用户名: 密码: 验证码:
联合X-let和变分的图像恢复模型及其算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
X-let是所有经典的小波及其新进展,甚至将来被定义的小波的总称,涵盖了本文所涉及到的高维连续小波、脊波、第二代曲线波、波原子、Log-Gabor小波等。其理论框架已经比较成熟,将其应用于图像处理是当前研究的热点问题。数学图像处理的另外一个重要方法是变分偏微分方程方法,它已被成功地应用于图像处理和计算机视觉的许多方面,并且取得了很好的效果。
     图像恢复是图像处理的一个基本问题,这类问题在Hadamard意义下一般是不适定的反问题。解决这类病态问题的关键是如何利用先验信息,建立相应的数学模型,从而获得恢复问题的适定解。
     本论文结合X-let和变分思想,对图像恢复问题进行探讨和研究,得到了一系列有意义的结果。主要工作如下:
     1、以高维连续小波和脊波框架为研究背景,得到两个理论结果。首先从理论上分析高维连续小波阈值和伪微分方程的关系,利用高维Fourier变换的性质和高维连续小波的算子表示结论,得到新的高阶非线性扩散方程。其次,基于曲线波型紧框架的构造思想,给出脊波型结构覆盖,结合Fourier基得到了脊波型紧框架;进一步,针对Candes的脊波框架没有显式对偶框架的不足,组合正交脊波和所构造的脊波型覆盖,构造了三种新的框架。
     2、以第二代曲线波为主线,从理论和算法上给出新的变分图像去噪模型和去模糊模型。首先提出曲线波型分解空间光滑性约束的变分正则化图像去噪模型,利用曲线波型分解空间半范和第二代曲线波加权系数的等价模关系,得到依赖于曲线波分解尺度和光滑参数的图像阈值算法;进一步,从图像分解的角度出发,证明了采用负指数的曲线波型分解空间约束的分解模型和采用L2范数约束的去噪模型在满足相应的条件下是等价的,然而偏微分方程的分解模型却不具有这样的结论。其次利用Bregman距离提出曲线波迭代正则化模型和逆尺度空间方法。最后提出曲线波型分解空间光滑性约束的图像去模糊模型,利用广义条件梯度法,给出迭代阈值算法和自适应的迭代停止准则。上述模型和算法拓宽和发展了小波Besov空间方法,并且实验结果验证了将结构丰富的图像约束在曲线波型分解空间用曲线波来刻画是恰当的。
     3、以波原子为研究对象,提出几种新的模型和算法。首先基于波原子的构造特点,利用Besov空间,得到了新的依赖于波原子尺度和光滑性指标的纹理图像去噪模型和阈值算法。其次,利用波原子对纹理图像表示的稀疏性,给出了完全离散的波原子迭代正则化模型和逆尺度空间模型。最后,利用波原子阈值代替通常高斯卷积的运算,推广Perona-Malik模型,得到了波原子正则化的非线性扩散模型。
     4、分别以相位一致性和主成份分析为工具,提出新的张量扩散模型和变分去模糊模型。首先利用相位信息的重要性和相位一致性对图像特征检测的优势,设计了一种新的散度矩阵,提出基于相位一致性的张量扩散模型。其次,提出基于主成份分析的变分图像去模糊模型,并通过替代泛函的思想给出主成份分析域的迭代学习算法;进一步,针对该算法收敛速度慢的缺陷,给出一种快速算法。
X-let is a general definition of wavelets, including all the classical wavelets andtheir new progress, even those defined in future,which covers the high-dimensionalcontinuous wavelets, ridgelets, the second-generation curvelets, wave atoms and Log-Gabor wavelets et al related in this dissertation. The theory framework of X-let isrelatively mature and its application to image processing is the highlight of currentresearch. Another important method in mathematical image processing is variationalpartial differential equations, which has been applied to many fields in image process-ing and computer vision with good results.
     Image restoration is a kind of fundamental problem in image processing, which isan ill-posed inverse problem in the sense of Hadamard. The key point of solving thisproblem is how to use the priori knowledge to establish the corresponding mathemati-cal model, and obtain the well-posed solution.
     In this dissertation, we combine X-let with variational idea to explore and studyproblem of image restoration, and obtain a series of meaningful results. The main workcan be summarized as follows:
     1 Two theoretical results related to high-dimensional continuous wavelet trans-form and ridgelet frame are obtained. Firstly, the relationship of high-dimensionalcontinuous wavelet thresholding with pseudo-differential equation is theoretically ana-lyzed, which results in a new high-order nonlinear diffusion equation by using both theproperties of Fourier transform and operator representation theory in high-dimensionalcase. Secondly, a ridgelet-type structured admissible covering and associated framesusing Fourier basis are designed based on the ideology of constructing curvelet-typeframe. Moreover, we obtain three novel ridgelet-type frames by associating orthonor-mal ridgelet with the ridgelet-type covering.
     2 The novel variational models and algorithms for both image denoising and de-blurring are given with the second-generation curvelets. Firstly, we apply constraintof curvelet-type decomposition spaces as a regularizing term to variational model forimage denoising. Based on the equivalent modulus relationship between semi-norm ofcurvelet-type decomposition spaces and the weighted curvelet coefficients, solution ofthe proposed model equals to different curvelet shrinkages. Moreover, we prove that the decomposition model with constraint of semi-norm of curvelet-type decompositionspaces with negative degree of differentiability is equivalent to a denoising model withconstraint of L2 norm to the fidelity term on a given condition. Secondly, an iterativeregularization method and inverse scale space method of curvelets are introduced byapplying Bregman distance. Finally, a model for image deblurring is considered byemploying the sparse constraint of curvelet-type decomposition spaces. Especially, aniterative hard shrinkage algorithm and an adaptive stopping criterion are obtained bythe generalized conditional gradient method. These models and algorithms describedabove extend the wavelet method in Besov spaces. Moreover, experimental resultsshow that the use of curvelets in curvelet-type decomposition spaces is appropriate forcharacterizing image with rich structures.
     3 Several models and algorithms are presented with wave atoms. Firstly, a noveldenoising model for texture images is proposed by using Besov spaces, which results ina soft thresholding algorithm depending on both the scale of wave atoms and smoothingparameter. Secondly, considering the sparse representation of wave atoms for texturalimage, an iterative regularization moethod and an inverse scale spaces method for fullydiscrete wave atom coefficients are designed. Finally, as an extension of Perona-Malikmodel, we develop a nonlinear diffusion model by replacing Gaussian regularizationwith wave atoms regularization.
     4 A novel tensor diffusion model and a variational deblurring model arepresented with two tools of phase congruency and principal component analysis.Firstly,taking advantage of both the importance of phase and the merit of phase con-gruency for image feature detection, we design a new scatter matrix, then propose atensor diffusion model based on phase congruency. Secondly, a model for image de-blurring using principal component analysis is given. Then an iterative shrinkage al-gorithm is obtained in principal component analysis domain by employing the idea ofsurrogate functional. Due to the slow speed of convergence, we further offer a newaccelerated algorithm.
引文
[1] Aubert G., Kornprobst P., Mathematical Problems in Image Processing: Partial DifferentialEquations and the Calculus of Variations. New York: Springer Verlag, 2002.
    [2] Maitre等著,孙洪译,现代数字图像处理,北京:电子工业出版社, 2006.
    [3]吴斌,吴亚东,张红英,基于变分偏微分方程的图像复原技术,北京:北京大学出版社,2008.
    [4] Do M.N., Vetterli M., The contourlet transform: an efficient directional multiresolution im-age representation. IEEE Transactions on Image Processing, 2005, 14(12):2091-2106.
    [5]冯象初,甘小冰,宋国乡.数值泛函与小波理论.西安:西安电子科技大学出版社, 2003.
    [6] Daubechies I., Orthonormal bases of compactly supported wavelets. Communications onPure and Applied Mathematics, 1988, 41(7):909-996.
    [7] Mallat S., A theory for multiresolution signal decomposition: the wavelet representation.IEEE Transactions Pattern Analysis and Machine Intelligence, 1989, 11(7):674-693.
    [8] Coifman R.R., Wickerhauser M.V., Entropy based algorithms for best basis selection. IEEETransactions on Information Theory, 1992, 38(2):713-718.
    [9] Cohen A., Daubechies I., Feanvean J.C., Biorthogonal bases of compactly supportedwavelets. Communications on Pure and Applied Mathematics. 1992, 45(5):485-560.
    [10] Cohen A., Daubechies I., Vial P., Wavelets on the interval and fast wavelet transform. Appliedand Computational Harmonic Analysis, 1993, 1(1):54-80.
    [11] Daubechies I., Ten Lectures on Wavelets, Philadelphia: SIAM, 1992.
    [12] Meyer Y.著,尤众译,小波与算子.北京:世界图书出版公司, 1992.
    [13]崔锦泰著,程正兴译,小波分析导论.西安:西安交通大学出版社, 1995.
    [14]龙瑞麟,高维小波分析.北京:世界图书出版公司, 1995.
    [15] Mallat S., A Wavelet Tour of Signal Processing. San Diego: Academic Press, 1999.
    [16] Sweldens W., The lifting scheme: a construction of second generation wavelets. SIAM Jour-nal on Mathematical Analysis, 1997, 29(2):511-546.
    [17] Candes E.J., Ridgelets: Theory and Applications. USA: Department of Statistics, StanfordUniversity, 1998.
    [18] Donoho D.L., Sparse components of images and optimal atomic decomposition. ConstructiveApproximation, 2001, 17(3):353-382.
    [19] Donoho D.L., Orthonormal ridgelets and linear singularities. SIAM Journal on MathematicalAnalysis, 2000, 31(5):143-179.
    [20] Candes E.J., Monoscale ridgeletsfor the representation of images with edges. Technical Re-port, Department of Statistics, Standford University, 1999.
    [21] Candes E.J., Donoho D.L., Curvelets–a surprising effective nonadaptive representation forobjects with edges. Curve and Surface Fitting. Nashville: Vanderbilt University Press,2000:105-120.
    [22] Donoho D.L., Wedgelets: nearly minimax estimation of edges. Annals of statistics, 1999,27(3):859-897.
    [23] Donoho D.L., Huo X., Beamlets and multiscale image analysis. Springer Lecture Notes inComputational Science and Engineering, 2002, 20:149-196.
    [24] Candes E. J., Donoho D.L., New tight frames of curvelets and optimal representations ofobjects with C2 singularities. Communications on Pure and Applied Mathematics, 2004,57(2):219-266.
    [25] Pennec E.L., Mallatt S., Bandelet image approximation and compression. SIAM Journal ofMultiscale Modeling and Simulation, 2005, 4(3):992-1039.
    [26] Do M.N., Vetterli M., The contourlet transform: an efficient directional multiresolution im-age representation. IEEE Transactions on Image Processing, 2005, 14(12):2091-2106.
    [27] Guo K., Labate D., Optimally sparse multidimensional representation using shearlets. SIAMJournal on Mathematical Analysis, 2007, 39(1):298-318.
    [28] Demanet L., Ying L.X., Wave atoms and sparsity of oscillatory patterns. Applied and Com-putational Harmonic Analysis, 2007, 23(3):368-387.
    [29]焦李成,侯彪,王爽等,图像多尺度几何分析理论与应用–后小波分析理论与应用.西安:西安电子科技大学出版社, 2008.
    [30] Sardy S., Tseng P., AMlet, RAMlet, and GAMlet: automatic nonlinear fitting of additivemodels and generalized additive models with wavelets. Journal of Computational and Graph-ical Statistics, 2004, 13(1):283-309.
    [31] Shen J.H., Strang G., On wavelet fundamental solutions to the heat equation-heatlets. Journalof Differential Equations, 2000, 161(2):403-421.
    [32] Barron A.R., Universal approximation bounds for superpositions of a sigmoidal function.IEEE Transactions on Information Theory, 1993, 39(3):930-945.
    [33] Lemarie P.G., Meyer Y., Ondelettes et bases hilbertiennes. Revista Mattematica Iberoameri-cana, 1986, 2(1-2):1-18.
    [34] Donoho D.L., Ridge functions and orthonormal ridgelet. SIAM Journal on MathematicalAnalysis, 2000, 31(5):1062-1099.
    [35] Do M.N., Vetterli M., The finite ridgelet transform for image representation. IEEE Transac-tions on Image Processing, 2003, 12(1):16-28.
    [36] Bai J., Feng X.C., Digital ridgelet reconstruction based on local dual frame. Science in ChinaSeries F, 2005, 48(6):782-794.
    [37]白键,冯象初,图像处理的一种有限脊波自适应方法.电子学报, 2006, 34(6):1058-1061.
    [38] Tan S., Zhang X.R., Jiao L.C., Dual ridgelet frame constructed using biorthonormal waveletbasis. Proceedings of IEEE International conference on Acoustics, Speech and Signal Pro-cessing. Philadelphia, 2005:997-1000.
    [39] Chen G.Y., Kegl B., Complex ridgelets for image denoising. Pattern Recognition, 2007,40(2):578-585.
    [40] Tan S., Jiao L.C., Ridgelet bi-frame. Applied and Computational Harmonic Analysis, 2006,20(3):391-402.
    [41] Yang S.Y., Wang M., Jiao L.C., Ridgelet kernel regression. Neurocomputing, 2007, 70(16-18):3046-3055.
    [42] Campmany E., Grainger R.G., Dean S.M, et al., Automatic detection of ship tracks in ATSR-2 satellite imagery. Atmospheric Chemistry and Physics, 2009, 9(6):1899-1905.
    [43] Pan W., Bui T.D., Suen C.Y., Rotation invariant texture classification by ridgelet transformand frequency-orientation space decomposition. Signal Processing, 2008, 88(1):189-199.
    [44] Arivazhagan S., Ganesan L., Subash Kumar T.G., Texture classification using ridgelet trans-form. Pattern Recognition Letters, 2006, 27(16):1875-1883.
    [45] Jassim W.A., Speech signal compression using 2D ridgelet transform. Asian Journal of In-formation Technology, 2007, 6(3):288-295.
    [46] Borup L., Nielsen M., Frame decomposition of decomposition spaces. Journal of FourierAnalysis and Applications, 2007, 13(1):39-70.
    [47] Candes E.J., Donoho D.L., Recovering edges in ill-posed inverse problems: optimality ofcurvelet frames. Annals of Statistics, 2002, 30(3):784-842.
    [48] Donoho D.L., Duncan M.R., Digital curvelet transform: strategy, implementation and exper-iments, SPIE proceedings series, Wavelet applications VII, Orlando, 2000, 4056:12-30.
    [49] Starck J.L., Candes E.J., Donoho D.L., The curvelet transform for image denoising. IEEETransactions on Image Processing, 2002, 11(6):670-684.
    [50] Strack J.L., Elad M., Donoho D.L., Image decomposition via the combination of sparserepresentations and a variational approach. IEEE Transactions on Image Processing, 2005,14(10):1570-1582.
    [51]白键,冯象初.基于曲线波变换的图像分解.电子学报, 2007, 35(1):123-126.
    [52] Schmitt A., Wessel B., Roth A., Curvelet approach for SAR image denoising, structure en-hancement, and change detection. City Models, Roads and Traffic(CMRT09). IAPRS, Paris,France, 2009.
    [53] Mandal T., Majumdar A., Jonathan W.Q.M., Face recognition by curvelet based feature ex-traction. Lecture Notes in Computer Science, 2007, 4633:806-817.
    [54] Starck J.L., Murtagh F., Candes E.J., et al., Gray and color image contrast enhancement bythe curvelet transform. IEEE Transactions on Image Processing, 2003, 12(6):706-717.
    [55] Ma L.Y., Ma J.C., Shen Y., Pixel fusion based curvelets and wavelets denoise algorithm,Engineering Letter, 2007, 14(2):16-20.
    [56] Candes E.J., Demanet L., Donoho D.L., et al., Fast discrete curvelet transforms, SIAM Jour-nal of Multiscale Modeling and Simulation, 2006, 5(3):861-899.
    [57] Candes E.J., Demanet L., Curvelet and Fourier integral operators. Comptes Rendus Mathe-matique, 2003, 336(5):395-398.
    [58] Zhang B., Fadili M.J., Starck J.L., Wavelets, ridgelets and curvelets for Poisson noise re-moval. IEEE Transactions on Image Processing, 2008, 17(7):1093-1108.
    [59] Tessens L., Pizurica A., Alecu A., et al., Context adaptive image denoising based on jointimage statistics in the curvelet domain. Journal of Electronic imaging, 2008, 17(3):033021:1-17.
    [60] Reddy G.J., Prasad T.J.C., Prasad M.N.G., Fingerprint image denoising using curvelet trans-form. ARPN Journal of Engineering and Applied Sciences, 2008, 3(3):31-35.
    [61] Ma J.W., Plonka G., Combined curvelet shrinkage and nonlinear anisotropic diffusion. IEEETransactions on Image Processing, 2007, 16(9):2198-2206.
    [62] Ma J.W., Nonlinear regularized reaction-diffusion filters for denoising of images with tex-tures. IEEE Transactions on Image Processing, 2008, 17(8):1283-1294.
    [63] Ma J.W., Deconvolution using singular integral regularization and curvelet shrinkage.Physics Letters A, 2007, 368(3-4):245-250.
    [64] Ma J.W., Curvelets for surface characterization. Applied Physics Letters, 2007,90(5):054109:1-3.
    [65]江玲玲,殷海青,冯象初,一种结合稀疏表示和投影正则化的图像分解方法.西安电子科技大学学报, 2007, 34(5):800-804.
    [66] Jiang L.L., Feng X.C., Yin H.Q., Variational image restoration and decomposition withcurvelet shrinkage, Journal of Mathematical Imaging and Vision, 2008, 30(2):125-132.
    [67] Mandal T., Wu J.Q.M., Face recognition using curvelet based PCA. 19th International Con-ference on Pattern Recognition, Tampa, Florida, USA, 2008:1-4.
    [68] Jin J., Starck J.L., Donoho D.L., Cosmological non-gaussian signature detection: comparingperformance of different statistical tests. EURASIP Journal on Applied Signal Processing,2005, 15:2470-2485.
    [69] Crosby F., Curvelet decomposition for detection of cylindrical targets. IEEE InternationalConference on Image Processing, 2008:2832-2835
    [70] Sumana I.J., Islam M.M., Zhang D.S., et al., Content based image retrieval using curvelettransform. IEEE 10th Workshop on Multimedia Signal Processing, 2008, 4665041:11-16.
    [71] Nguyen T.B., Thanh N.C., Object detection of speckle image on curvelet transform. ARPNJournal of Engineering and Applied Sciences, 2007, 2(3):14-16.
    [72] Bobin J., Starck J.L., Fadili M.J., et al., Sparsity, morphological diversity and blind sourceseparation. IEEE Transactions on Image Processing, 2007, 16(11):2662-2674.
    [73] Murtagh F., Starck J.L., Wavelet and curvelet moments for image classification: applicationto aggregate mixture grading. Pattern Recognition Letters, 2008, 29(10):1557-1564.
    [74] Bobin J., Starck J.L., Ottensamer R., Compressed sensing in astronomy. IEEE Journal ofSelected Topics in Signal Processing, 2008, 5(2):718-726.
    [75] Plonka G., Ma J.W., Curvelet-wavelet regularized split Bregman iteration for compressedsensing. Mathematics of Computation, 2009, 78(267):1515-1536.
    [76] Ma J.W., Compressed sensing by inverse scale space and curvelet thresholding. AppliedMathematics and Computation, 2008, 206 (2):980-988.
    [77] Semler L.,Dettori L., Curvelet-based texture classification of tissues in computed tomogra-phy. IEEE International Conference on Image Processing, 2006, 312873:2165-2168.
    [78] Herrmann F.J., Brown C., Erlangga Y., et al., Curvelet-based migration preconditioning andscaling. Geophysics, 2009, 74(4):A41-A46.
    [79] Chauris H., Nguyen T., Seismic demigration/migration in the curvelet domain. Geophysics,2008,73(2):S35-S46.
    [80] Ma J.W., Plonka G., A review of curvelets and recent applications. IEEE Signal ProcessingMagazine, to appear, 2009
    [81] Kingsbury K., Complex wavelets for shift invariant analysis and filtering of signals. Appliedand Computational Harmonic Analysis, 2001, 10(3):234-253.
    [82] Chaux C., Duval L., Pesquet J.C., Image analysis using a dual-tree M-band wavelet trans-form. IEEE Transactions on Image Processing, 2006, 15(8):2397-2412.
    [83] Meyer E.G., Coifman R.R., Brushlet: a tool for directional image analysis and image com-pression. Applied and Computational Harmonic Analysis, 1997, 4(2):147-187.
    [84] Villemoes L.F., Wavelet packets with uniform time-frequency localization. Comptes-RendusMathematique, 2002, 335(10):793-796.
    [85] Demanet L., Ying L.X., Wave atoms and time upscaling of wave equations. NumerischeMathematik, 2009, 113(1):1-71.
    [86] Demanet L., Curvelets, Wave Atoms and Wave Equations, Ph.D. Thesis, California Instituteof Technology, 2006.
    [87]陆金甫,关治,偏微分方程数值解法(第2版).北京:清华大学出版社, 2004.
    [88] Demanet L., Ying L.X., Scattering in ?atland: efficient representations via wave atoms. Toappear in Foundations of Computational Mathematics, 2009.
    [89] Ma J.W., Characterization of textural surfaces using wave atoms. Applied Physics Letters,2007, 90(26):264101:1-3.
    [90] Federico A., Kaufmann G.H., Denoising in digital speckle pattern interferometry using waveatoms. Optics Letters, 2007, 32(10):1232-1234.
    [91]老大中,变分法基础.北京:国防工业出版社, 2007.
    [92] Chan T.F, Shen J.H., Vesek L., Variational PDE models in image processing. Notices of theAmerican Mathematical Society, 2003, 50(1):14-26.
    [93] Rudin L., Osher S.J., Fatemi E., Nonlinear total variation based noise removal algorithms.Physica D, 1992, 60(4):259-268.
    [94] Perona P., Malik J., Scale space and edge detection using anisotropic diffusion. IEEE Trans-actions On Pattern Analysis and Machine Intelligence, 1999, 12(7):629-639.
    [95] You Y.L., Kaveh M., Fourth-order partial differential equations for noise removal. IEEETransactions on Image Processing, 2000, 9(10):1723-1730.
    [96] Bai J., Feng X.C.. Fractional-order anisotropic diffusion for image denoising. IEEE Transac-tions on Image Processing, 2007, 16(10):2492-1502.
    [97] Weickert J., Anisotropic Diffusion in Image Processing. Ph.D. Thesis, Germany: The Uni-versity of Kaiserslauterm, 1996.
    [98] Brox T., Weickert J., Burgeth B., et al., Nonlinear structure tensors. Image and Vision Com-puting, 2006, 24(1):41-55.
    [99] Wang W.W, Feng X.C., Anisotropic diffusion with nonlinear structure tensor. SIAM Journalon Multiscale Modeling and Simulation, 2008, 7(2):963-977.
    [100] Chambolle A., An algorithm for total variation minimization and applications. Journal ofMathematical Imaging and Vision, 2004, 20(1-2):89-97.
    [101] Chan T.F., Mulet P., On the convergence of the lagged diffusivity fixed point method in totalvariation image restoration. SIAM Journal of Numerical Analysis, 1999, 36(2):354-367.
    [102] Goldfarb D., Yin W.T., Second-order cone programming methods for total variation-basedimage restoration. SIAM Journal of Scientific Computing, 2005 ,27(2):622-645.
    [103] Zhu M.Q., Fast Numerical Algorithms for Total Variation Based Image Restoration,PH.D.Thesis, Los Angeles: University of California, 2008.
    [104] Meyer Y., Oscillating Patterns in Image Processing and Nonlinear Evolution Equations,Boston: American Mathematical Society, 2002.
    [105] Vese L.A., Osher S.J., Modeling textures with total variation minimization and oscillatingpatterns in image processing. SIAM Journal of Scientific Computing, 2003, 19(1-3):553-572.
    [106] Osher S.J., Sole A., Vese L.A., Image decomposition and restoration using total variationminimization and the H?1 norm. SIAM Journal on Multiscale Modeling and Simulation,2003, 1(3):349-370.
    [107] Lieu L., Vese L.A., Image restoration and decomposition via bounded total variation andnegative Hilbert-Sobolev spaces. Applied Mathematics and Optimization, 2008, 58(2):167-193.
    [108] Le T., Vese L.A., Image decomposition using the total variation and div(BMO). SIAMMultiscale Modeling and Simulation, 2005, 4(2):390-423.
    [109]冯象初,王卫卫,图像处理的变分和偏微分方程方法.北京:科学出版社, 2009.
    [110] Osher S.J., Burger M., Goldfarb D., et al., An iterative regularization method for total varia-tion based image restoration. SIAM Journal on Multiscale Modeling and Simulation, 2005,4(2):460-489.
    [111] Burger M., Gilboa G., Osher S.J., Nonlinear inverse scale space methods. Communicationsin Mathematical Sciences, 2006, 4(1):175-208.
    [112] Kindermann S., Osher S.J., Jones P.W., Deblurring and denoising of images by nonlocalfuncionals. SIAM Journal on Multiscale Modeling and Simulation, 2005, 4(4):1091-1115.
    [113] DeVore R., Nonlinear approximation. Acta Numerica, 1998, 7(1):51-150.
    [114] Donoho D.L., Johnstone I., Ideal spatial adaptation via wavelet shrinkage. Biometrika, 1994,81(3): 425-455.
    [115] Krim H., Pesquet J.C., On the statistics of best bases criteria. Wavelets and Statistics, LectureNotes in Statistics, 1995:193-207.
    [116] Chambolle A., Lucier B.J., Interpreting translation-invariant wavelet shrinkage as a new im-age smoothing scale space. IEEE Transactions on Image Processing, 2001, 10(7):993-1000.
    [117] Steidl G., Weickert J., Brox T., et al., On the equivalence of soft wavelet shrinkage, totalvariation diffusion, total variation regularization, and sides. SIAM Journal on NumericalAnalysis, 2004, 42(2):686-713.
    [118] Mrazek P., Weickert J., From two dimensional nonlinear diffusion to coupled Haar waveletshrinkage. Journal of Visual Communication and Image Representation, 2007, 18(2):162-175.
    [119] Lorenz D.A., Wavelet shrinkage in signal & image processing, PH.D. Thesis, Germany:Bremen University, 2004.
    [120] Goussea Y., Roueff F., Modeling occlusion and scaling in natural images. SIAM MultiscaleModeling and Simulation, 2007, 6(1):105-134.
    [121] Daubechies I., Teschke G., Variational image restoration by means of wavelets: simultaneousdecomposition, deblurring and denoising. Applied and Computational Harmonic Analysis,2005, 19(1):1-16.
    [122]李敏,基于小波和变分PDE的图像建模理论、算法及应用,博士论文,西安:西安电子科技大学, 2008.
    [123]江玲玲,图像处理中的变分PDE和稀疏表示的理论与算法研究.博士论文,西安:西安电子科技大学, 2008.
    [124] Durand S., Froment J., Reconstruction of wavelet coefficients using total variation minimiza-tion. SIAM Journal on Scientific Computing, 2003, 24(5):1754-1767.
    [125] Chan T.F., Zhou H.M., Total variation wavelet thresholding. SIAM Journal of ScientificComputing, 2007, 32(2):315-341.
    [126] Figueiredo M., Nowak R., An EM algorithm for wavelet-based Image restoration. IEEETransactions on Image Processing, 2003, 12(8):906-916.
    [127] Combettes P., Wajs V., Signal recovery by proximal forward-backward splitting. SIAM Jour-nal on Multiscale Modeling and Simulation, 2005, 4(4):1168-1200.
    [128] Daubechies I., Defriese M., De-Mol C., An iterative thresholding algorithm for linear inverseproblems with a sparsity constraint. Communications on Pure and Applied Mathematics,2004, 57(11):1413-1457.
    [129] Huang Y.M., Ng M.K., Wen Y.W., et al., A fast total minimization method for image restora-tion. SIAM Journal on Multiscale Modeling and Simulation, 2008, 7(2):774-795.
    [130] Bioucas Dias J.M., Figueiredo M., A new TwIST: two-step iterative shrinkage/thresholdingalgorithms for image restoration. IEEE Transactions on Image Processing, 2007, 16(12):2992-3004.
    [131] Goldstein T., Osher S.J., The split Bregman algorithm for L1 regularized problems. UCLACAM Report 08-29, 2008.
    [132] Beck A., Teboulle M., A fast iterative shrinkage-thresholding algorithm for linear inverseproblems. SIAM J Imaging Sciences, 2009, 2(1):183-202.
    [133] Bredies K., Lorenz D.A., Iterated hard shrinkage for minimization problems with sparsityconstraints. SIAM Journal on Scientific Computing, 2008, 30(2):657-683.
    [134] Gousseau Y., Morel J.M., Are natural images of bounded variation?. SIAM Journal on Math-ematical Analysis, 2001, 33(3):634-648.
    [135] Chambolle A., DeVore R., Lee N.Y., et al., Nonlinear wavelet image processing: variationalproblems, compression, and noise removoal through wavelet shrinkage. IEEE Transactionson Image Processing, 1998, 7(3):319-335.
    [136] Stephane J.D., Beyond Besov spaces part I: distributions of wavelet coefficients. Journal ofFourier Analysis and Applications, 2004, 10(3):221-246.
    [137] Carasso A.S., Singular integrals, image smoothness, and the recovery of texture in imagedeblurring. SIAM Journal on Applied Mathematics, 2004, 64(5):1749-1774.
    [138] Kaiser G., Wavelet electrodynamics. Physics Letters A, 1992, 168(1):28-34.
    [139] Kaiser G., Making electromagnetic wavelets. Journal of physics A: mathematical and gen-eral, 2004, 37(22):5929-5947.
    [140] Kaiser G., Making electromagnetic wavelets II: spheroidal shell antennas. Journal of physicsA: mathematical and general, 2005, 38(2):495-508.
    [141]冯象初,偏微分方程的小波分析方法.博士论文,西安:西安电子科技大学, 1998.
    [142] Bredies K., Lorenz D.A., Maass P., Mathematical concepts of multiscale smoothing. Appliedand Computational Harmonic Analysis, 2005, 19(2):141-61.
    [143] Mrazek P., Weickert J., Steidl G., Diffusion-inspired shrinkage functions and stability resultsfor wavelet denoising. International Journal of Computer Vision, 2005, 64(2-3):171-186.
    [144] Didas S., Weickert J., Integrodifferential equations for continuous multi-scale wavelet shrink-age. Inverse Problems and Imaging, 2007, 1(1):47-62.
    [145]陆善镇,王昆扬等,实分析,北京:北京大学出版社, 1996.
    [146] Duffin R.J., Schaeffer A.C., A class of nonharmonic Fourier series. Transactions of the Amer-ican Mathematical Society, 1952, 72(2):341-366.
    [147] Mallat S., Zhong S., Characterization of signals from multiscale edges. IEEE Transactionson Pattern Analysis and Machine Intelligence, 1992, 14(7):710-732.
    [148] Triebel H., Theory of Function Spaces. Monographs in Mathematics volume 78, Basel:Birkhauser Verlag, 1983.
    [149] Gao H.Y., Wavelet shrinkage denoising using the non-negative garrote. Journal of Computa-tional and Graphical Statistics, 1998, 7(4):469-488.
    [150] Elad M., Why simple shrinkage is still relevant for redundant representations?. IEEE Trans-actions on Information Theory, 2006, 52(12):5559-5569.
    [151] Sivakumar R., Denoising of computer tomography images using curvelet transform. ARPNJournal of Engineering and Applied Sciences, 2007, 2(1):21-26.
    [152] Li M., Feng X.C., Wavelet shrinkage and a new class of variational models based onBesov spaces and negative Hilbert-Sobolev spaces, Chinese Journal of Electronics, 2007,16(2):276-280.
    [153] Xu J.J., Osher S.J., Iterative regularization and nonlinear inverse scale space applied towavelet-based denoising. IEEE Transactions on Image Processing, 2007, 16(2):534-544.
    [154] Li M., Hao B.B., Feng X.C., Iterative regularization and nonlinear inverse scale space basedon translation invariant wavelet shrinkage. International Journal of Wavelets, Multiresolutionand Information Processing, 2008, 6(1):83-95.
    [155] He L., Burger M., Osher S.J., Iterative total variation regularization with non-quadratic fi-delity. Journal of Mathematical Imaging and Vision, 2006, 26(1-2):167-184.
    [156] Hao B.B., Li M., Feng X.C., Wavelet iterative regularization for image restoration with vary-ing scale parameter, Signal Processing: Image Communication, 2008, 23(6):433-441.
    [157] Zhang X.Q., Burger M., Bresson X., et al., Bregmanized nonlocal regularization for decon-volution and sparse reconstruction, CAM Report 09-03, 2009.
    [158] Yin W T, Osher S.J., Goldfarb D., et al., Bregman iterative algorithms for 1-minimizationwith applications compressed sensing. SIAM Journal on Imaging Sciences, 2008, 1(1):143-168.
    [159] Rockafellar R.T., Wets R. J-B., Variational Analysis. Berlin: Springer, 1998.
    [160]肖庭延,于慎根,王彦飞,反问题的数值解法.北京:科学出版社, 2003.
    [161] Chen S.S., Donoho D.L., Saunders M.A., Atomic decomposition by basis pursuit. SIAMReview, 2001, 43(1):129-159.
    [162] Gao H.Y., Bruce A.G., WaveShrink with firm shrinkage. Statistica Sinica, 1997, 7(4):855-874.
    [163] Portilla J., Strela V., Wainwright M.J., et al., Image denoising using scale mixtures of Gaus-sian in the wavelet domain. IEEE Transactions on Image Processing, 2003, 15(3):654-665.
    [164] Cattes F., Lions P., Morel J.M., et al., Image selective smoothing and edge detection bynonlinear diffusion. SIAM Journal on Numerical Analysis, 1992, 29(1):182-193.
    [165] Weickert J., Application of nonlinear diffusion in image processing and computer vision.Acta Math Univ Comenianae, 2001, LXX(1):33-50.
    [166] Barash D., Schlick T., Multiplicative operator splitting in nonlinear diffusion: from spatialsplitting to multiple time-steps. Journal of Mathematical Imaging and Vision, 2003, 19(1):33-48.
    [167] Oppenheim A.V., Lim J.S., The importance of phase in signals. In Proceedings of the IEEE,1981, 69(5):529-541.
    [168] Kovesi P.,Phase preserving denoising of images. The Australian Pattern Recognition Soci-ety Conference: DICTA’99, 1999:212-217.
    [169] Kovesi P., Invariant Measures of Image Features From Phase Congruency. Ph.D. Thesis,UWA, 1996.
    [170] Morrone M.C., Ross J.R., Burr D.C., et al., Mach bands are phase dependent. Nature, 1986,324(3):250-253.
    [171] Kovesi P., Phase congruency detects corners and edges. Australian Pattern Recognition So-ciety Conference, 2003:309-318.
    [172] Kovesi P., Image features from phase congruency. Journal of Computer Vision Research,1999, 1(3):1-26.
    [173] Morrone M.C., Owens R.A., Feature detection from local energy. Pattern Recognition Let-ters, 1982, 6(5):303-313.
    [174] Venkatesh S., Owens R.A. On the classification of image features. Pattern Recognition Let-ters, 1990, 11(5):339-349,
    [175] Morlet J., Arens G., Fourgeau E., et al., Wave propagation and sampling theory-Part II:sampling theory and complex waves. Geophysics, 1982, 47(2):222-236.
    [176] Harris C., Stephens M., A combined corner and edge detector. 4th Alvey Vision Conference,Manchester, 1988:147-151.
    [177] Wang Z., Bovik A.C., Sheikh H.R., et al., Image quality assessment: from error visibility tostructural similarity. IEEE Transactions on Image Processing, 2004, 13(4):600-612.
    [178] Kim S.J., Koh K., Lustig M., et al., A method for large-scale 1-regularized least squares.IEEE Journal on Selected Topics in Signal Processing, 2007, 1(4):606-617.
    [179] Figueiredo A.T., Nowak R.D., Wright S.J., Gradient projection for sparse reconstruction:application to compressed sensing and other inverse problems. IEEE Journal of SelectedTopics in Signal Processing, 2007, 1(4):586-598.
    [180] Friedman J., Hastie T., Hoe?ing H., et al., Pathwise coordinate optimization. Annals of Ap-plied Statistics, 2007, 1(2):302-332.
    [181] Blumensath T., Davies M.E., Gradient pursuits. IEEE Transactions on Signal Processing,2008, 56(6):2370-2382.
    [182] Yin W.T., Hale E.T., Zhang Y., A fixed-point continuation method for 1-regularized mini-mization with applications to compressed sensing. CAAM Technical Report TR07-07, 2007.
    [183] Jolliffe I.T., Principal Component Analysis, Second edition, New York: Springer, 2002.
    [184] Zhang L., Dong W.s., Zhang D.P., Two-stage image denoising by principal component anal-ysis with local pixel grouping. Pattern Recognition, doi:10.1016/j.patcog.2009.09.023
    [185] Aharon M., Elad M., Bruckstein A.M., The K-SVD: an algorithm for designing of overcom-plete dictionaries for sparse representation, IEEE Transactions on Signal Processing, 2006,54(11):4311-4322.
    [186] Buades A., Coll B., Morel J.M., A review of image denoising algorithms, with a new one.SIAM Multiscale Modeling and Simulation, 2005, 4(2):490-530.
    [187] Dabov K., Foi A., Katkovnik V., et al., Image denoising by sparse 3D transform-domaincollaborative filtering, IEEE Transactions on Image Processing, 2007, 16(8):2080-2095.
    [188] Ben-Tal A., Nemirovski A., Lectures on Modern Convex Optimization: Analysis, Algo-rithms, and Engineering Applications, MPS-SIAM Series on Optimization, SIAM, Philadel-phia, 2001.
    [189] Bredies K., Lorenz D., Linear convergence of iterative soft-thresholding. Journal of FourierAnalysis and Applications, 2008, 14(5-6):1069-5869.
    [190] Nesterov A.S., A method for solving the convex programming problem with convergencerate O(1/k2)(In Russian). Dokl Akad Nauk SSSR, 1983, 269(3):543-547.
    [191] Beck A., Teboulle M., Fast gradient-based algorithms for constrained total variation im-age denoising and deblurring problems, IEEE Transactions on Image Processing, 2009,18(11):2419-2434.
    [192] Neelamani R., Choi H., Baraniuk R., ForWaRD: Fourier-wavelet regularized deconvolutionfor ill-conditioned systems. IEEE Transactions on Signal Processing, 2004, 52(2):418-433.
    [193] Zou H., Hastie T., Tibshirani R., Sparse principal component analysis. Journal of Computa-tional and Graphical Statistics, 2006, 15(2):262-286.
    [194] Farcomeni A., An exact approach to sparse principal component analysis. ComputationalStatistics, 2009, 24(4):583-604.
    [195] Draper B.A., Baek K., Bartlett M.S., et al., Recognizing faces with PCA and ICA. ComputerVision and Image Understanding, 2003, 91(1-2):115-137.
    [196] Martinez A.M., Kak A.C., PCA versus LDA. IEEE Transactions on Image Processing, 2001,23(2):228-233.
    [197] Bredies K., Lorenz D.A., Regularization with non-convex separable constraints. InverseProblems, 2009, 25(8):085011:1-14.
    [198]王大凯,侯榆青,彭进业,图像处理的偏微分方程方法,北京:科学出版社, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700