filter feeders,silver carp,Hypophthalmichthys molitrix val and Bighend carp,Aristichthys nobilis Rich.J.fish Biol.1985,27:103-112.
    [128]Takii K,Shimeno S.Changes in digestive enzyme activities in eelafter feeding.J.Bull Jap Soc Sci Fish,1985,51:2027-2031.
    [129]Einarsson S,Davis P S.On the localization and ultrastructure of pepsinogen,trpsinogen and chymotrypsin secreting cells in the Atlantic salmon,Salar L.J.Comp Biochem Physiol,1996,114B:295-301.
    [130]黄耀桐,刘永坚.草鱼肠道肝胰脏蛋白酶活性的初步研究[J].水生生物学报,1988,(4):328-333.
    [131]倪寿文,桂远明,刘焕亮.草鱼、鲤、鲢、尼罗罗非鱼淀粉酶活性比较[J].大连水产学院学报,1992,7(1):24-31.
    [132]倪寿文,桂远明,刘焕亮.草鱼、鲤、鲢、尼罗罗非鱼肝胰脏和肠道蛋白酶活性的初步探讨[J].动物学报,1993,39(2):160-168.
    [133]叶元土.鲤鱼肝胰脏和肠道淀粉酶活性研究[J].水产科学,1992,11(10):14-16.
    [134]田丽霞,林鼎.草鱼摄食两种蛋白质饲料后消化酶活性变动比较[J].水生生物学报,1993,17(1):58-65.
    [135]桂远明,吴垠,刘焕亮,等.温度对草鱼、鲤、鲢、鳙主要消化酶活性的影响[J].大连水产学院学报,1993,7(4):1-8.
    [136]吴婷婷,朱晓鸣.鳜鱼、青鱼、草鱼、鲤、鲫和鲢消化酶活性的研究[J].中国水产科学,1994,1(2):10-17.
    [137]刘伟,关海虹,王昭明.幼鲤肝胰脏、肠道消化酶活性比较研究[J].水产学杂志,1998,11(1):50-52.
    [138]方之平,潘黔生,何瑞国,等.温度对彭泽鲫主要消化酶活力的影响[J].水利渔业,1998,15-17,47.
    [139]杨代勤,陈芳,阮国良,等.pH对黄鳝消化酶活性的影响研究[J].长江大学学报(自然版).2005,2(11):55-58.
    [140]吕凤义,陈曼娜,庆宁,等.pH对大眼鳜和翘嘴鳜蛋白酶活性的影响[J].水产科学,2005,24(5):17-19.
    [141]张海滨.pH对乌鳢胃、肠、肝胰脏蛋白酶活性的影响[J].水利渔业,2006,26(2):4-5.
    [142]杨元吴,王绿洲,周继术,等.兰州鲇消化器官特征及pH值对其消化酶活力的影响[J].陕西师范大学学报(自然科学版),2006,34(专辑):71-75.
    [143]胡庚东,陈家长,尤洋.澳洲鳗和日本鳗、欧洲鳗消化酶活性的比较[J].湛江海洋大学学报,2006,26(4):85-87.
    [144]叶元土,林仕梅,罗莉,等.温度、pH值对南方火口鲶、长吻鮠蛋白酶和淀粉酶活力的影响[J].大连水产学院学报,1998,13(2):17-23.
    [145]寿建昕,沈文英,吴颖芳,等.温度对翘嘴红鲌消化酶活力的影响[J].水利渔业,2006,26(2):6-7,25.
    [146]沈文英,祝尧荣,钱科亮.温度pH对澳洲宝石鱼消化酶活性的影响[J].大连水产学院学报,2006,21(2):189-192.
    [147]马爱军,柳学周,吴莹莹,等.消化酶在半滑舌鳎成鱼体内的分布及仔稚幼鱼期的活性变化[J].海洋水产研究,2006,27(2):43-48.
    [148]周兴华,向枭,叶元土,等.中华倒刺鱼巴、黄颡鱼和华鲮消化酶活性的比较研究[J].安徽农业大学学 报,2003,30(1):79-81.
    [149]Krogdahl A M,Bakke M,Baeverfjord G.Feeding Atlantic salmon Salmo salar L.soybean products:effects on disease resistance (furunculosis),and lysozyme and IgM levels in the inrestinal mucosa..J.Aquaculture Nutrition,2000,6:77-84.
    [150]付生慧.不同大豆蛋白源饲料饲喂草鱼试验[J].饲料研究,2007,10:5-6.
    [151]李德发.大豆抗营养因子[M].北京:中国科学技术出版社,2003.
    [152]林利民,王秋荣,王志勇,等.不同家系大黄鱼肌肉营养成分的比较[J].中国水产科学,2006,13(2):286-291.
    [153]Shimeno M,Kumon H,et al.The growth performance and body co mposition of young yellowtail fed with diets containing defatted soybean for a long period.J.Nippon Suisan Gakkaish,1993,59:821-822
    [154]王伟,陈立侨,顾志敏,等.六个群体翘嘴红鲌肌肉生化组成的比较[J].水产学报,2007,31(增刊):92-99
    [155]宋超,庄平,章龙珍,等.野生及人工养殖中华鲟幼鱼肌肉营养成分的比较[J].动物学报,2007,53(3):502-510.
    [156]Imsland A K,Foss A,Gunnarson S,et al.The interaction of temperature and salinity on growth and food conversion in juvenile turbot(Soophthalmus maximum).J.Aquaculture,2001,198:353-367.
    [157]中山大学生物系.生化技术导论[M].科学出版社,1979,53-54.
    [158]Das K M,Tripathi S D.Studies on the digestive enzymes of grasscarp,Ctenopharyngodon idella(Val.).J.Aquaculture,1991,92:21-32.
    [159]Agrawal V P,Sastry K V,Kaushab S K S.Digestive enzymes of three teleost fishes.J.Acta physiol Hunq,1975,46:93-98.
    [160]Hidalgo M C,Urea E.Sanz A.Comparative study of digestive enzymes in fish with different nutritional habits.Proteolytic and amylase activities.J.Aquaculture,1999,170:267-283.
    [161]施志仪,陈晓武,顾一峰.牙鲆消化道组织学观察及内分泌细胞分布[J].中国水产科学,2006,13(5):851-855.
    [162]黄峰,严安生,张桂蓉,等.大口鲇仔鱼消化道的组织学观察[J].华中农业大学学报,2000,19(1):59-63.
    [163]莫艳秀,王晓清,莫永亮,等.长吻鮠消化道形态学和组织学观察[J].湖南农业大学学报(自然科学版),2004,30(3):267-271.
    [164]朱有法,舒妙安,沈元新.黄鳝消化道组织学和组织化学研究[J].中国兽医学报,2002,22(3):256-259.
    [165]王健鑫,石戈,李鹏,等.条石鲷消化道的形态学和组织学[J].水产学报,2006,30(5):618-626.
    [166]石戈,王健鑫,刘雪珠,等.褐菖鲉消化道的组织学和组织化学[J].水产学报,2007,31(3):293-302.
    [167]Rumsey G L,A K.Siwicki,D P.Anderson,et al.Effect of soybean protein on serological response,non-specific defense mechanisms,growth,and protein utilization in rainbow trout.J.Vet Immunol Immunopathol,1994,323-329.
    [168]Ishiguro M,Nakashima H,Tanabe S,et al.Biochemical studiec on oral toxicity of ricin.Ⅲ.Interaction tobtoxic lectin with epithelial cells of rat small intestine in vitro.J.Chem.Pharmacol.Bull.,1992,40:441-442.
    [169]Jindal S,Soni G L,Singh R.Biochemical and histopathological studies in albino rats fed on soybean lectin.J.Nutr.Rep.Int.,1984,29:95-97.
    [170]Pusztai A,Ewen S W B,Grant G,et al.Relationship between survival and binding of plant lectins during small intestinal passage and their effectiveness asgrowth factors.J.Digestion,1990,46:308-316.
    [171]赵元,秦贵信,王涛,等.不同大豆加工制品中主要抗营养因子免疫及抑制活性的比较[J].大豆科学,2007,26(6):930-934.
    [172]孙泽威.大豆中主要抗原物质对犊牛的影响[D].长春:吉林农业大学,2003.
    [173]赵元.大豆球蛋白和β-伴大豆球蛋白在仔猪体内消化动力学的研究[D].长春:吉林农业大学,2006.
    [174]鲍男.大豆抗原在仔猪小肠组织中分布规律的研究[D].长春:吉林农业大学,2007.
    [175]郭林英.大豆β-伴球蛋白提取物对鲤鱼肠上皮细胞增殖及其功能的影响[D].四川:四川农业大学,2006.
    [176]雷继鹏.分离7S和11S大豆球蛋白简便方法.粮食与油脂.2003,6:6-7.
    [177]Iwabuchi Setsuko and Yamauchi Fumio.Determination of glycinin and β-conglycinin in soybean protein by immunological methods.J.Agric.Food Chem.1987,35:200-205.
    [178]Shaowen Wu,Patricia A.Murphy,Lawrence A.Johnson,et al.Simplified process for soybean glycinin and β-conglycinin fractionation.J.Agric.Food Chem.2000,48:2702-2708
    [179]Castimpoolas N.Isolation α-,β-,γ-conglycinins.J.Arch Biochem Biophys,1969,(129)409-497.
    [180]孙泽威,秦贵信,张庆华.大豆抗原蛋白对犊牛生长性能、日粮养分消化率和肠道吸收能力的影响[J].中国畜牧杂志,2005,41(11):30-33.
    [181]Rumsey G L,Siwicki A K,Anderson D P et al,Effect of soybean protein on serological response,nonspecific defense mechanisms,growth,and proteinutilization in rainbow trout.J.Vet Immunol Immunopathol,1994(41)323-339.
    [182]李春喜,姜丽娜,邵云,等.生物统计学[M].北京:科学出版社,2005.
    [183]刘风民,李同树,郭峰.形成禽肉风味的化学反应及其影响因素[J].中国禽业导刊,2000,20(13):24-26.
    [184]Baeverfjord G,Krogdahl.Development and regression of soybean meal induced enteritis in Atlantic salmon,Salmo salar L,distal intestine:a comparison with the intestines of fasted fish.J.Fish Dis,1996(19):375-387.
    [185]尾崎九雄著,吴尚忠译.鱼类消化生理(上、下)[M].上海:科学技术出版社,1983,45-56.
    [186]张锦秀,周小秋,倪学勤,等.分离大豆蛋白对幼建鲤生长及肠道的影响[J].水产学报,2008,32(1):84-89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700