用户名: 密码: 验证码:
基于EEG与fMRI的痛觉机制与针灸镇痛研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
疼痛是日常生活中最重要的感觉之一,痛觉本质的研究和机理性研究为疼痛的有效治疗和积极控制提供必要的保证。传统的中医技术针灸在疼痛治疗中显示了很好的应用潜力,针灸镇痛机理的研究与疗效的客观评价标准是中医现代化的主要内容。本论文主要借助电生理技术(EEG)与脑功能成像技术(fMRI),从脑部神经电活动的调制和脑功能解剖学两个角度研究痛觉机制,并在此机基础上,研究针灸镇痛过程中脑电信号的特征变化和脑区功能代谢变化,以取得针灸镇痛的机理和潜在的客观评价标准。
     论文首先设计了疼痛诱发刺激对比实验,通过在左肩部注射当归注射液和等渗生理盐水,建立一种有效的人体疼痛刺激模式。接着提取了在这两种刺激前后脑电信号的四个频段(δ、θ、α、β)能量百分比特征以及脑电信号的双相干谱的峰值和体积特征,同时利用功能磁共振成像技术,研究刺激前后的脑功能区的反应。
     研究发现,在疼痛刺激过程中,脑电δ波呈上升趋势,而θ、α、β波呈下降趋势,疼痛对这四个频段的调制区域略有不同,但主要都集中在左额区,左颞区,左中央区,左顶区以及左右枕区,表明这些区域受痛信息调制最显著。
     双相干谱是高阶统计量特征,双相干谱的峰值直接反映了信号的不同频率分量间的相位耦合程度,而双相干谱的体积反映了信号相对于高斯随机分布的偏离度。研究显示它们对疼痛刺激非常敏感,和疼痛强度呈正相关性,表明疼痛刺激能够使得脑电信号的非高斯性增强,其主要反应区域为左右枕叶区,右额叶区。
     功能磁共振成像显示疼痛刺激能激活广泛的脑功能区,主要为前叶、枕叶、脑桥、中脑等部位,显示中枢系统的这些解剖区域与痛觉的形成具有密切的关系。结合上述脑电信号特征具有显著变化的脑区,两者具有很好的一致性。
     论文最后对针灸镇痛机理以及与脑电关联性进行了研究。探讨了各种针灸模式下(合谷穴经皮电刺激和手针刺激)脑电信号的变化以及脑功能区的变化,分析针刺模式对中枢系统的调制作用。
     研究表明,合谷穴经皮电刺激和手针刺激具有一定的镇痛效果,并且作为反应脑电信号能量分布比率的边缘频谱特征SEF90与针灸镇痛程度具有很好的正相关性,有望作为针灸镇痛程度的一个客观评价标准。
     论文比较分析了合谷穴手针刺激与经皮电刺激激活脑功能区的异同。研究表明手针刺激与经皮穴位电刺激镇痛是通过激活与痛觉调制相关的多个脑功能区而实现的,但手针刺激激活的区域要比经皮穴位电刺激更加广泛,激活的程度也更加强。
Pain is one of the most important sensations in daily life, it is necessary to get theessence and mechanism of pain in pain treatment and control. The TraditionalChinese Medicine (TCM) such as acupuncture has shown great potential in pain relief.The research of principle and objective assessment criterion of acupuncture anesthesiaare the key point of the modernization of TCM. In this article the EEG(Electroencephalogrpah) and fMRI (Functional Magnetic Resonance Imaging)techniques were used to study the brain nerve activity and functional metabolismwhich was modulated by pain. Furthermore, the brain nerve activity was studiedduring the acupuncture in pain relief to get the mechanism and assessment criterion ofacupuncture anesthesia.
     Firstly the pain stimulation experiment was designed. The pain was inducedthrough injection angelica on the left shoulder, as placebo-control stimulation, theisotonic saline was injection. Then the EEG feature, the power percentile ofδ、θ、α、βand the peak and volume of bicoherence, were extracted during the experiment.At the same time, the activated brain function areas were analyzed.
     The research demonstrated that theδband energy ratio increased and theθ、α、βband energy ratio decreased after pain stimulation, though the activated areas werenot strictly same, they mainly located on left frontal cortex, left temporal cortex, leftparietal cortex, occipital cortex. It indicated that these areas were modulatedsignificantly by pain stimulation.
     Bicoherence is the High Order Statistic, the peak of the bicoherence was a directindicator of the degree of Quadratic Phase Coupling (QPC) and the volume of thebicoherence indicates the deviation from Gaussian distribution. They were sensitiveand positive related to the pain stimulation, the main activated areas were occipitalcortex, right frontal cortex. It indicated the pain stimulation could increase thenon-Gaussianity of EEG.
     The fMRI research indicated the pain stimulation could activate wide brain functional areas, they mainly located on anterior lobe, occipital lobe, pons andmidbrain. It showed these areas had tightly connection with pain perception.
     In the end, the principle and assessment criterion of acupuncture in pain relief werestudied. The changes of EEG and the activated brain functional area were studied atdifferent acupuncture mode, transcutaneous electrical acupoint stimulation (TEAS)and manual needle on Hegu acupoint.
     The research indicated the TEAS and manual needled acupuncture on Heguacupoint had good effect on pain relief. And the spectral edge frequency (SEF90) hadpositive relationship with pain extent. It had shown the potential to be used asassessment criterion of acupuncture anesthesia.
     The different activated brain area between TEAS and manual needle on Heguacupoint were studied. The effect of pain relief of manual needle and TEAS wererealized through active brain functional area with pain perception, but the manualneedle active wider area than TEAS.
引文
[1] Andrew C.N. Chen, New perspectives in EEG-MEG brain mapping and PET-fMRI neuroimaging of human pain, International Journal of Psychophysiology 42(2001) 147-159.
    [2] 庄心良,曾因明,陈伯銮,现代麻醉学北京[M],人民卫生出版社,2003:2505-2539.
    [3] 赵欣,于不为,疼痛机制研究进展[J],上海医学,2007,30(6):462-465.
    [4] Long term Potentiation: A Central Mechanism in Plasticity of Nociceptive Transmission and Pain Perception, Sydney, Australia, IASP2005, Program No. 19.
    [5] Cell signaling pathways in the dorsal horn in pain neuroplasticity. Sydney, Australia, IASP 2005, Program No.372.
    [6] Ryusuke Kakigi, et al. Electrophysiological study on human pain perception, Clinical Neurophysiology 116 (2005) 743-763。
    [7] Apkarian AV, Bushnell MC, Treede RD, Zubieta JK. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain. 2005;4:463-84. Review.
    [8] Tracey I. Nociceptive processing in the human brain. Current Opinion Neurobiology 2005;4:478-87. Review.
    [9] Brooks J, Tracey I. From nociception to pain perception: imaging the spinal and supraspinal pathways. J Anat. 2005;1:19-33. Review.
    [10] R. Melzack, K.L. Casey, Sensory, motivational and central control determinants of pain: a new conceptual model, in: D. Kenshalo (Ed.), The Skin Senses, Thomas, Springfield, IL, 1969, pp.423-443.
    [11] Jezzard P, Matthews PM, Smith SM (Editors). Functional MRI: An Introduction to Methods.Oxford University Press (2003)
    [12] A.C.N. Chen, Human brain measures of clinical pain: a review: I. Topographic mappings,Pain 54 (1993) 115- 132.
    [13] A.C.N. Chen, EEG/MEG brain mapping of human pain:recent advances, International Congress Series: 1232 (2002) 5 -16.
    [14] A. Vania Apkarian, et al, Human brain mechanisms of pain perception and regulation in health and disease, European Journal of Pain ,Volume 9, Issue 4, August 2005, Pages 463-484
    [15] Jair Stern, et al, Persistent EEG overactivation in the cortical pain matrix of neurogenic pain patients, Neurolmage:31 (2006) 721 -731.
    [16] N. Ancona, et al, Measuring randomness by leave-one-out prediction error. Analysis of EEG after painful stimulation, Physical A 365 (2006) 491-498
    [17] Asbjorn Mohr Drewes, et al, Electroencephalographic Reactions During Experimental Superficial and Deep Pain Stimuli in Awake Healthy Subjects, Journal of Musculoskeletal Pain, Volume: 7 Issue: 4,1999.12, Pages: 29-44.
    [18] Tracey I. Nociceptive processing in the human brain. Current Opinion Neurobiology 2005;4:478-87. Review.
    [19] Brooks J, Tracey I. From nociception to pain perception: imaging the spinal and supraspinal pathways. J Anat. 2005:1:19-33. Review.
    [20] M.J. Russ, S.S. Campbell, T. Kakuma, K. Harrison, E. Zanine, EEG theta activity and pain insensitivity in self-injurious borderline patients, Psychiatry Res. 89 (1999) 201- 214.
    [21] T. Nomura, S. Fukudo, H. Matsuoka, M. Hongo, Abnormal electroencephalogram in irritable bowel syndrome, Scand. J. Gastroenterol. 34 (1999) 478-484.
    [22] F. Benedetti, S. Vighetti, C. Ricco, E. Lagna, B. Bergamasco, L. Pinessi, I. Rainero, Pain threshold and tolerance in Alzheimer's disease, Pain 80 (1999) 377-382.
    [23] S. Sauer, R. Schellenberg, H.C. Hofmann, W. Dimpfel, Functional imaging of headache-first steps in an objective quantitative classification of migraine, Eur. J. of Med. Res. 2 (1997) 367-376.
    [24] W. Lutzenberger, H. Flor, N. Birbaumer, Enhanced dimensional complexity of the EEG during memory for personal pain in chronic pain patients, Neurosci. Lett. 226 (1997) 167-170.
    [25] Russ, M.J., Campbell, S.S., Kakuma, T., Harrison, K., Zanine, E., 1999. EEG theta activity and pain insensitivity in self-injurious borderline patients. Psychiatry Res. 89,201-214.
    [26] Peng-Fei Chang, Lars Arendt-Nielsen, Psychophysical and EEG responses to repeated experimental muscle pain in humans: Pain intensity encodes EEG activity. Brain Research Bulletin, Vol. 59, No. 6, pp. 533-543,2003.
    [27] B. Bromm, J. Lorenz, Neurophysiological evaluation of pain, Electroencephalogr. Clin. Neurophysiol. 107(1998)227-253.
    [28] E. Freye, J.V. Levy,The effects of tramadol on pain relief, fast EEG-power spectrum and cognitive function in elderly patients with chronic osteoarthritis (OA). Acute Pain (2006) 8,55-61.
    [29] Peng Fei Chang, Lars Arendt-Nielsen, Andrew C. N. Chen. Differential cerebral responses to aversive auditory arousal versus muscle pain: specific EEG patterns are associated with human pain processing. Exp Brain Res (2002) 147:387-393.
    [30] Myles PS, Leslie K, Forbes A, et al. A large randomized trial of BIS monitoring to prevent awareness in high risk patients: the BAware trial[J]. Anesthesiology 2003: 99:A320 pp 1286-1292.
    [31] Chen F, Xu JH,Gu F J, et al. Dynamic process of information transmission complexity in human brain. Biological Cybernetics,2000,83:355-366.
    [56] Rampil IJ. A primer for EEG signal processing in anesthesia. Anesthesiology 1998,89:980-1002.
    [32] A.C.N. Chen, L. Plaghki, L. Arendt-Nielsen, Laser-evoked potentials in human pain: I. Use and possible misuse, Pain Forum, 1998,7 (4): 174-184.
    [33] R. Loose, A. Schnitzler, S. Sarkar, F. Schmitz, J. Volkmann, T. Frieling, H.J. Freund, O.W.Witte, P. Enck, Cortical activation during oesophageal stimulation: a neuromagnetic study,Neurogastroenterol. Motil. 1999,11(3):163-171.
    [34] Talbot, J.D., Marrett, S., Evans, A.C., Meyer, E., Bushnell, M.C., Duncan, G.H., 1991.Multiple representations of pain in human cerebral cortex. Science 15(251), 1355-1358.
    [35] Davis, K.D., Wood, M.L., Crawley, A.P., Mikulis, D.J., 1995. fMRI of human somatosensory and cingulate cortex during painful electrical nerve stimulation. Neuroreport 29(7).321-325.
    [36] Casey, K.L., 2000. Concepts of pain mechanisms: the contribution of functional imaging of the human brain. Prog. Brain Res. 129, 277-287.
    [37] Casey, K.L., Minoshima, S., Morrow, T.J., Koeppe, R.A., Frey, K.A., 1995. Imaging the brain in pain: potentials, limitations and implication. In: Bromm, R., Desmedt, J.E.ZEds..,Pain and the Brain: From Nociception to Cognition. Raven Press, New York, pp. 201-211.
    [38] 吴鎏桢,针刺镇痛的历史回顾[J],陕西中医学院学报,1994,17(4):40-42.
    [39] 武晓冬,王佩,针刺镇痛机理研究概述[J],中国中医基础医学杂志,1999,12(5):59-62.
    [40] 翁恩琪,痛与镇痛[M],上海:上海科学技术出版社,1987:P237.
    [41] 肖学长,褚晓凡,低强度激光疗法对神经-内分泌-免疫网络的影响及临床新进展[J],解剖学研究,2002,24(1):46-48.
    [42] 樊小力,牛汉璋,神经生理学[M],西安:陕西人民教育出版社,1993:148-152.
    [43] 王跃秀,针刺镇痛机制的研究进展[J],北京中医,2004,23(1):52-55.
    [44] 江苏省江苏医院针麻研究小组,针麻镇痛外周传入途径的进一步探讨[J],中华医学杂志,1974,54(6):360.
    [45] 朱汉璋 等,电针镇痛与突触前抑制的关系[J],西安医学学报,1980,(1):1.
    [46] 王克模 等,穴位感受器及针感性质与传入纤维类别和单位放电特征间关系的研究[M],中国科学(B辑),1984,12:1119.
    [47] 邵殿华 等,同神经电针镇痛时兴奋的传入纤维类别的初步观察[J],科学通报,1979,24(7):329.
    [48] 秦潮 等,大鼠后肢皮、肌神经及穴位区诱发脊髓背根点位的传入纤维类别分析[J],西安医科大学学报,1987,8(1):5.
    [49] 范少光 等,应用辣椒素研究电针镇痛的传入纤维成份[J],科学通报,1988,33(17):135.
    [50] 包虹 等,纤维不是电针镇痛的主要传入纤维而是弥散性伤害性抑制控制的主要纤维[J],针刺研究,1991,16(2):120-124.
    [51] 刘乡 等,辣椒素阻断腓总神经 纤维的效应及其对电针“足三里”镇痛作用的影响[J],针刺研究,1997,22(4):295-303.
    [52] 杨杰等,电刺激兴奋C-纤维的传入激活丘脑中央下核神经元的活动[J],针刺研究,1997,22(122):22-24.
    [53] 曹小定,针刺激活脑内镇痛机能系统而实现针刺镇痛[J],针刺研究,1989,(1-2):199-200.
    [54] 曹天钦,冯德培,张香桐,神经科学前沿[M];北京知识出版社,1986:190-217.
    [55] 韩济生,针刺麻醉向何处去?[J],中国疼痛医学杂志,1996,2(1):125.
    [56] 韩济生,神经科学原理[M],北京医科大学出版社,1999:706-727.
    [57] 韩济生,能否通过外周电刺激引起中枢神经肽的释放[J],北京大学学报(医学版),2002,34:408-413.
    [58] 唐敬师 等,内侧丘脑和额叶皮层在痛觉调制和针刺镇痛中的整合作用[J],针刺研究,1997,22(1-2) 15-19.
    [59] 徐维 等,大脑皮层在针刺镇痛中的下行调节机理[J],针刺研究,1989,14(1-2):5-7.
    [60] 韩济生 等,中枢神经介质概论,第2版[M];北京:科学出版社,1980.
    [61] Jaung-Geng Lina, Ming-Wu Lo, Yeong-Ray Wen et al., the effect of high and low frequency electroacupuncture in pain after lower abdominal surgery[J], Pain, 99 (2002): 509-514.
    [62] 王京友等,中枢5-羟色胺能系统在电针镇痛中的作用及某些神经介质受体的调节[J],针刺研究,1988,18(1):18-23.
    [63] 关新民 等,外周乙酰胆碱对电针镇痛作用的影响[J],针刺研究,1990,15(2):136-139.
    [64] 施静 等,电针对大鼠脊髓背角乙酰胆碱代谢的影响[J],同济医科大学学报,1991,20(4):264-266.
    [65] 徐广银等,中枢乙酰胆碱在痛觉调制和镇痛中的作用[J],针刺研究,1993,(1):125.
    [66] Lineberry CG, Laboratory animals in pain research, in Methods in Animal Experimentation,(1981) vol 6, pp 237-311, Academic Press, New York.
    [67] Gozariu M, Bragard D, Wilier JC and Le Bars D (1997) Temporal summation of C-fiber afferent inputs: competition between facilitatory and inhibitory effects on C-fiber reflex in the rat.J Neurophysioi 78:3165-3179.
    [68]Chapman CR, Casey KL, Dubner R, Foley KM, Gracely RH, and Reading AE (1985)Pain measurement: an overview. Pain 22:1-31.
    [69] Schomburg ED (1997) Restrictions on the interpretation of spinal reflex modulation in pain and analgesia research. Pain Forum 6:101-109.
    [70] Kandei ER. A new intellectual framework for psychiatry. Am J psychiatry,1998,155 (4) :457.
    [71] Kandel ER. Biology and the future of psychoanalysis: a new intellectual framwork for psychiatry revisited. Am J psychia2try, 1999, 156 (4): 505.
    [72] 姚泰,吴博威,生理学[M],北京:人民卫生出版社,2004:324-325.
    [73] 王兆源,周龙旗,脑电信号的分析方法[J],第一军医大学学报,2000,20(2):189-190.
    [74] 王涛,王国辉,冯焕清,睡眠脑电的自回归模型阶数特性[J];生物医学工程学杂志,2004,21(3):394-396.
    [75] 吴东宇,贾宝森,尹岭,脑电非线性分析在麻醉深度监测中的应用[J],解放军医学杂志,2005年01期145-148.
    [76] B.B. Mandelbrot, Fractals in physics: Squig clusters, diffusion, fractal measures and the unicity of fractal dimensionality[J], J.Statistical Physics, vol. 34, pp. 895-930. 1984
    [77] Henderson G T, lfeachor E C, Wimalaratna H S K, et al. Advances in using Fractal Dimension[J], IEE Proc Sci Meas Technol, Vol 147, No. 6, Nov 2000, pp 567-569.
    [78] Nikias C L and J.M. Mendel J M, Signal processing with higher order spectra[J], IEEE Signal Processing Magazine, Vol. 10, 1996, pp. 10-37.
    [79] Burg J P. A new analysis technique for time series data[M]. Paper Presented at Advanced Study Institute on Signal Processing, NATO, Enschede, Netherlands,1968.
    [80] Nikias C L and J.M. Mendel J M, Signal processing with higher order spectra[J], IEEE Signal Processing Magazine, Vol. 10, 1996, pp10-37.
    [81] 尧德中,《脑功能探测的电学理论与方法》[M],北京,科学出版社.2003年4月出版,233-255.
    [82] Sigl JC, Chamoun NG. An introduction to bispectral analysis for the dectroencephalogram[J].J Clin Moult 1994; 10:392-40.
    [83] 郭俊唐,于生元,痛觉中枢的功能成像学研究,中国疼痛医学杂志,2002,8(3):165-168.
    [84] K.L. Casey, Concepts of pain mechanisms: the contribution of functional imaging of the human brain, Prog. Brain Res. 2000 (129) 277- 287.
    [85] R.P. Pawl, A review of functional imaging of the brain and pain, Curr. Rev. Pain 3 (1999) 249-255.
    [86] Jezzard P, Matthews PM, Smith SM (Editors). Functional MRI: An Introduction to Methods.Oxford University Press (2003).
    [87] 张海敏,陈盛祖,一种新的脑功能显像分析法-统计参数图(SPM)[J],中国医学影像技术,2002,18(7):711-713.
    [88] 骆姚星,唐一源,伍建林 等, 脑功能成像分析软件SPM使用介绍[J],中国医学影像技术,2003,19(7):926-928.
    [89] 吴义根,李可,SPM软件包数据处理原理简介-第一部分:基本数学原理[J],中国医学影像技术,2004,20(11):1768-1771.
    [90] 吴义根,李可,SPM 软件包数据处理原理简介-第二部分:应用于PET和fMRI[J],中国医学影像技术,2004,20(11):1772-1773.
    [91] 刘定西,于群,MR成像分册[M],湖北:湖北科学技术出版社,2000:100-146.
    [92] 黎元,冯晓源,沈天真,等.脑卒中后语言功能康复的脑功能性磁共振研究[J].中国医学计算机成像杂志,2002,8(6):361-365.
    [93] 倪皖东,罗述谦.脑功能成像技术与针灸研究疗效机制[J].中国临床康复,2004,8(4):718-719.
    [94] 杨智杰,唐敬师,袁斌,等.丘脑中央下核和腹外侧眶皮层在针刺镇痛和痛觉调制中的整合作用[J].针灸研究,2001,26(3):196-198.
    [95] Wu MT, Hsieh JC, Xiong J, et al. Central nervous Pathway for acupuneture stimulation:Localization of processing with functional MR imaging of the bmin-preliminal experience.Radiolohy, 1999, 212(1): 133-141.
    [96] 方继良,Timo Krings,Juergen Weidemann,等.捻针时真、假穴不同中枢激活效应的脑功能MRI[J],中华放射学杂志,2004,38(12):1281-1284.
    [97] 罗永芬,腧穴学[M],上海科学技术出版社,1998:10.
    [98] 谢潇侠,单刺合谷穴与辨证取穴治疗牙痛的临床对比观察[J],甘肃中医药大学学报,1996:8
    [99] 王兵,张翠英,张军岐,等,针刺合谷穴治疗牙痛的临床研究[J],上海针灸,2006,25(8):6-9.
    [100] 王丽霞,杨林青,张利平,针刺合谷穴用于第二产程催产、镇痛[J],山东中医杂志,2002,21(10):606-607.
    [101]朱江,王美卿,张露芬,等,电针晚孕大鼠合谷、三阴交对子宫收缩活动的影响[J],北京中医药大学学报,2003,26(2):73-75.
    [102]石丸圭庄,电针刺激合谷的镇痛效果与经络的关系[J],国外医学中医中药分册,2003,25(1):56.
    [103] 刘玲,合谷穴与口面部功能联系-人脑功能磁共振成像研究[D],湖北中医学院,2005,pp8-20.
    [104]李可,单保慈,等,针刺合谷穴脑功能磁共振成像研究[J],中国医学影像技术,2005,21(9):1329
    [105]艾林,戴建平,等,针刺镇痛机制的功能磁共振成像研究[J],中国医学影像技术,2004,20(8):1197.
    [106]韩济生,针刺镇痛的神经化学原理[M],北京:中国医药科技出版社,1987.567
    [107]方剑乔,包黎恩,莫晓明,经皮神经电刺激镇痛的临床观察及与电针的比较[J],针灸临床杂志,1999,15(1):40-41.
    [108]方剑乔,陈云飞,刘元亮,经皮神经电刺激疗法镇痛的作用途径探讨[J],浙江中医学院 学报,1999,24(4):52-54.
    [109] Siedentopf CM. Functional magnetic resonance imaging detects activation of the visual association cortex during laser acupuncture of the foot in humans. Neurosci Lett, 2002, 327(1):53.
    [110] Hui KK, I iu J, Makris N, et al. Acupuncture modulates the limbic system and sub-cortical gray structures of the human brain:evidence from fMRI studies in normal subjects.Hum Brain Mapp, 2000, 9(1): 13.
    [111] Isabel K Gareus, Michael Lacour, Anja-Carina Schulte, et al. Is there a BOLD response of the visual cortex on stimulation of the vision-related acupoint GB37? J Magn Reson Imaging,2002,15(3): 227.
    [112] YOO SS, Teh EK, Blinder RA, et al. Modulation of cerebellar activities by acupuncture stimulation:evidence from fMRI study. Neuroimage, 2004, 22(2): 932.
    [113] Hui KK, Iiu J, Makris N, et al. Acupuncture modulates the limbic system and subcortical gray structures of the human brain: evidence from fMRI studies in normal subjects. Hum Brain Mapp, 2000, 9(1): 13.
    [114] Wu MT, Sheen JM, Chuang KH. Neuronal specificity of acupuncture response: a fMRI study with electroacupuncture. Neuroimage, 2002, 16(4): 1028.
    [115] 付平,贾建平,王葳,等.电针内关和神门穴对脑功能成像不同影响的观察[J],中国针灸2005,25(1):61-63.
    [116] 金真,张蔚婷,罗非,等.人脑对不同频率穴位电刺激反应的功能性磁共振成像[J],生理学报,2001,53(4):275-280.
    [117] Zhang WT, Jin Z, Cui GH, et al. Relations between brain network activation and analgesia effect induced by low vs.high frequency electrical acupoint stimulation in different subjects: a functional Magnetic Resonance Imaging study. Brain Research, 2003, 98(2): 168-178.
    [118] 陈正秋,吴国冀,徐维.尾状核参与大脑皮层对丘脑髓板内核群针刺镇痛的下行性调节[J],针灸研究,1997,1:2-14.
    [119] Wu MT, Hsieh JC, Xiong J, et al. Central nervous pathway for acupuncture stimulation:localization of processing with functional MRI of the brain-preliminary experience.Neuroradiology, 1999, 212: 133-141.
    [120] LI G, Liu HL, Cheung RT, et, al. An fMRI Study Comparing Brain Activation Between Word Generation and Electrical Stimulation of Language-Implicated Acupoints. Human Brain Mapping, 2003, 18(3): 233-238.
    [121] Cho ZH, Chung SC, Jones JP, et al. New findings of the correlation between acupoints and corresponding brain cortices using functional MRI Proc Nati Acad Sci USA, 1998, 95: 2670-2673.
    [122] Hui KK, Liu J, Makris N, et al. Acupuncture modulates the limbic system and subcortical gray structures of the human brain: evidence from tMRI studies innormal subjects. Hum Brain Mapping, 2000, 9(1): 3-25.
    [123] Li G, HuangL, Cheung RT, et al. Cortical activations upon stimulation of the sensorimotor-implicated acupoints. Magnetic Resonance Imaging, 2004, 22(5): 639-644.
    [124] Wu M, ShenJ, Chuang K, et al. ,Neuronal specificity of acupuncture response: An fMRI study with electroacupuncture. Neuroimage, 2002, 16(4): 1028-1037.
    [125] Wu MT, Hsieh JC, Xiong J, et al. ,Central nervous pathway for acupuncture stimulation:localization of processing with functional MRI of the brain-preliminary experience.Neuroradiology, 1999, 212: 133-141.
    [126] 王藏,李坤成,单保慈,等,针刺太冲穴的脑功能MRI研究[J],中华放射学杂志.2006,40(1):29-35.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700