用户名: 密码: 验证码:
基于小波收缩与各向异性扩散及其等价性的图像去噪与分割
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数字图像处理是集数学、计算机、电子、信息等多种学科为一体的综合性边缘科学,在航天、医学、工业、军事等领域发挥着重大作用。图像去噪与图像分割一直是图像处理领域研究的热点问题,小波分析和基于偏微分方程的方法是众多解决方法中两类有效的方法,图像去噪与分割效果决定着后续处理的成败。
     小波收缩是图像去噪的一种有效手段,小波的多尺度分析也是图像分割的经典方法。基于偏微分方程的线性扩散与各向异性扩散通过对输入图像进行扩散而实现去噪的目的,主动轮廓线模型是基于偏微分方程的经典图像分割方法。小波收缩具有适应频域局部化的去噪能力,各向异性扩散具有适应空域局部化的去噪能力,研究两者间的关系并结合两者优势找出新的图像去噪和分割方法将具有重要意义。
     目前,HAAR小波收缩与全变差(TV:Total Variation)扩散在一定条件下存在某种等价关系已经得到证明。本文首先研究一种小波收缩与各向异性扩散相结合的方法,其次研究小波收缩与各向异性扩散的等价性,给出其等价性条件。在等价性基础上,提出各向异性小波收缩方法,用于图像去噪和图像分割。本研究主要做以下几方面工作:
     1.介绍PM (Perona-Malik)扩散和TV扩散两种低阶扩散方法,该类低阶方法容易受到噪声影响,且扩散结果会产生阶梯效应。高斯曲率模可以用来表达图像的粗糙程度,为解决低阶扩散中存在的容易受到噪声污染的问题,用其定义在图像上的能量泛函,采用梯度下降法求解此泛函方程。推导出基于高斯曲率的高阶各向异性扩散方程,并结合小波收缩方法,提出基于高斯曲率的高阶小波收缩方法。
     2.讨论PM扩散、基于方向曲率的高阶各向异性扩散的基本原理和离散形式,并根据此离散形式,提出HAAR小波收缩与这两种扩散在二维离散情况下的等价性,给出其等价性条件。进而研究在二维离散情况下一般二阶各向异性扩散的原理和离散形式,提出二维离散情况下HAAR小波收缩与一般二阶各向异性扩散的一种等价性。
     3.小波分析是根据小波函数的构成原则,选取不同的小波基函数,得到不同的小波,将这些小波加以应用,实现小波分析。本文根据一般小波收缩的解析式,并结合各向异性扩散的解析式,给出小波收缩与各向异性扩散的一种等价性形式,推导出收缩函数与扩散函数之间所满足的方程。
     4.小波收缩具有良好的频域局部化能力,各向异性扩散具有良好的空域局部化能力。本文将小波收缩与各向异性扩散相结合,在小波收缩和各向异性扩散等价性关系的基础上,提出结合两种方法优势的方法,包括各向异性小波收缩图像去噪算法和多尺度各向异性小波收缩图像分割算法。
Digital Image Processing is an integrative borderline science, which integrates whole of math, computer science, electronics and informatics. It plays a great role in the field of astronautics, medical science, industry and military. Image denoising and image segmentation are hot-point problems that are researched in image processing field. Wavelet analysis and the method based on partial differential equation are two kinds of effective methods. The effects of image denoising and image segmentation determine whether subsequent processing succeeds or not.
     Wavelet Shrinkage is an effective method of image denoising, and the multiresolution analysis of wavelet is a classic method of image segmentation. The linear diffusion and anisotropic diffusion based on partial differential equation implement the denoising by diffusing the input image. Active contour model is a classical image segmentation method based on partial differential equation. Wavelet shrinkage has denoising capability of adapting to frequency localizaion, and anisotropic diffusion has denoising capability of adapting to spatial localization. Research on the relationship between wavelet shrinkage and anisotropic diffusion, and finding a new method that combines the advantages of them are significant to image denoising and image segmentation.
     At the present time, the equivalence between HAAR wavelet shrinkage and total variation (TV) diffusion under some conditions has been proved. In this thesis, in the first place, one hybrid method that combines the wavelet shrinkage and anisotropic diffusion is researched. Secondly, the equivalence between wavelet shrinkage and anisotropic diffusion is researched, and the equivalent conditions are derived. Based on the equivalence, the anisotropic wavelet shrinkage method is proposed, which is used on image denoising and image segmentation. The main contributions of this research are as follows:
     1. Two low-order diffusions, PM diffusion and TV diffusion, are introduced. Thus low-order method is influenced by noise easily, and the staircase effects appear in the diffused results. Module of Gaussian curvature can be used to describe the roughness of image. The energy functional of image is defined. The gradient descent method is used to solve the functional. The high-order anisotropic diffusion based on Gaussian curvature is derived. To solve the problems about the results which are easily polluted by noises existing in low-order diffusion. Combined wavelet shrinkage, as a result, the high-order wavelet shrinkage based on Gaussian curvature is proposed.
     2. The basic theory and discrete form of PM diffusion and high-order anisotropic diffusion based on directional curvature are discussed. Based on the discrete form, the equivalence between HAAR wavelet shrinkage and the two diffusions is proposed, the equivalent conditions is derived. The theory and discrete form of general 2-order anisotropic diffusion is researched then, one equivalent framework between HAAR wavelet shrinkage and general 2-order anisotropic diffusion is proposed under conditions of 2-dimensional discrete forms.
     3. Wavelet analysis selects different wavelet function according to constructing principle of wavelet function, and different wavelet is attained. Wavelet analysis is implemented by applying the different wavelet function. In the thesis, according to the analytic form of wavelet shrinkage, combined the analytic form of anisotropic diffusion, one equivalent form between wavelet shrinkage and anisotropic diffusion is proposed, thus the equation that wavelet shrinkage function and diffused function meet is derived.
     4. Wavelet shrinkage has nice capability of frequency localization, and anisotropic diffusion has nice capability of spatial localizaion. In the thesis, the wavelet shrinkage and anisotropic diffusion are combined. Based on the equivalence between wavelet shrinkage and anisotropic diffusion, it can be concluded that new methods can be obtained that have the advantages of above two methods. The new method includes the anisotropic wavelet shrinkage image denoising method and multi-resolution anisotropic wavelet shrinkage image segmentation method.
引文
[1]Tony C, Jackie S, Luminita V. Variational PDE models in image processing. Notices of the American Mathematical Society.2003, 50(1):14-26P.
    [2]Paragios N. Variational methods and partial differential equations in cardiac image analysis. IEEE International Symposium on Biomedical Imaging:From Nano to Macro. 2004,1(1):17-20P.
    [3]Tomasi C, Manduchi R. Bilateral filtering for gray and color images. Proceedings of 6th International Conference on Computer Vision.1998,4(7):839-846P.
    [4]汪雪林,韩华,彭思龙.基于小波域局部高斯模型的图像复原.软件学报.2004,15(3):443-450页.
    [5]Pan Quan, Meng Jin-li, Zhang Lei, et al.. Wavelet Filtering Method and Its Application, Journal of Electronics & Information Technology.2007,29(1):236-242P.
    [6]Perona P, Malik J. Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence.1990,12(7):629-639P.
    [7]Charbonnier P, Blanc-Feraud L, Aubert G, et al.. Two deterministic half-quadratic regularization algorithms for computed imaging. Proceedings of the IEEE ICIP. 1994,2(13-16):168-172P.
    [8]Andreu F, Ballester C, Caselles V, et al.. Minimizing total variation flow. Differential and Integral Equations.2001, 14(3):321-360P.
    [9]Donoho D L. Denoising by soft-thresholding. IEEE Transactions on Inf Theory.1995,41(3):613-627P.
    [10]Mallat, S. A wavelet Tour of Signal Processing,2nd edition. Academic Press:San Diego.1999,575-694P.
    [11]谢华英,周海银,谢美华.P-M扩散与相干增强扩散相结合的抑制噪声方法.中国图象图形学报.2005,10(2):158-163页.
    [12]Spira A, Sochen N, Kimmel R. Geometric filters, diffusion flows, and kernels in image processing. Handbook of Computational Geometry for Pattern Recognition, Computer Vision, Neurocomputing and Robotics. Springer Berlin Heidelberg.2005, 2:203-230P.
    [13]Tasdizen T, Whitaker R. Anisotropic diffusion of surface normals for feature preserving surface reconstruction. Proceedings of 4th International Conference on 3-D Digital Imaging and Modeling. 2003,1(6-10):353-360P.
    [14]Tasdizen T, Whitaker R, Burchard P, Osher S. Geometric surface smoothing via anisotropic diffusion of normals. Proceedings of 13th IEEE Visualization Conference.2002,1 (1):125-132P.
    [15]Jackowski M, Kao C Y, Qiu M, Constable R T, Staib L H. White matter tractography by anisotropic wavefront evolution and diffusion tensor imaging. Medical Image Analysis.2005,9:427-440P.
    [16]Bajla I, Hollander I, Witkovsky V. A performance evaluation method for geometry-driven diffusion filters. Journal of Electrical Engineering.2003,54(1-2):3-12P.
    [17]Koenderink J J. The structure of images. Biological Cybernetics, 1984,50(5):363-370P.
    [18]Catte F, Lions P L, Morel J M, Coll Y. Image selective smoothing and edge detection by nonlinear diffusion. SIAM Journal on Numerical Analysis.1992,29(1):182-193P.
    [19]Whitaker R, Pizer S. A multi-scale approach to nonuniform diffusion. Computer Vision, Graphics, and Image Processing: Image Understanding.1993,57(1):99-110P.
    [20]You Y L, Xu W, Tannenbaum A, Kaveh M. Behavioral analysis of anisotropic diffusion in image processing. IEEE Transactions on Image Processing.1996,5(11):1539-1553P.
    [21]Weickert, J. Anisotropic Diffusion in Image Processing. Teubner Verlag, Stuttgart.1998.
    [22]Black M. J, Sapiro G, Marimont D. H and Heeger D. Robust anisotropic diffusion. IEEE transactions on Image Processing.1998,7(3):421-432P.
    [23]Andreu F, Bassester C, Caselles V and Mazon J. M. Minimizing total variation flow. Differential and Integral Equations.2001, 14(3):321-360P.
    [24]Keeling S. L and Stollberger R. Nonlinear anisotropic diffusion filters for wide range edge sharpening. Medical Imaging 2000:Image Processing.2000,3979:1309-1322P.
    [25]Gilboa G, Sochen N. A and Zeevi Y. Y. Forward-and-backward diffusion processes for adaptive image enhancement and denoising. IEEE Transactions on Image Processing. 2002,11(7):689-703P.
    [26]Rudin L, et al. Nonlinear total variation based noise removal algorithms. Phys D.1992,60(1-4):259-268P.
    [27]Yu-Li You and M. Kaveh. Fourth-Order Partial Differential Equations for Noise Removal. IEEE Transactions on Image Procession,2000,9(10):1723-1730P.
    [28]Wei G W. Generalized Perona-Malik equation for image restoration. IEEE Signal Processing Letters.1999,6(7):165-167P.
    [29]Chan T, Marquina A, Mulet P. High-order total variation-based image restoration. SIAM Journal on Scientific Computing.2000, 22(2):503-516P.
    [30]Lysaker M, Lundervold A, Tai X C. Noise removal using fourth-order partial differential equation with applications to
    medical magnetic resonance images in space and time. IEEE Transactions on Image Processing.2003,12(12):1579-1590P.
    [31]Osher S, Sole A, Vese L. Image decomposition and restoration using total variation minimization and the H-1 norm. Multiscale Modeling and Simulation:A SIAM Interdisciplinary Journal.2003, 1(3):349-370P.
    [32]Lysaker M, Osher S, Tai X C. Noise removal using smoothed normals and surface fitting. IEEE Transactions on Image Processing.2004, 13(10):1345-1357P.
    [33]贾迪野,黄凤岗,苏菡.一种新的基于高阶非线性扩散的图像平滑方法.计算机学报,2005,28(5):882-891页.
    [34]Tumblin J, Turk G. LCIS:A boundary hierarchy for detail-preserving contrast reduction. Proceedings of the 26th annual conference on Computer graphics and interactive techniques.1999:83-90P.
    [35]Kalaiah A, Varshney A. Modeling and rendering of points with local geometry. IEEE Transactions on Visualization and ComputerGraphics.2003,9(1):100-129P.
    [36]袁泽剑,郑南宁,张元林等.一种非线性扩散滤波器的设计方法及其应用.计算机学报.2002,25(10):1072-1076页.
    [37]耿茵茵,蔡安妮,孙景鳌.一种非线性扩散线形纹理图像增强的方法.计算机辅助设计与图形学学报.2002.14(3):140-143页.
    [38]程建刚,田捷,何余良,杨鑫.基于非线性扩散滤波的指纹增强算法.自动化学报,2004,30(6):854-861页.
    [39]王正明,谢美华.偏微分方程在图像去噪中的应用.应用数学.2005,18(2):219-224页.
    [40]XIE Mei-hua and WANG Zheng-ming. Anisotropic nonlinear diffusion approach to single image resolution enhancement. OPTOELECTRONICS LETTERS.2005,1(2):143-147P.
    [41]周健,罗立民,朱宏擎.一种基于非线性扩散方程的PET重建方法.中国
    图象图形学报.2006,11(2):230-234页.
    [42]Joachim Weickert. Coherence-Enhancing Diffusion Filtering. International Journal of Computer Vision.1999,31 (2/3): 111-127P.
    [43]Suk-Ho Lee and Jin Keun Seo. Noise Removal With Gauss Curvature-Driven Diffusion. IEEE Transactions on image processing.2005,14(7):904-909P.
    [44]Guy Gilboa, Nir Sochen and Yehoshua Y.Zeevi. Estimation of Optimal PDE-Based Denoising in the SNR Sense. IEEE transactions on image processing.2006,15(8):2269-2280P.
    [45]D. Mumford and J. Shah..Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math.1989,42:577-684P.
    [46]Chambolle A. Finite-difference discretizations of the Mumford-Shah functional. Mathematics Modeling and Numerical Analysis.1999,33(2):261-288P.
    [47]Gobbino M. Finite difference approximation of the Mumford-Shah functional. Communications on Pure and Applied Mathematics. 1998,51(2):197-228P.
    [48]Black A, Zisserman A. Visual reconstruction. Cambridge:MIT Press,1987.
    [49]Ambrosio L, Tortorelli V. Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Communications on Pure and Applied Mathematics.1990,43(8): 999-1036P.
    [50]Braides A, Dal Maso G. Non-Local approximation of the Mumford-Shah functional calculus variation and partial differential equations.1997,5(4):293-322P.
    [51]Chan T, Vese L. Variational image restoration & segmentation models and approximations. UCLA, CAM Report.1997,
    cam97-47:1-9P.
    [52]Ana Petrovic, Oscar Divorra Escoda, Pierre Vandergheynst. Multiresolution Segmentation of Natural Images:From Linear to Nonlinear Scale-space Representations. IEEE transactions on image processing,2004,13(8):1104-1114P.
    [53]G Steidl, J Weickert. Relations between Soft Wavelet Shrinkage and Total Variation Denoising. Pattern Recognition:Springer Berlin.2002,198-205P.
    [54]Joachim Weickert, Gabriele Steidl, Pavel Mrazek,et al. Diffusion Filters and Wavelets:What can they learn from each other? Mathematical Models of Computer Vision The Handbook, Springer-Verlag Berlin.2005.
    [55]G Steidl, J Weickert, T Brox. et al. On The Equivalence of Soft Wavelet Shrinkage, Total Variation Diffusion, Total Variation Regularization, and SIDEs. SIAM J. NUMER ANAL.2004,42(2): 686-713P.
    [56]P Mrazek, J Weickert, G Steidl. Diffusion_inspired shrinkage functions and stability results for wavelet denoising. International Journal of Computer Vision.2005,64(2-3): 171-186P.
    [57]P Mrazek, J Weickert. Rotationally invariant wavelet shrinkage. Pattern Recognition:Lecture Notes in Computer Science, Berlin. 2003,2781:156-163P.
    [58]P Marzek, J Weickert. From two-dimensional nonlinear diffusion to coupled Haar wavelet shrinkage. Journal of Visual Communication and Image Representation Academic Press.2007, 18(2):162-176P.
    [59]M Welk, J Weickert, and G Steidl. From Tensor-Driven Diffusion to anisotropic wavelet shrinkage. Computer Vision-ECCV 2006, Lecture Notes in Computer Science, Springer, Berlin.2006, 3951:391-403P.
    [60]Arthur Chun-Chieh Shih, Hong-Yuan Mark Liao and Chun-Shien Lu. A New Iterated Two-Band Diffusion Equation:Theory and Its Application. IEEE Transactions on Image Processing.2003, 12(4):466-476P.
    [61]Bulent Bayraktar, Mostafa Analoui. Image denoising via fundamental anisotropic diffusion and wavelet shrinkage:a comparative study. Computational imaging II.Proceeding of SPIE-IS & T Electric Imaging.2004,5299:387-398P.
    [62]刘晨华,颜兵.基于小波变换和偏微分方程的图像去噪方法.山东理工大学学报(自然科学版).2007,21(3):58-60页。
    [63]Jianhong Shen, Gilbert Strang. On Wavelet Fundamental Solutions to the Heat Equation-Heatlets. Journal of Differential Equations.2000,161:403-421P.
    [64]J. Shen. A Note on Wavelets and Diffusions. Journal of computational analysis and applications.2003,5(1):147-159P.
    [65]Ronald R. Coifman and Artur Sowa. Combining the Calculus of Variations and Wavelets for Image Enhancement. Applied and Computational Harmonic Analysis.2000,9:1-18P.
    [66]Zu Kun Xiong, Haiyun Li. A combined approach to medical image segmentation using anisotropic diffusion and wavelet packet decomposition. The 2nd International Conference on Bioinformatics and Biomedical Engineering.2008:2458-2461P.
    [67]Aldo Maalouf, Philippe Carr'e, Bertrand Augereau, Christine Fernandez-Maloigne. Bandelet-Based Anisotropic Diffusion. IEEE International Conference on Image Processing.2007,1:289-292P.
    [68]V. G. Ashamol, G. Sreelekha, P. S. Sathidevi. Diffusion-Based Image Denoising Combining Curvelet and Wavelet.15th International Conference on Systems, Signals and Image Processing.2008:169-172P.
    [69]Lixia Chen. Image De-noising Algorithms Based on PDE and Wavelet. International Symposium on Computational Intelligence and Design. ISCID'08,2008,1:549-552P.
    [70]Xiaopeng Yan, Ping Li, Yueqin Li and Fengkai Xu. Image Speckle Reduction and Coherence Enhancement in Underwater Ultrasonic Imaging Based on Wavelet Transform.2008 International Conference on Computer Science and Software Engineering. 2008,6:145-148P.
    [71]Xiangfen Zhang, Hong Ye, Hongmei Zhang. Multi-Channel Wavelet-Based Diffusion Method for Denoising DTI Images.2008 International Conference on BioMedical Engineering and Informatics.2008,2:178-182P.
    [72]Xiangfen Zhang, Wufan Chen. Wavelet Domain Diffusion for DWI Images. The 2nd International Conference on Bioinformatics and Biomedical Engineering.2008:2149-2152P.
    [73]Gerlind Plonka and Jianwei Ma. Nonlinear Regularized Reaction-Diffusion Filters for Denoising of Images With Textures. IEEE Transactions on Image Processing. 2008,17:1283-1294P.
    [74]Junmei Zhong and Huifang Sun. Wavelet-Based Multiscale Anisotropic DiffusionWith Adaptive Statistical Analysis for Image Restoration. IEEE Transactions on Circuits and Systems.2008,59(9):2716-2725P.
    [75]谢美华,王正明.基于图像分解的多核非线性扩散去噪方法.计算机应用.2005,25(4):757-759页.
    [76]LIU FENG. Diffusion filtering in image processing based on wavelet transform. Science in China series F:information sciences.2006,49(4):494-503P.
    [77]Liu Feng, Xiao E. Ruan. Wavelet-based diffusion approaches for signal denoising. Signal Processing.2007,87(5):1138-1146P.
    [78]黄世亮,裘鉴卿.基于各向异性扩散和小波变换的磁共振图像降噪和增强方法.中国医学影像技术.2005,21(9):1437-1439页.
    [79]张选德,宋国乡.基于小波域上各向异性扩散的图像去噪算法.现代电子技术.2006,29(2):24-28页.
    [80]倪超,李奇,夏良正.基于小波前向后向扩散的红外图像降噪与边缘增强算法.电子与信息学报.2007,29(9):2033-2037页.
    [81]袁修贵,王琛.一种基于小波分析的各向异性图象去噪方法.数学理论与应用.2007,27(1):121-124页.
    [82]孙晓丽,冯象初,宋国乡.方向扩散方程与小波变换的相关性研究,电子与信息学报,2008,30(3):593-595页.
    [83]许永峰,张书玲,图像有损压缩预处理的各向异性扩散新方案,计算机工程与应用,2008,44(3):75-77页.
    [84]陈利霞,丁宣浩,宋国乡等.基于总变分与小波变换的图像去噪算法.西安电子科技大学学报(自然科学版).2008,35(6):1075-1079页.
    [85]郝彬彬,冯象初.一种基于小波和矩阵型扩散的图像放大.光子学报.2008,37(11):2365-2368页.
    [86]周祚峰,水鹏朗.交替使用小波去噪和全变差正则化的盲图像恢复算法.电子与信息学报.2008,30(12):2912-2915页.
    [87]Aleksandra Pi zurica, Iris Vanhamel, Hichem Sahli, etal.. A Bayesian Formulation of Edge-Stopping Functions in Nonlinear Diffusion. IEEE Signal Processing Letters.2006,13(8):501-504P.
    [88]Jeny Rajan, M. R Kaimal t. Image Denoising Using Wavelet Embedded Anisotropic Diffusion (WEAD). Proceedings of IET International Conference on Visual Information Engineering.2006:589-593P.
    [89]Yong Yue, Mihai M. Croitoru, Akhil Bidani, etal.. Nonlinear Multiscale Wavelet Diffusion for Speckle Suppression and Edge Enhancement in Ultrasound Images. IEEE Transactions on Medical Imaging.2006,25(3):297-311P.
    [90]Yong Yue, Mihai M. Croitoru, Akhil Bidani, etal.. Ultrasound Speckle Suppression and Edge Enhancement Using Multiscale Nonlinear Wavelet
    Diffusion. Proceedings of the IEEE Engineering in Medicine and Biology 27th Annual Conference.2005:6429-6432P.
    [91]Hanqiang Liu, Biao Hou, Shuang Wang, Licheng Jiao. SAR Image Compression Using Bandelets and SPIHT. International Conference on Radar.2006:1-4P.
    [92]Yuan Chen, and Amar Raheja. Wavelet Lifting for Speckle Noise Reduction in Ultrasound Images. IEEE Engineering in Medicine and Biology 27th Annual Conference.2005:3129-3132P.
    [93]姜东焕,冯象初,宋国乡.基于非线性小波阈值的各向异性扩散方程.电子学报.2006,34(1):170-172页.
    [94]吴亚东,孙世新.基于二维小波收缩与非线性扩散的混合图像去噪算法.电子学报.2006,34(1):163-166页.
    [95]赵佰秋,黄凤岗,唐立群.用小波系数估计图像边缘方向的相干增强扩散图像降噪算法.中国图象图形学报.2007,12(12):2096-2100页.
    [96]Kacur J, Mikula K. Slow and fast diffusion effects in image processing. Computing and Visualization in Science.2001,3(4): 185-195P.
    [97]Gilboa G, Sochen N, Zeevi Y Y. PDE-based denoising of complex scenes using a spatially-varying fidelity term. Proceedings of International Conference on Image Processing.2003,1:865-868P.
    [98]Dohono D L, Johnstone I M. Ideal spatial adaptation by wavelet shrinkage.1994,81(3):425-455P.
    [99]Gao, H. Wavelet shrinkage denoising using the non-negative Garrote. Journal of Computational and Graphical Statics. 1998,7(4):469-488P.
    [100]Gao, H. and Bruce, A.G. WaveShrink with firm shrinkage. Statistica Sinica.1997,7:855-874P.
    [101]Kalaiah A, Varshney A. Modeling and rendering of points with local geometry. IEEE Transactions on Visualization and Computer Graphics.2003,9(1):100-129P.
    [102]Mallat S, Hwang W L. Singularity detection and processing with wavelets. IEEE Transaction On Inform. Theory.1992,38(2): 617-643P.
    [103]Xu Y S, Weaver J B, Healy D M, et al.. Wavelet transform domain filters:A spatially selective noise filtration technique. IEEE Transaction On Image Proc.1994,3(6):747-758P.
    [104]Coifman R R, Donoho D L. Translation invariant de-noising. In:Wavelets and Statistics. Lecture Notes in Statistics 103. Springer-Verlag.1995:125-150P.
    [105]潘泉,孟晋丽,张磊等.小波滤波方法及应用.电子与信息学报.2007,29(1):236-242页.
    [106]Jain. A. K and Farrokhnia. F. Unsupervised texture segmentation using Gabor filters. Pattern Recognition.1991,24(12): 1167-1186P.
    [107]M. Unser. Texture classification and segmentation using wavelet frames. IEEE Transaction on Image Processing.1995,4(11): 1549-1560P.
    [108]Soo Chang Kim and Tae Jin Kang. Texture classification and segmentation using wavelet packet frame and Gaussian mixture model. Pattern Recognition.2007,40(4):1207-1221P.
    [109]LUO Xiping and TIAN Jie. The ICM Algorithm for Multi-Level Threshold Selection by Maximum Entropy Criterion. Journal of Software.2000,11(3):379-385P.
    [110]Christos P. Loizou, Constantinos S. Pattichis, Christodoulos I. etal.. Comparative Evaluation of Despeckle FilteringIn Ultrasound Imaging of the Carotid Artery. IEEE transactions on ultrasonics, ferroelectrics, and frequency control. 2005,52(10):1653-1669P.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700