用户名: 密码: 验证码:
红外监视告警系统中的复杂背景抑制算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
红外监视告警系统是依靠被动地接受目标红外辐射实现对目标的探测、识别和跟踪的光电信息装备,因此具有隐蔽性好、角分辨率高和抗电磁干扰能力强等优点,它已成了现代信息对抗系统中的一个重要组成部分,受到了各国军方的普遍重视。因此,如何最大限度地提高其对红外目标的探测能力,尽可能在远距离外获取来袭目标相关信息,对提高信息对抗系统的性能具有重要意义。但由于目标距离较远时,它在红外像机的成像面上尺寸较小,只有几个到几十个像素,无形状和纹理信息,并且几乎淹没在复杂背景之中,信杂比很低。因此,如何有效地抑制红外弱小目标图像的复杂背景是检测出弱小目标的前提,它是一项具有重要理论意义和工程应用价值的前沿技术研究课题。
     本论文在对现有红外图像背景抑制技术进行全面综合深入分析的基础上,针对多种场景下红外图像中目标和背景具有的不同辐射强度及其分布结构的特点,对复杂背景抑制技术进行了深入的研究,并充分利用多尺度几何分析、局部滤波、统计学与变分偏微分方程等理论工具,研究并提出了多种各具特色的背景抑制算法,取得的主要研究成果如下:
     (1)利用非下采样轮廓波变换所具有的多尺度、多方向和平移不变性的诸多特点和采用特征值选择截断和模糊非线性抑制算子对分解后的子带系数值实施调整的技术途径,研究出了分别基于奇异值分解和模糊逻辑的两种红外图像弱小目标背景抑制新算法。实验结果表明该两种新算法不仅都能很好地抑制云层起伏这类复杂背景,而且还能保存并增强目标信号。
     (2)通过分析图像中每个像素点与其周围像素点在空间距离、灰度值和局部邻域上的关系,设计并实现了两种基于多分辨率双边滤波和多尺度非局部均值滤波的红外图像弱小目标背景抑制新算法,实验证明,其可有效地抑制地势起伏和地面路网这两类杂波背景,并保存和增强了目标强度信息。
     (3)将贝叶斯最大后验估计与剪切波变换相结合,设计并实现了一种更有效的基于剪切波变换高斯尺度混合模型的红外图像弱小目标背景抑制新算法,实验结果显示新算法能有效抑制地空探测系统中可能出现的地面人工建筑物这类复杂红外背景。
     (4)利用变分偏微分方程理论中能量泛函和多尺度分析表达概念,设计了基于RX算子改进的各向异性非线性扩散方程和全变差-Gabor模型两种背景抑制算法,完成对地空探测系统中可能出现的地面人工建筑物等复杂背景的抑制。不仅仿真结果验证了其正确性和有效性。而且已将全变差-Gabor模型算法成功地应用于基于凝视型成像的红外监视告警系统中。
Infrared Surveillance Warning System (ISWS) is electro-optical information equipment which detect, recognise and track targets by receiving their infrared emission passively. The ISWS which has invisibility, high resolving ability and fine anti-amming ability. For these advantages, ISWS beomes an important component of the modern information warfare system, and obtains wide attention and energetic cooperation in recent years by militarys. Therefore, how to make the best of infrared target detection ability to increase the distance of target detection and obtain the related information, have become important significance to improve the performance of information warfare system. However, because of target along distance, there are small size, only serveral pixels and no shape, texture information in imaging plane for infrared camera and targets are submerged in complex background. Therefore, comparing with other topics in the field of infrared target detection and tracking, how complex backgrounds can be robustly suppressed under low signal-to-clutter ratio have becomes frontier research topics which have important theory significance and engineering application value.
     In this paper, based on comprehensive analysis for in-the-art infrared image background suppression technique and considering different emission intensity and distributed structure in infrared image between dim small target and background, complex background suppression techniques are used research deeper for key pre-processing technique of dim and small target detection and tracking. Multi-scale geometry analysis, local filter, statistics and variational partial differential equation theorys are analyzed and used, respectively, and then a seris of new infrared image dim and small target background suppresion algorithms are provided:
     (1)According to nonsubsampled contourlet transform (NSCT) characteristics with multi-scale, multi-directional and translation invariance. Develop two new infrared image dim and small target background suppression algorithms based on singularity value decomposition and fuzzy logic which adjusted the NSCT subbands coefficients with truncated eigenvalue and fuzzy nonlinear background suppression operator, respectively. The experimental results demonstrate that new algorithms can suppress the background of clouds fluctuating effectively, save and enhance target signal.
     (2)Analyze relationship each pixel with local neighbourhood pixel in spatial distances, intensity and local regions. Design and implement two new infrared image dim and small target background suppression algorithms based on multiresolution bilateral filter and multi-scale non-local means filter. The experimental results demonstrate that new algorithms can suppress the background of terrain fluctuating and ground road network effectively, save and enhance target intensity information.
     (3)Combing Bayesian maximum a posteriori estimation with shearlet transform. Design and implement a new dim and small target background suppression algorithm based on the Gaussian scale mixture model creatively. The experimental results demonstrate that the new algorithm can suppress complex background of artificial building for surface-sky detection system effectively.
     (4)Analyze the common algorithms of variational partial differential equation. According to characteristic with energy functional and multi-scale analysis. Construct and implement dim and small target background suppression algorithms based on RX operator improved anisotropic nonlinear diffusion equation and total variation Gabor model for artificial building of surface-sky detection system background suppression and keep the target signal steadily. Several experiments testify theirs practicability and validity. And then, total variation Gabor model algorithm is applied in ISWS with staring detector successfully.
引文
[1]徐南荣,卞南华.红外辐射与制导[M].北京:国防工业出版社. 1997.
    [2]白长城,张海兴,方湖宝.红外物理[M].北京:电子工业出版社, 1989.
    [3]吴宗凡,柳美琳.红外与微光技术[M].北京:国防工业出版社, 1998.
    [4]周永生,陈松海,张肖斌.雷达克星——反辐射导弹[J].当代海军. 50-51.
    [5] Jean, Michel Missirian,Laurent Dueruet. IRST: a key system in modem warfare[C]. Proc. SPIE.1997, 3061, pp:554-565.
    [6]舒金龙,朱振福等.雷达的辅助替代设备——红外搜索跟踪系统[J].现代军事. 2003, 7:34-36.
    [7]岳松堂,华菊仙.俄罗斯新一代防空导弹系统[J].外国炮军. 2005, 4, pp:19-25
    [8]张洁.联合攻击战斗机光电定位系统[J].光电应用技术. 2005, 20:10.
    [9] Meimei. Z, Tidrow. New infrared sensors for ballistic missile defense[C]. SPIE.Quantum sensing and nano Photonie devices 11,2005:5732, pp: 217-224.
    [10] Wei Zhang, Mingyu Cong, Liping Wang. Algorithms for optical weak small targets detections and tracking: review[C]. IEEE Int. Conf. Neural Networks & Signal Processing Nanjing, China, December 14-17, 2003, pp: 643-647.
    [11]许彬,郑链,王永学.红外序列图像小目标检测与跟踪技术综述[J].红外与激光工程. 2004, 5(33), pp: 482-487.
    [12]何宝福,王东,戴才彬.红外空情预警系统及其作战运用研究[J].现代防御技术. 2005. 33, pp: 12-16.
    [13]杨磊.复杂背景条件下的红外小目标检测与跟踪算法研究.上海交通大学博士论文. 2006.
    [14]汪国有,陈振学,李乔亮.复杂背景下红外弱小目标检测的方法研究综述[J].红外技术. 2006, 28(5), pp: 287-292.
    [15]张惠娟,梁彦,程咏梅等,运动弱小目标先跟踪后检测技术的研究进展[J].红外技术. 2006, 28(7), pp: 423-430.
    [16] Bronskill J F, Hepburn J S A, Au W K. A knowledge-based approach to the detection, tracking, and classification of target formations, in infrared image sequences[A]. Proc. IEEE CVPR[C]. 1989, pp: 153-158.
    [17] Lavagetto F. Automatic target detection in infrared sequences through semantic labeling[A]. SPIE[J]. 1990, 1349, pp: 476-485.
    [18] Wang G, Rafact I M, McVey E S. A Pipeline Algorithm for Detection and Trackingof Pixel-Sized Target Trajectories[A]. SPIE[C]. 1990, 1305, pp: 167-176.
    [19] Diani M, CorsiniG Baldacci A. Space-time processing for the detection of airborne targets in IR image sequences LEE Proceedings of Vision[J]. Image and Signal Processing. 2001, 148(3), pp: 151-157.
    [20] Chen Y.On Sub-Optimal Detection of 3-Dimentional Moving Targets[J]. IEEE Trans. Aerospace and Electronic Systems,1989,25(3), pp: 375-392.
    [21] STOCKER A.D.,JENSEN P. Algorithms and architectures for implementing large velocity filter banks[J].Proc.Of SPIE,1991,1481, pp: 140-155.
    [22] Silverman J, Caefer C. E. and Vickers V. E. Temporal filtering for point target detection in staring IR iagery; II. Recursive variance filter[C]. Proc. SPIE. 1998, 3373, pp: 45-53.
    [23] Xiong Yan, Peng Jiaxiong et al. An Effective Method for Trajectory Detection of Moving Pixel-sized Target[C]. Proceed. of IEEE Inter. Confer. on System s, Man and Cybernetics, Vancouver, Canada. 1995, 3, pp: 2570-2575.
    [24] Horn B K, Schunck B G. The image flow constraint equation[J]. CVGIP, 1986, 35(3), pp: 26-31.
    [25]刘靳,姬红兵.基于移动式加权管道滤波的红外弱小目标检测[J],西安电子科技大学学报2007, 34(5), pp: 743-747.
    [26] Horn B K, Schunck B G. Determining optical flow[R]. MIT: AIMemo AI Lab MIT. 1986, pp: 88-93.
    [27] Uras S, Girosi F, Verri A. A computational approach to motion perception[J]. Biol Cybern. 1988, 60, pp: 79-87.
    [28] Reichardt W E, Schlogl R W. A two dimensional field theory for motion computation[J]. Biol Cybern. 1988, 60, pp: 23-25.
    [29] Markandey V. Motion estimation for moving target detection[J]. IEEE Trans on AES. 1996, 32(3), pp: 866-874.
    [30] Shan Fu. Pridmore, T. Image flow field detection[J]. Signal Processing. 1996, 2(3), pp: 1090-1093.
    [31] Bimbo A D, Nesi P, Jorge L C Sanz. Optical flow computation using extended constraints[J]. IEEE Trans Image Processing. 1996, 5(5), pp: 720-739.
    [32] Ruiming Liu, Erqi Liu, Jie Yang, et al. Automatically detect and track infrared small targets with kernel Fukunaga–Koontz transform and Kalman prediction[J]. APPLIED OPTICS. 2007, 46(31), pp: 7780-7791.
    [33] Yuan Cao, RuiMing Liu, Jie Yang. Infrared Small Target Detection Using PPCA[J]. Int J Infrared Milli Waves. 2008, 29, pp: 385-395.
    [34] ABHIJIT MAHALANOBIS, ROBERT R. MUISE, S. ROBERT STANFILL, et al. Design and Application of Quadratic Correlation Filters for Target Detection[J]. IEEE Trans. on AES. 2004, 40(3), pp: 837-850.
    [35] Delian Liu, Jianqi Zhang, Weike Dong. Temporal Profile Based Small Moving Target Detection Algorithm in Infrared Image Sequences[J]. Int J Infrared Milli Waves. 2007, 28, pp: 373-381.
    [36] Zhenming Peng, Qiheng Zhang, Jinru Wang, Qinping Zhang. Dim target detection based on nonlinear multifeature fusion by Karhunen-Loeve transform[J]. Opt. Eng. 2004, 43(12), pp: 2954-2958.
    [37]刘瑞明,刘尔琦,杨杰等.核Karhunen-Loeve变换红外小目标检测[J].红外与毫米波学报, 2008, 27(1): pp: 47-50.
    [38] BARNIV Y. Dynamic programming solution for detecting dim moving targets[J]. IEEE Trans. on AES. 1985, 21(1), pp: 144-156.
    [39] Larson R. E., Pescchon J. Dynamic Programming Approach to Trajectory Estimation[J]. IEEE Trans on AC. 1996, 11(3), pp: 537-540.
    [40] Tonissen S. M., Evans R. J. Performance of Dynamic Programming Technique for Track-before-detect[J]. IEEE Trans on AES. 1996, 32(4), pp: 1444-1450.
    [41] Yuichi Ohta. Stereo Intra and Inter Scanline Search Using Dynamic Programming[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence. 1985, 7(2), pp: 139-154.
    [42] James A., Henry P. Detection and Tracking of Low-observable Targets through Dynamic Programming[J]. SPIE Signal and Data Processing of Small Targets. 1990, 1305, pp: 206-217.
    [43] Arnold, J., Shaw, Sand Pasternack H. Efficient target tracking using dynamic programming[J]. IEEE Trans. Aerospace and Electrical Systems, 1993, 29(1), pp: 44-56.
    [44] LIOU R J., AZIMI-SADJAD M. R.. Dim target detection using high order correlation method[J]. IEEE Trans on AES. 1993, 29(3), pp: 841-856.
    [45] Ren-jean liou, Mahmood R., Azimi-sadjadi. Multiple Target Detection Using Modified High Order Correlations[J]. IEEE Trans. on AES. 1998, 34(2), pp: 553-567.
    [46] Jae-Ho Choi,A.R.Sarah.Three-dimensional location estimation of trajectories of point targets using a projection-based transformation method[J]. Optical Engineering, 1995,34(3), pp: 933-939.
    [47] Falconer D.G.Target Tracking with the Hough Transform[C]. Proc.of 11th AConf.on Circuits,Systems and Computers, 1977, pp: 249-252.
    [48] Keiji AKI,Hidekazu TSUJ IAI.Extraction of the straight line by the Hough transform conversion in stereo image[A]. Proceedings of the 16th Annual Conference of Personal Computer Users’Application Technology Association[C]. 1999, 30(12), pp: 112-115.
    [49] Kazuhiro NAKANO,Keiji AKI,Hidekazu TSUJ IAI.Straight line of space extraction of stereo image which uses Hough transform[J]. Personal Computer Literacy, 1999, 24(10), pp: 31-35.
    [50] Duda R.O.,and Hart P.E.Use of Hough transform to detect lines and curves in pictures.Commun ACMI15,1972, pp: 11-15.
    [51] W. L. New, M. H. Tan, M. H. Er, et al. New Method for Detection of Dim Point-Targets in Infrared Images[C]. Part of the SPIE Conference on Signal and Data Processing of Small Targets 1999, Denver, Colorado, July 1999 SPIE. 3809, pp, pp: 141-150.
    [52] C.E.Caefer, J.Silverman, J.M.Mooney, et al. Temporal filtering point target detection in staring IR imagery: I.damped sinusoid filters[C]. Proc.SPIE. 1998, 3373, pp: 111-122.
    [53]宋柳平.图像序列中小信杂比点目标的检测方法研究[D].国防科大博士论文, 1992.
    [54] Koch W., Van K. G. Multiple Hypothesis Track Maintenance with Possibly U nresolved Measurements[J]. IEEE Trans on AEIS. 1997, 33(3), pp: 883-892.
    [55] Tantaratanaan S., Poor H. V. Asymptotic efficiencies of truncated sequential tests[J]. IEEEE Trans on IT. 1982, 28(6), pp: 911-923.
    [56] BLACKMAN S., DEMPSTER R., BROIDA T. Multiple hypothesis track confirmation for infrared surveillance systems[J]. IEEE Trans. on AES. 1993, 29(3), pp: 810-823.
    [57] Mori S., et al. Tracking and Classifying Multiple Targets without a Priori Identification[J]. IEEE Trans on Automatic Control, 1986, 31(5), pp: 401-409.
    [58] Alexis P. T., Dana H. B. Detection of point targets in image sequences by hypothesis testing a temporal test first approach[C]. IEEE Conference on Acoustics, Speech and Signal Processing[C]. 1999, 6, pp: 3377-3380.
    [59] J. Y. Chen, I.S. Reed. A detection algorithm for optical targets in clutter[J]. IEEE Trans. on Aerospace and Electronic Systems. 1987, 23(1), pp: 46-59.
    [60] James R. Zeidler, Performance Analysis of LMS Adaptive Prediction filters[C]. Proceedings of the IEEE.1990, 78(12), pp: 1781-1806.
    [61] Tarun Soni, James R. Zeidler, Walter H. Ku, Performance evaluation of 2-D adaptive prediction filters for detection of small objects in image data[J]. IEEE Trans. On Image Processing. 1993, 2(3), pp: 327-340.
    [62] J. N. Lin, X. Nie, R. Unbehauen. Two-dimensional LMS adaptive filter incorporating a local-mean estimator for image processing[J]. IEEE Transactions on Circuits and Systems. Analog and Digital Signal Processing. 1993, 40(7), pp: 417-428.
    [63] T Soni, JR Zeidler, WH Ku. Adaptive whitening filters for small target detection[C]. Signal and Data Processing of Small Targets, SPIE, 1992, 1698, pp: 21-31.
    [64] Guoyou Wang, Tianxu Zhang, Luogang Wei, Nong Sang. Efficient method for multiscale small target detection from a natural scene. Opt. Eng. 1996, 35(3), pp: 761-768.
    [65] G. Davidson, H. D. Griffiths. Wavelet detection scheme for small target in sea clutter[J]. IEEE Electronics Letters, 2002, 38(19), pp: 1128-1130.
    [66] ZhiCheng Wang, JinWen Tian, Jian Liu, et al. Small infrared target fusion detection based on support vector machines in the wavelet domain[J]. Optical Engineering. 2006, 45(7), pp: 1-9.
    [67] Firooz A. Sadjadi. Infrared target detection with probability density functions of wavelet transform subbands[J]. APPLIED OPTICS. 2004, 43(2), pp: 315-323.
    [68]李红,郑成勇,高景丽.基于小波多尺度分析及Fisher分割的红外弱小目标检测[J].红外与毫米波学报. 2003, 22(5), pp: 353-356.
    [69] S. D. Deshpande, M. H. Er, R. Venkateswarlu et al.. Max-mean and max-median filters for detection of small targets[C]. SPIE, 1999, 3809, pp: 71-83.
    [70] VT. Tom, T. Peli, M. Leung et al.. Morphology-based algorithm for point target detection in infrared backgrounds[C]. SPIE. 1993, 1954, pp: 25-32.
    [71] Yilmaz A, Shafique K, Shah M. target tracking in airborne forward looking infrared imagery[J]. Imaging vision comput. 2003, 21(7), pp: 623-635.
    [72] B. Porat and B. Friedlander. a frequency domain algorithm to multiframe detection and estimation of dim targets[J]. IEEE Trans. Pattern Anal. Mach. Intell. 1990, 12(4), pp: 398-401.
    [73] Gao Kanglin, Dong Mei. A Small Target Detection Algorithm Based on Immune Computation and Infrared Background Suppression[C]. Third International Conference on Natural Computation. 2007, 7695, pp: 2875-2879.
    [74] Xin Wang, Lei Liu, Zhenmin Tang. Infrared dim target detection based on fractaldimension and third-order characterization[J]. CHINESE OPTICS LETTERS. 2009, 7(10): pp: 198-202.
    [75]武斌.红外弱小目标检测技术研究[D].西安电子科技大学博士论文. 2008.
    [76] Meng Li Tianxu Zhang Weidong Yang, et al. Moving weak point target detection and estimation with three-dimensional double directional filter in IR cluttered background[J]. Optical Engineering. 2005, 44(10), pp: 107007-1~4.
    [77] Biyin Zhang, Tianxu Zhang, Kun Zhang. Adaptive Rectification Filter for Detecting Small IR Targets[J]. IEEE A&E SYSTEMS MAGAZINE. 2007, AUGUST, pp: 20-26.
    [78]李勐.红外序列图像弱小运动目标检测新方法研究[D].华中科技大学博士论文. 2006.
    [79] Fei Zhang, Chengfang Li, Lina Shi. Detecting and tracking dim moving point target in IR image sequence[J]. Infrared Physics & Technology. 2005, 46, pp: 323-328.
    [80] Bin Wu and Hong-Bing Ji. Improved power-law detector-based moving small dim target detection in infrared images[J]. Optical Engineering letter. 2008, 47(1), pp: 010503-1~3.
    [81] G. Aubert and P. Kornprobst. Mathematical Problems in Image Processing[J]. volume 147 of Applied Mathematical Sciences. Springer-Verlag, 2002.
    [82] T.F. Chan and J. Shen. Image Processing and Analysis[M]. SIAM, 2005.
    [83] Henri Maitre.现代数字图像处理[M].孙洪,译.北京:电子工业出版社. 2006.
    [84]王正明,朱炬波. SAR图像提高分辨率技术[M].北京:科学出版社. 2006.
    [85]王大凯,侯榆青,彭进业.图像处理的偏微分方程方法[M].北京:科学出版社. 2008.
    [86]焦李成,侯彪,王爽等.图像多尺度几何分析理论与应用[D].西安:西安电子科技大学出版社. 2008.
    [87]张直,陈刚.基于偏微分方程的图像处理[M].北京:高等教育出版社,2003.
    [88] I. Daubechies. Ten Lectures on Wavelets[M]. SIAM, Philadelphia, 1992.
    [89]刘贵忠.小波分析及其应用[M].西安:西安电子科技大学出版社,1992.
    [90]崔锦泰著,程正兴译.小波导论[M].西安:西安交通大学出版社,1995.
    [91]秦前清.杨宗凯.实用小波分析[M].西安:西安电子科技大学出版社,1994.
    [92] M. Vetterli, J. Kovaˇcevi′c. Wavelets and Subband Coding[M]. Englewood Cliffs, NJ, USA: Prencitce Hall, 1995.
    [93]赵松年.子波变换与子波分析[M].北京:电子工业出版社, 1996.
    [94]徐佩霞.小波分析与应用实例[M].第二版,合肥:中国科技大学出版社, 1996.
    [95]程正兴.小波分析方法与应用[M].西安:西安交通大学出版社, 1997.
    [96]李建平,小波分析与信号处理——理论、应用及软件实现[M].重庆:重庆出版社, 1997.
    [97]李世雄.小波变换及其应用[M].北京:高等教育出版社,1997.
    [98] Rao R. M,, Bopardikar A. S. Wavelet Transforms[M]. MA: Addison Wesley Longman [M]. 1998, pp:183-214.
    [99] Stephane Mallat.信号处理的小波导引[M].杨力华,等,译.北京:机械工业出版社, 2003.
    [100] Stephane Mallat., Gabriel Peyre. A wavelet tour of signal processing: the sparse way[M]. 3 nd Ed, San Diego : Academic Press, 2009.
    [101] M. N. Do, M. Vetterli. The contourlet transform: An efficient directional multiresolution image representation[C]. IEEE Trans. Image Process., 2005, 14(12), pp: 2091–2106.
    [102] Y. Lu, M. N. Do. CRISP-Contourlet: a critically sampled directional multiresolution image representation[C]. Proc. SPIE Conf. On Wavelets X, San Diego, Aug. 2003.
    [103] M. J. Shensa. The discrete wavelet transform: wedding the atrous and mallat algorithms[J]. IEEE Trans. On Signal Processing, 1992, 40(10), pp: 2464-2482.
    [104] Arthur L. da Cunha, Jianping Zhou. the nonsubsampled contourlet transform: theory, design, and applications[J]. IEEE Trans. on Image Processing. 2006, 15(10), pp: 3089-3101.
    [105] Cunha,A L, Zhou J P, Do M N. Nonsubsampled contourlet transform:Filter design and application in denoising. In:IEEE Int.Conf.on Image Proc.,Genoa, Italy,2005,749-752.
    [106] Zhou J P,Cunha A L,Do M N.Nonsubsampled contourlet transform:Construction and application in enhancement.In:IEEE Int.Conf.on Image Proc.,Genoa,Italy, 2005,469-472.
    [107] Zhang Q,Guo B L.Research on image fusion based on the nonsubsampled contourlet transform.In:2007 IEEE International Conference on Control and Automation,Guangzhou,China,2007,3239-3243.
    [108] J. L. Starck, E. J. Cands, et al. the curvelet transform for image denoising[J]. IEEE Trans Image Proc. 2002, 11(6), pp: 670-684.
    [109] Candès E J. Ridgelets: theory and applications[D]. Ph.D.dissertation, Department of Statistics, Stanford University, 1998.
    [110] E. Le Pennec, S. Mallat. Sparse geometric image representation with bandelets[J].IEEE Trans. Image Processing. 2005, 14(4), pp: 423-438.
    [111] Donoho D L. Wedgelets: nearly-minimax estimation of edges[J]. Annals Statistics, 1999, 27(3), pp: 857-897.
    [112] Velisavljevi? V, Beferull-Lozano B, Vetterli M, Dragotti P L.Directionlets: anisotropic multi-directional representation with separable filtering[J]. IEEE Transactions on Image Processing, 2006, 15(7), pp: 1916-1933.
    [113] K. Guo, D. Labate. Optimally Sparse Multidimensional Representation using Shearlets[J]. SIAM J. Math Anal. 2007, 39, pp: 298-318.
    [114] S. Mallat. Geometrical grouplets[J]. Appl. Comput. Harmon. Anal. 2009, 26, pp: 161-180.
    [115] L. Demanet, L. Ying. Wave atoms and sparsity of oscillatory patterns[J]. Applied and Computational Harmonic Analysis. 2007, 23(3), pp: 368-387.
    [116] Wakin, M.B., Laska, J.N., Duarte, M.F., Baron, et al. An architecture for compressive imaging [C]. In: ICIP, Atlanta, GA. 2006, pp: 1273-1276.
    [117] Donoho, D.L. Compressed Sensing[J]. IEEE Trans. Info. Theory. 2006, 52(4), pp: 1289-1306.
    [118]张强.基于多尺度几何分析的多传感器图像融合研究[D].西安电子科技大学博士论文. 2008.
    [119] P. J. Burt, E. H. Adelson. The laplacian pyramid as a compact image code[J]. IEEE Trans. Commun. , 1983, 32(4), pp: 532-540.
    [120] R. H. Bamberger, M. J. T. Smith. A filter bank for the directional decomposition of images: theory and design[J]. IEEE Trans. Signal Proc. 1992, 40(4), pp: 882-893.
    [121] Tian Y, Tan T N. Do. singular values contain adequate information for face recognition [J]. Pattern recognition. 2003, 36(3), pp: 649-655.
    [122]张贤达.矩阵分析与应用[M].北京:清华大学出版社, 2004: 341-400.
    [123] R. Reed, X. Yu. Adaptive multi-band CFAR detection of an optical pattern with unknown spectral distribution[J]. IEEE Trans. Acoust.,Speech, Signal Process., 1990, 38(10), pp: 293-305.
    [124] D. Manolakis, G. Shaw, Detection algorithms for hyperspectral imaging applications[J]. IEEE Signal Process. Mag., 2002, 19(1), pp: 29-43.
    [125]高新波.模糊聚类分析及其应用.西安:西安电子科技大学出版社. 2004.
    [126]郭桂蓉,谢维信,庄钊文等.模糊模式识别.长沙:国防科技大学出版社.1992.
    [127] Tomasi C, Manduchi R. Bilateral filtering for gray and color images[C]. In: Proc.6th Int. Conf. Computer Vision. New Delhi, India. 1998, pp: 839-846.
    [128] A. Buades, B. Coll, and J.-M. Morel. A review of image denoising algorithms, with a new one[J]. Multiscale Modeling and Simulation, 2005, 4 (2), pp: 490–530.
    [129] M. Elad. On the bilateral filter and ways to improve it[J]. IEEE Transactions On Image Processing, 2002, 11(10), pp:1141–1151.
    [130] F. Durrand, J. Dorsey. Fast bilateral filtering for the display of high dynamic range images[C]. In Proc. of SIGGRAPH' 02, 2002, pp: 844-847.
    [131] S. Fleishman, I. Drori, D. Cohen-Or. Bilateral mesh denoising[J]. ACM Trans. Graph., 2003, 22(3), pp: 950–953.
    [132] S. Kim and K. Hong,. Composite video artifact removal by nonlinear bilateral filtering[C]. in Proc. SPIE Int. Soc. Opt. Eng., 2005, 5960, pp: 306–315.
    [133] T. Q. Pham and L. J. V. Vliet. Separable bilateral filtering for fast video preprocessing[C]. in Proc. IEEE Int. Conf. Multimedia Expo, 2005, pp: 454–457.
    [134] M. Aleksic, M. Smirnov, S. Goma. Novel bilateral filter approach: Image noise reduction with sharpening[C]. in Proc. SPIE Int. Soc. Opt. Eng., 2006, 6069, pp: 60690F1-60690F7.
    [135] D. Barash. A fundamental relationship between bilateral filtering, adaptive smoothing and the nonlinear diffusion equation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(6), pp: 844–847.
    [136] A. Buades, B. Coll, and J-M Morel. Neighborhood filters and PDE’s[J]. Numerische Mathematik, 2006, 105(10), pp: 1–34.
    [137] D. Barash, D. Comaniciu. A common framework for nonlinear diffusion, adaptive smoothing, bilateral filtering and mean shift[J]. Image and Vision Computing, 2004, 22(1), pp: 73–81.
    [138] M. Mahmoudi, G. Sapiro. Fast image and video denoising via nonlocal means of similar neighborhoods[J]. IEEE Signal Processing Letters, 2005, 12(12), pp: 839–842.
    [139] L. P. Yaroslavsky, Digital Picture Processing. An Introduction, Springer-Verlag, Berlin, 1985.
    [140] L. Yaroslavsky and M. Eden, Fundamentals of Digital Optics, Birkh¨auser Boston, Boston,MA, 1996.
    [141] Ivan W. Selesnick, Richard G. Baraniuk, Nick G. Kingsbury. The dual-tree complex wavelet transform. IEEE Signal Processing Magazine. Noverber 2005,pp: 123-151.
    [142] Portilla J, Strela V, Wainwright M J, Simoncelli E P. Image denoising using scale mixtures of gaussians in the wavelet domain[J]. IEEE Transactions on Image Processing, 2003, 12(11), pp: 1338-1351.
    [143] Andrews D F, Mallows C L. Scale mixtures of normal distributions[J]. Journal of the Royal Statistical Society. Series B, 1974, 36(1), pp: 99-102.
    [144]白静,侯彪,王爽等.基于提升Directionlet域高斯混合尺度模型的SAR图像噪声抑制.计算机学报, 2008, 31(7), pp: 1234-1241.
    [145] R. A. Steinberg. Infrared surveillance 1: statistical model. Applied optics, 1980, 19(1), pp: 77-85.
    [146] D. Ververidis, C. Kotropoulos. Emotional speech classification using Gaussian mixture models and the sequential floating forward selection algorithm[C]. IEEE Int. Conf. On Multimedia and Expo, 2005, pp: 1500–1503.
    [147]吴迪光.变分法[M].北京:高等教育出版社, 1987.
    [148] Michael Struwe. Variational Methods[M]. Berlin: Springer-Verlag. 1996.
    [149]李荣华,冯国帧.微分方程数值解法[M].北京:人民教育出版社, 1980.
    [150] Gabor D. Information theory in electron microscopy[J]. Laboratory Investigation, 1965, 14: 801-807.
    [151] Koenderink J. The structure of images[J]. Biological Cybernetics, 1984,363-370.
    [152] Witkin A. Scale-space filtering[J]. Int. Joint Conf. On AI., Karlsruhe, 1983, pp: 1019~1022.
    [153] Weickert J. A review of nonlinear diffusion filtering. Scale-Space theory in computer vision[J]. Lecture Notes in Computer Science Berlin: Springer, 1997, 1252, pp: 3~28.
    [154] Hummel R. A. Representations based on zero-crossing in scale-space[C]. Proeeedings of the IEEE Conference on computer vision and pattem Recognition, IEEE NewYork, 1986:204-209.
    [155]孙晓丽.偏微分方程和小波在图像修复与特征提取中的应用[D].西安电子科技大学博士论文. 2007.
    [156]吴斌,吴亚东,张红英.基于变分偏微分方程的图像复原技术[M].北京:北京大学出版社. 2008.
    [157] G sapiro. Geometric partial differential equations and image analysis[M]. Combridge University Press, 2001.
    [158] L. Vese and S. Osher. Modeling textures with total variation minimization and oscillating patterns in image processing[J]. J. Sci. Comput., 2003, 19, pp:553–577.
    [159] L. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation noise removal algorithm[J]. Phys. D, 1992, 60, pp: 259–268.
    [160] L. Blanc-F′eraud, P. Charbonnier, G. Aubert, M. Barlaud. Nonlinear image processing: modelling and fast algorithm for regularization with edge detection[C]. In Proc. IEEE ICIP- 95, 1995, 1, pp: 474-477.
    [161] D.M. Strong, T.F. Chan. Spatially and scale adaptive total variation based regularization and anisotropic diffusion in image processing. UCLA CAM Rep. 1996, pp: 96-46.
    [162] L.A. Vese, S.J. Osher. Modeling textures with total variation minimization and oscillating patterns in image processing. UCLA CAM Report 02-19, 2002.
    [163] P. Perona and J. Malik. Scale-space and edge detection using anisotropic diffusion[J]. PAMI, 12(7), 1990, pp: 629–639.
    [164] Alvarez L., Lions P. L., Morel J.M. Images selective moothing and edge detection by nonlinear diffusion[J]. SIAM, 1992, 29(3): 845-866.
    [165] B. R. Hunt, T. M. Cannon. Nonstationary assumptions for Gaussian models of images[J]. IEEE Trans. Syst., Man Cybernet., 1976, SMC-6, (6), pp: 876-882.
    [166] Heesung Kwon, Nasser M. Nasrabadi. Kernel RX-algorithm: a nonlinear anomaly detector for hyperspectral imagery[J]. IEEE Trans. Geosci. Remote Sensing, 2005, 43(2), pp: 388-397.
    [167]谢美华,王正明.基于正则化变分模型的SAR图像增强方法.红外与毫米波学报. 2005, 35(6), pp: 467-471.
    [168] J. Weickert, Anisotropic Diffusion in Image Processing[D]. Stuttgart, Germany: Teubner Verlag, 1997.
    [169]姜东焕.小波与偏微分方程在图像处理中的应用研究[D].西安电子科技大学博士论文. 2007.
    [170] I. Young, L. van Vliet, and M. van Ginkel. Recursive Gabor filtering[J]. Signal Processing, 2002, 50(11), pp: 2798-2805.
    [171] J.F. Aujol, G. Gilboa, T. Chan, and S. Osher. Structure-texture image decomposition-modeling, algorithms, and parameter selection[C]. International Journal of Computer Vision, 2006, 67(1), pp:111–136.
    [172]王超.基于变法问题和偏微分方程的图像处理技术研究[D].中国科技大学博士论文. 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700