用户名: 密码: 验证码:
储能型Quasi-Z源级联多电平光伏逆变器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太阳能光伏发电清洁、环保,是最具前景的新能源之一。而功率变换器则是光伏发电系统中的关键部件,其可靠性、运行效率以及制作成本对整个光伏发电系统至关重要。由于传统的单级式或两级式功率变换器在光伏发电应用中存在着不足,众多学者将研究目光投向了近年来提出的Z源逆变器(Z-Source Inverter,ZSI)和Quasi-Z源逆变器(Quasi-Z Source Inverter, qZSI),以及低谐波高效率的级联多电平逆变器(Cascade Multilevel Inverter, CMI)。本文根据研究现状,提出了三种新型逆变器拓扑,并将其应用于光伏发电系统,对其基本理论进行研究,并提出了相应的控制策略。具体如下:
     首先,结合光伏发电的特点以及用户的需求,提出了适用于光伏发电系统的储能型qZSI (Energy Stored qZSI, ES-qZSI)。对ES-qZSI进行数学建模,详细分析了电路中各状态变量以及各功率的关系。将ES-qZSI分别应用于独立光伏发电系统以及并网光伏发电系统,并研究了相应的控制策略。特别地,针对系统中的储能电池,本文提出了储能电池能量管理控制策略来确保储能电池的安全工作。
     其次,鉴于qZSI、ES-qZSI以及CMI的优点,提出了qZS级联多电平逆变器(qZS-CMI)和储能型qZS级联多电平逆变器(Energy Stored qZS-CMI, ES-qZS-CMI),并将这两种逆变器分别应用于光伏发电系统中。该部分研究主要包括以下几个方面:
     针对qZS-CMI及其光伏发电系统,研究了其基本模块—ZSI模块。文中考虑2倍频分量对qZSI模块进行了数学建模,首次推导得出了精确计算系统状态变量2倍频分量的数学公式。以此为基础,分析了系统状态变量2倍频分量随qZS网络参数的变化规律,提出了抑制2倍频纹波的qZS网络参数设计方法。详细分析了qZSI模块中各器件的工作状态、换流过程以及导通电流,计算了qZSI模块的功率损耗以及运行效率。研究了qZSI模块的光伏发电控制策略,采用波特图法对系统中各控制器的参数进行了整定。该部分研究为此类qZS-CMI的参数设计、器件选取提供了重要依据。
     针对qZS-CMI及其光伏发电系统,提出了该系统的控制方法,既可以实现对光伏电池的分布式MPPT控制,又可以确保每个模块拥有相同的直流母线电压,同时整功率因数并网。
     针对ES-qZS-CMI及其光伏发电系统,提出了该系统的控制方法,既可以实现对光伏电池的分布式MPPT控制,又可以保证各模块输出功率平衡,而且可以满足用户/电网需求灵活地提供负载/并网功率,平抑PV功率的波动。
     另外,分别研制了储能型qZS光伏发电系统样机、qZS级联多电平光伏发电系统样机以及储能型qZS级联多电平光伏发电系统样机,并对各样机进行了实验测试。实验结果验证了所提出的三种新型光伏逆变器及其光伏发电系统。
Photovoltaic (PV) power generation is considered to be one of the most prospective renewable energies due to its pollution-free and environmental-protective characteristic. The power converter is a critical component in the PV power generation system, and its reliability, operating efficiency, and cost are significant for the whole system. Due to the shortcomings of the conventional single-stage or two-stage converters employed in PV systems, more and more researchers focus on the newly proposed Z-Source inverter (ZSI)/Quasi-Z Source inverter (qZSI) and the low harmonic high efficiency cascade multilevel inverter (CMI). According to the research status the dissertation proposes three novel inverter topologies, and applies them in the PV power generation system. Then the basic theory is studied and the control schemes of the proposed inverters when applied in PV system are proposed. The details are as follows:
     Firstly, considering the characteristic of solar energy and the users'demand, the dissertation proposes an energy-stored qZSI (ES-qZSI) for PV system. The mathematical model of the ES-qZSI is built and the relationship among the system state variables and powers is established. The ES-qZSI can be applied to stand-alone PV system and the grid-tie PV system respectively, and the corresponding control scheme for two systems are investigated. Furthermore, an energy management control scheme is proposed to control the system while taking into account battery safety.
     Secondly, in view of the advantages of qZSI, ES-qZSI and CMI, the dissertation proposes the qZS cascade multilevel inverter (qZS-CMI) and energy-stored qZS cascade multilevel inverter (ES-qZS-CMI), and then applies them to PV system. The investigation mainly includes the following aspects:
     For qZS-CMI, qZSI module which is the basic module to make up the cascade multilevel PV system is studied in detail. The dissertation proposes the mathematic model to calculate the2ω ripple component for system state variables accurately. Moreover, the relationship between the2ω ripple and the qZS network parameters is investigated, and the qZS network parameters selection method to limit2ω ripple is proposed. Also, the operating states, the power loss and the operating efficiency of qZSI module are presented in detail. Detailed study on the control strategy of qZSI module based PV system is carried out, and the controller parameters are obtained by using bode plots method. The work will provide important guidance of the parameter design and the device selection for this type cascade multilevel inverters.
     For qZS cascade multilevel PV power generation system, the control strategy is proposed. With the control strategy, the qZS cascade multilevel PV system can achieve distributed maximum power point tracking (MPPT), balanced DC-link voltage for each module, and the unity power factor operation.
     For ES-qZS cascade multilevel PV power generation system, the dissertation also proposes the control strategy, with which the system not only can balance the module power difference automatically, but also can satisfy the load/grid demand flexibly, except for the distributed MPPT.
     Finally, the prototype of ES-qZS PV system, the qZS cascade multilevel PV system, and the ES-qZS cascade multilevel PV system are set up and tested in the lab. Experimental results verify the proposed inverters and their PV systems.
引文
[1]孔慧,罗如意.全球光伏产业发展现状及发展趋势分析[J].太阳能,2009,6:10-12,50.
    [2]李俊峰,常瑜.全球光伏产业发展回顾与展望[J].太阳能,2011,8:21-23.
    [3]李世民,田凌,张茜,刘琼.全球光伏产业现状[J].科技创新与生产力,2012,4:15-19.
    [4]中华人民共和国国家发展和改革委员会,能源发展“十一五”规划[EB/OL].http://news.xinhuanet.com/fortune/2007-04/11/content_5960916.htm,2007.
    [5]中华人民共和国国家发展和改革委员会,可再生能源中长期发展规划[EB/OL].http://www.china.com.cn/policy/txt/2007-09/04/content_8800358.htm,2007.
    [6]赵争鸣,刘建政,孙晓英等.太阳能光伏发电及其应用[M].北京:科学出版社,2005:1-136.
    [7]李钟实等.太阳能光伏发电系统设计施工与维护[M].北京:人民邮电出版社,2010:1-80.
    [8]Yi Huang, Fang Z. Peng, Jin Wang, and Dong-Wook Yoo. Survey of the power conditioning system for PV power generation[C]. Proceeding of 37th IEEE Power Electronics Specialists Conference, Jeju, Korea,2006:1-6.
    [9]蔡宣三.太阳能光伏发电发展现状与趋势[J].电力电子,2007,5(2):3-6
    [10]Hiren Patel, Vivek Agarwal. Maximum power point tracking scheme for PV systems operating under partially shaded conditions [J]. IEEE Transactions on Industrial Eelctronics,2008,55(4): 1689-1698.
    [11]Rodriguez C, Amaratunga G A J. Dynamic maximum power injection control of AC Photovoltaic modules using current-mode control [J]. IEE Proceedings:Electric Power Applications,2006,153 (1):83-87.
    [12]吴理博,赵争鸣,刘建政,王健,刘树.单级式光伏并网逆变系统中的最大功率点跟踪算法稳定性研究[J].中国电机工程学报,2006,26(6):73-77.
    [13]G. Petrone, G. Spagnuolo, and M. Vitelli. A multivariable perturb-and-observe maximum power point tracking technique applied to a single-stage photovoltaic inverter [J]. IEEE Transactions on Industrial Eelctronics,2011,58(1):76-84.
    [14]张厚升,赵艳雷.单相双级式光伏并网逆变器[J].电力自动化设备,2010,30(8):95-99.
    [15]N. Femia, G. Petrone, and G. Spagnuolo, et al. A technique for improving P&O MPPT performances of double-stage grid-connected photovoltaic systems [J]. IEEE Transactions on Industrial Eelctronics,2009,56(11):4473-4482.
    [16]A. I. Bratcu, I. Munteanu, and S. Bacha, et al. Cascaded DC-DC converter photovoltaic systems:power optimization issues [J]. IEEE Transactions on Industrial Eelctronics,2011, 58(2):403-411.
    [17]Rathore R., Holtz H., Boiler T.. Generalized Optimal Pulsewidth Modulation of Multilevel Inverters for Low-Switching-Frequency Control of Medium-Voltage High-Power Industrial AC Drives [J]. IEEE Transactions on Industrial Electronics,2013,60(10):4215-4224.
    [18]S. Alepuz, S. Busquets-Monge, J. Bordonau, J. Gago, D. Gonzalez, and J. Balcells. Interfacing renewable energy sources to the utility grid using a three-level inverter [J]. IEEE Transactions on Industrial Electronics,2006,53(5):1504-1511.
    [19]S. Busquets-Monge, J. Rocabert, P. Rodriguez, S. Alepuz, and J. Bordonau. Multilevel diode-clamped converter for photovoltaic generators with independent voltage control of each solar array [J]. IEEE Transactions on Industrial Electronics,2006,55(7):2713-2723.
    [20]D.-W. Kang, B.-K. Lee, J.-H. Jeon, T.-J. Kim, and D.-S. Hyun. A symmetric carrier technique of CRPWM for voltage balance method of flying capacitor multilevel inverter [J]. IEEE Transactions on Industrial Electronics,2005,52(3):879-888.
    [21]F. H. Khan, L.M. Tolbert, and W.E. Webb. Hybrid electric vehicle power management solutions based on isolated and nonisolated configurations of multilevel modular capacitor-clamped converter [J]. IEEE Transactions on Industrial Electronics,2009,56(8): 3079-3095.
    [22]Rahim N.A., Elias M.F.M., Wooi Ping Hew. Transistor-Clamped H-Bridge Based Cascaded Multilevel Inverter With New Method of Capacitor Voltage Balancing [J]. IEEE Transactions on Industrial Electronics,2013,60(8):2943-2956.
    [23]F. Filho, L. Tolbert, B. Ozpineci, and J. Pinto. Adaptive selective harmonic minimization based on ANNs for cascade multilevel inverters with varying DC sources [J]. IEEE Transactions on Industrial Electronics,2013,60(5):1955-1962.
    [24]J. Chavarria, D. Biel, F. Guinjoan, C. Meza, and J. Negroni. Energy-balance control of PV cascaded multilevel grid-connected inverters for phase-shifted and level-shifted pulse-width modulations [J]. IEEE Transactions on Industrial Electronics,2013,60(1):98-111.
    [25]M. Malinowski, K. Gopakumar, J. Rodriguez, and M. A. Perez. A survey on cascaded multilevel inverters [J]. IEEE Transactions on Industrial Electronics,2010,57(7):2197-2206.
    [26]M. A. Parker, R. Li, and S.J. Finney. Distributed control of a fault-tolerant modular multilevel inverter for direct-drive wind turbine grid interfacing [J]. IEEE Transactions on Industrial Electronics,2013,60(2):509-522.
    [27]S. Khajehoddin, A. Bakhshai, and P. Jain. The application of the cascaded multilevel converters in grid connected photovoltaic systems [C]. Proceedings of IEEE Electrical Power Conference, Montreal, Canada,2007:296-301.
    [28]陈阿莲,王伟誉,董圣英,张承慧.光伏发电系统中的多电平变换技术[J].电力电子技术,2010,44(6):34-36.
    [29]O. Alonso, P. Sanchis, E. Gubia, L. Marroyo. Cascaded H-bridge multilevel converter for grid connected photovoltaic generators with independent maximum power point tracking of each solar array [C]. Proceedings of IEEE 34th Annual Power Electronics Specialist Conference, Acapulco, Mexico,2003:731-735.
    [30]E. Villanueva, P. Correa, J. Rodriguez, and M. Pacas. Control of a single-phase cascaded H-bridge multilevel inverter for grid-connected photovoltaic systems [J]. IEEE Transactions on Industrial Electronics,2009,56(11):4399-4406.
    [31]S. Kouro, A. Moya, E. Villanueva, P. Correa, B. Wu, and J. Rodriguez. Control of a cascaded h-bridge multilevel converter for grid connection of photovoltaic systems [C]. Proceedings of IEEE 35th Annual Conference of the Industrial Electronics Society, Porto, Portugal,2009: 3976-3982.
    [32]J.J. Negroni, F. Guinjoan, C. Meza, D. Biel, and P. Sanchis. Energy-sampled data modeling of a cascade H-bridge multilevel converter for grid-connected PV systems [C]. Proceedings of IEEE 10th International Power Electronics Congress, Cholula, Mexico,2006:1-6.
    [33]S. Rivera, S. Kouro, B. Wu, J.I. Leon, J. Rodriguez, L.G. Franquelo. Cascaded H-bridge multilevel converter multistring topology for large scale photovoltaic systems [C]. Proceedings of IEEE International Symposium on Industrial Electronics, Gdansk, Poland,2011: 1837-1844.
    [34]赵为.太阳能光伏并网发电系统的研究[D].合肥:合肥工业大学,2003:5-24.
    [35]欧阳名三.独立光伏系统中蓄电池管理的研究[D].合肥:合肥工业大学,2004:1-10.
    [36]王金良.风能、光伏发电与储能[J].电源技术,2009,33(7):628-632.
    [37]唐西胜,武鑫,齐智平.超级电容器蓄电池混合储能独立光伏系统研究[J].太阳能学报,2007,28(2):179-183.
    [38]SS Choi, KJ Tseng, DM Vilathgamuwa, and TD Nguyen. Energy storage systems in distributed generation schemes [C]. Proceedings of IEEE Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, USA, 2008:1-8.
    [39]Gunnar Barwaldt and Michael Kurrat. Application of energy storage systems minimizing effects of fluctuating feed-in of photovoltaic systems [C]. Proceedings of CIRED Seminar: Smart Grids for Distribution, Frankfurt, Germany,2008:1-3.
    [40]G.M. Tina, and F. Pappalardo. Grid-connected photovoltaic system with battery storage system into market perspective [C]. Proceedings of sustainable alternative energy. Valencia, Spain,2009:1-7.
    [41]R. Carbone. Grid-connected photovoltaic systems with energy storage [C]. Proceedings of International Conference on Clean Electrical Power, Capri, Italy,2009:760-767.
    [42]邱培春,葛宝明,毕大强.基于蓄电池储能的光伏并网发电功率平抑控制研究[J].电力系统保护与控制,2011,39(3):29-33.
    [43]高歌.关断储能太阳光伏电池充电电路的分析与设计[J].太阳能学报,2008,29(4):404-406.
    [44]彭方正,房绪鹏,顾斌,高奇,钱照明.Z源变换器[J].电工技术学报,2004,9(2):47-51.
    [45]Fang Zheng Peng, Miaosen Shen, Zhaoming Qian. Maximum boost control of the Z-source inverter [J]. IEEE Transactions on Power Electronics,2005,20(4):833-838.
    [46]Poh Chiang Loh, D. Mahinda Vilathgamuwa, Yue Sen Lai, Geok Tin Chua and Yunwei Li. Pulse-Width modulation of Z-source inverters [J]. IEEE Transactions on Power Electronics, 2005,20(6):1346-1355.
    [47]Miaosen Shen, Jin Wang, Alan JosePh, Fang Zheng Peng, Leon M. Tolert, and Donald J. Adams. Constant boost control of the Z-Source inverter to minimize current ripple and voltage stress [J]. IEEE Transations on Industry Application,2006,42(3):770-778.
    [48]陈威.Z-源逆变器的信号流图建模与控制分析[D].合肥:合肥工业大学,2007:1-67.
    [49]程如岐,赵庚申,郭天勇.Z源逆变器的状态反馈控制策略[J].电机与控制学报,2009,13(5):673-678.
    [50]杨水涛,丁新平,张帆,钱照明.Z-源逆变器在光伏发电系统中的应用[J].中国电机工程学报,2008,28(17):112-118.
    [51]赵二刚,程如岐,郭天勇等.SVPWM技术在Z源逆变器中的应用[J].南开大学学报,2009,42(1):76-79.
    [52]李庭远,郑建勇,尤鋆,张先飞.Z源逆变器中SVPWM技术实现的研究[J].通信电源技术,2009,26(5):1-5.
    [53]Y. Huang, M.S. Shen, F.Z. Peng, J. Wang. Z-Source inverter for residential photovoltaic systems [J]. IEEE Transactions on Power Electronics,2006,21(6):1776-1782.
    [54]R. Badin, Y. Huang, F.Z. Peng, H.G. Kim. Grid Interconnected Z-Source PV System [C]. Proceedings of IEEE power electronics specialists conference, Orlando, USA,2007: 2328-2333.
    [55]黄金军,郑建勇,尤鋆,张先飞.基于电流滞环控制的Z源三相光伏并网系统[J].电力自动化设备,2010,30(10):94-97.
    [56]Vinnikov D., Roasto I.. Quasi-Z-source-based isolated DC/DC converters for distributed power generation [J]. IEEE Transactions on Industrial Electronics,2011,58(1):192-201.
    [57]J. Anderson and F.Z. Peng. Four Quasi-Z-Source Inverters [C]. Proceedings of IEEE power electronics specialists conference, Rhodes, Greece,2008:2743-2749.
    [58]J.H. Park, H.G. kim, E.C. Nho, T.W. Chun and J Choi. Grid-connected PV System Using a Quasi-Z-source Inverter [C]. In:Proceedings of the twenty-fourth Annual IEEE applied power electronics conference and exposition, Washington DC, USA,2009:925-929.
    [59]李杰Quasi-Z源逆变器的分析与设计[D].北京:北京交通大学,2009:1-61.
    [60]Y. Li, J. Anderson, F.Z. Peng, and D.C. Liu. Quasi-Z-source inverter for photovoltaic power generation systems [C]. Proceedings of the twenty-fourth Annual IEEE applied power electronics conference and exposition, Washington DC, USA,2009:918-924.
    [61]蔡春伟,曲延滨,盛况.准Z源逆变器的暂态建模与分析[J].电机与控制学报,2011,15(10):7-13.
    [62]Y. Li, F.Z. Peng, J.G. Cintron-Rivera, and S. Jiang. Controller Design for Quasi-Z-Source Inverter in Photovoltaic Systems [C]. Proceeding of energy conversion congress and exposition, Atlanta, USA,2010:3187-3194.
    [63]Liu Yushan, Baoming Ge, Fang Zheng Peng, Haitham, A.R., de Almeida, A.T., Ferreira, F.J.T.E. Quasi-Z-Source inverter based PMSG wind power generation system [C]. Proceedings of IEEE Energy Conversion Congress and Exposition, Phoenix, USA,2011:291-297.
    [64]Yushan Liu, Baoming Ge, Ferreira F.J.T.E., de Almeida A.T., Abu-Rub H. Modeling and SVPWM control of quasi-Z-source inverter [C]. Proceedings of 11th International Conference on Electrical Power Quality and Utilisation, Lisbon, Portugal,2011:1-7.
    [65]葛宝明.单级升/降压储能型光伏并网发电控制系统[P].中国发明专利:201010234868.X,2010-07-21.授权
    [66]葛宝明.储能型级联多电平光伏并网发电控制系统[P].中国发明专利:201010234866.0,2010-07-21.授权
    [67]葛宝明,孙东森.储能型准-Z源光伏发电控制系统和控制方法[P].中国发明专利:201110135059.8,2011-05-23.授权
    [68]葛宝明,孙东森.一种储能型准-Z源单相光伏发电系统的设计方法[P].中国发明专利:201210160713.5,2012-05-22.公开
    [69]葛宝明,孙东森.一种准-Z源级联多电平单相光伏并网发电系统的控制方法[P].中国发明专利:201210160780.7,2012-05-22.公开
    [70]J. Liu, S. Jiang, D. Cao, X. Lu, and F. Z. Peng. Sliding-mode control of quasi-Z-source inverter with battery for renewable energy system [C]. Proceedings of IEEE Energy Conversion Congress and Exposition, Phoenix, USA,2011:3665-3671.
    [71]Jianfeng Liu, Shuai Jiang, Dong Cao, Fang Zheng Peng. A digital current control of Quasi-Z-Source inverter with battery [J]. IEEE Transactions on Industrial Informatics,2013, 9(2):928-937.
    [72]L. Liu, H. Li, Y. Zhao, X. He, and Z.J. Shen.1 MHz cascaded Z source inverters for scalable grid-interactive photovoltaic (PV) applications using GaN device [C]. Proceedings of IEEE Energy Conversion Congress and Exposition, Phoenix, USA,2011:2738-2745.
    [73]Y. Zhou, L. Liu, and H. Li. A high performance photovoltaic module-integrated converter (MIC) based on cascaded quasi-z-source inverters (qZSI) using eGaN FETs [J]. IEEE Transactions on Power Electronics,2013,28(6):2727-2738.
    [74]高志强,纪延超,孙勇,王建赜.Z源直流母线电压波动的抑制[J].哈尔滨理工大学学报,2011,16(4):86-94.
    [75]Y. Yu, Q. Zhang, B. Liang, and S. Cui. Single-phase Z-source inverter:analysis and low-frequency harmonics elimination pulse width modulation [C]. Proceedings of IEEE Energy Conversion Congress and Exposition, Phoenix, USA,2011:2260-2267.
    [76]李晶,窦伟,徐正国等.光伏发电系统中最大功率点跟踪算法的研究[J].太阳能学报,2007,28(3):268-273.
    [77]Jung Youngseok, So Junghun, Yu Gwonjong, etc. Improved perturbation and observation method (IP&O) of MPPT control for photovoltaic power systems [C]. Proceedings of IEEE Thirty-first Photovoltaic Specialists Conference Record, Lake Buena Vista, United states,2005: 1788-1791.
    [78]Jing Hu, Jiancheng Zhang, HongboWu. A Novel MPPT Control Algorithm Based on Numerical Calculation for PV Generation Systems [C]. Proceedings of IEEE Power Electronics and Motion Control Conference, Wuhan, China,2009:2103-2107.
    [79]Koutroulis E, Kalaitzakis K, Voulgaris N.C. Development of a microcontroller--based, photovoltaic maximum power point tracking control system [J]. IEEE Transactions on Power Electronics,2001,16(1):46-54.
    [80]Kim.t.-Y, Ahn.H.-G, Park.S.-K, Lee.Y.-K. A Novel Maximum Power Point Tracking Control for Photovoltaic Power System under Rapidly Changing Solar Radiation [C]. Proceedings of IEEE International Symposium on Industrial Electronics, Pusan, Korea,2001:1011-1014.
    [81]杨海柱,金新民.并网光伏系统最大功率点跟踪控制的一种改进措施及其仿真和实验研究[J].电工电能新技术,2006,25(1):63-67.
    [82]刘永军,万频,王东海等.自适应模糊算法在光伏系统MPPT中的应用[J].太阳能学报,2008,29(6):657-661.
    [83]Syafaruddin, Karatepe, Engin, Hiyama, Takashi.Polar coordinated fuzzy controller based real-time maximum-power point control of photovoltaic system [J]. Renewable Energy,2009, 34(12):2597-2606.
    [84]周德佳.单级式三相光伏并网控制系统理论与应用研究[D].北京:清华大学,2005:40-47.
    [85]Miaosen Shen, and Fang Zheng Peng. Operation modes and characteristics of the Z-Source inverter with small inductance or low power factor [J]. IEEE Transactions on Industrial Electronics,2008,55(1):89-96.
    [86]赵磊,韩媛媛,吴丽萍.光伏并网发电系统研究成果[EB/OL].http://www.dianyuan.com/index.php?do=space_article_show&id=354.
    [87]Hung-I Hsieh, Chin-Hao Chang, Guan-Chyun Hsieh. A study of fuel cell Z-source boost converter:considerations on design and implementation [C]. Proceedings of IEEE Ninth international conference on power electronics and drive systems, Singapore,2011:441-446.
    [88]Qin Lei, Peng, F., Liangzong He, Shuitao Yang. Power Loss Analysis of Current-Fed Quasi-Z-Source Inverter [C]. Proceedings of IEEE Energy Conversion Congress and Exposition, Atlanta, USA,2010:2883-2887.
    [89]Wang Wei, Liu Hongpeng, Zhang Jiawan and Xu Dianguo. Analysis of Power Losses in Z-Source PV Grid-Connected Inverter [C]. Proceedings of 8th International Conference on Power Electronics-ECCE Asia, Jeju, Korea,2011:2588-2592.
    [90]刘鸿鹏.基于Z源网络的光伏并网逆变系统的研究[D].哈尔滨:哈尔滨工业大学,2011:28-36.
    [91]陈宗祥,束林,刘雁飞,葛芦生.基于电流源驱动的MOSFET管损耗模型及分析[J].电力系统自动化设备,2010,30(10):50-53.
    [92]D. Graovac, M.Purschel, and A.Kiep. MOSFET power losses calculation using the data-sheet parameters. Automotive Power, Application Note, vol.1.1, Jul.2006.
    [93]Z. John Shen, Yali Xiong, Xu Cheng, Yue Fu, and Pavan Kumar. Power MOSFET switching loss analysis:a new insight [C]. Proceedings of IEEE Industry Applications Conference, Tampa, USA,2006:1438-1442.
    [94]Yuancheng Ren, Ming Xu, Jinghai Zhou, and Fred C. Lee. Analytical loss model of power MOSFET [J]. IEEE Transactions on Power Electronics,2006,21(2):310-319.
    [95]田国胜,田艳兵,J‘新平,张民.Z源逆变器光伏并网系统模型及电路参数设计[J].电力电子技术,2009,43(4):58-60.
    [96]Omar Ellabban, Joeri Van Mierlo, and Philippe Lataire. A DSP-based dual-loop peak DC-link voltage control strategy of the Z-Source inverter [J]. IEEE Transactions on Power Electronics, 2012,27(9):4088-4097.
    [97]Feng Guo, Lixing Fu, Chien-Hui Lin, Cong Li, and Jin Wang. Small signal modeling and controller design of a bidirectional Quasi-Z-Source Inverter for electric vehicle applications [C]. Proceedings of IEEE Energy Conversion Congress and Exposition, Raleigh, USA,2012: 2223-2228.
    [98]徐德鸿.电力电子系统建模及控制[M].北京:机械工业出版社,2005:187-204.
    [99]谢克明,刘文定,谢刚.自动控制理论[M].北京:兵器工业出版,1998:120-194.
    [100]马琳.无变压器结构光伏并网逆变器拓扑及控制研究[D].北京:北京交通大学,2011:98-110.
    [101]王飞.单相光伏并网系统的分析与研究[D].合肥:合肥工业大学,2005:17-50.
    [102]黄如海,谢少军.基于比例谐振调节器的逆变器双环控制策略研究[J].电工技术学报,2012,27(2):77-81.
    [103]Wanchak Lenwari, Mark Sumner, er al. A high performance harmonic current control for shunt active filters based on resonant compensators [C]. Proceedings of 32nd Annual Conference on IEEE Industrial Electronics, Paris, France,2006:2109-2114.
    [104]Xiaoming Yuan, Willi Merk, Herbert Stemmler, et al. Stationary-frame generalized integrators for current control of active power filters with zero steady-state error for current harmonics of concern under unbalanced and distorted operating conditions [J]. IEEE Transactions on Industry Applications,2002,38(2):523-532.
    [105]王力乔,齐飞.级联型多电平变流器新型载波移相SPWM研究[J].中国电机工程学报,2010,30(3):28-34.
    [106]李建林.载波移相级联H桥型多电平变流器及其在有源滤波器中的应用研究[D].杭州:浙江大学,2005:24-66.
    [107]许湘莲.基于级联多电平逆变器的SYATCOM及其控制策略研究[D].武汉:华中科技大学,2006:22-49.
    [108]常国祥.电流型多电平逆变器控制策略及其数字化设计方法研究[D].沈阳:沈阳工业大学,2010:12-34.
    [109]王学华,张欣,阮新波.级联多电平逆变器最优SPWM控制策略及其功率平衡方法[J].电工技术学报,2009,25(5):92-99.
    [110]Xingtao Sun, Fengjiang Wu, Li Sun. A New multilevel space vector PWM technique for H-bridge cascaded inverter [C]. Proceedings of IEEE conference on Industrial Electronics and Applications, Harbin, China,2007:2427-2430.
    [111]Shenlly Vadhera, S. Ganesh Sankar. Simulink based optimization of SPWM multilevel inverter with phase shift and dual carrier at each level [C]. Proceedings of India International Conference on Power Electronics, New Delhi, India,2010:1-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700