用户名: 密码: 验证码:
大豆对大豆花叶病毒抗病基因的遗传分析、精细定位和标记辅助选择研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆花叶病毒(Soybean mosaic virus,SMV)病是大豆生产上的一种世界性病害,严重影响大豆产量和品质。培育抗病品种是防治大豆花叶病毒病,保证大豆优质、高产、稳产最经济、有效和安全的途径。国内外学者在抗源筛选、抗性遗传和抗性基因的分子标记定位等方面进行了广泛的研究。本研究在南京农业大学国家大豆改良中心完成对全国SMV株系划分命名及对各地区目前SMV株系的组成、分布和流行情况分析的基础上,有针对性地选择各大豆产区的主要流行株系(SC3、SC7、SC18、SC15),对最新育成品种及少量地方和引进品种进行抗性评价和抗源筛选;利用多个抗SMV材料配制杂交组合,分析大豆对SMV株系SC3的抗性遗传方式及抗性基因间等位关系;对大豆花叶病毒抗病基因RSC12进行初步定位,并对已初步定位的基因RSC12和RSC14Q进行标记辅助选择的可行性研究;在对RSC14Q初步定位基础上,构建次级F2群体,利用以基因组序列为基础开发的新的分子标记,对RSC14Q进行精细定位。这些研究为抗SMV育种提供了抗性种质和抗源信息,为明确抗性遗传方式,开展抗性基因的标记辅助选择提供理论和方法指导,为SMV抗性基因RSC14Q的图位克隆奠定基础。主要研究结果如下:
     1.大豆对SMV株系SC3、SC7、SC15、SC18的抗性评价
     除对华南热带区域的13个大豆品种接种当地主要流行广分布SMV株系SC18和SC15外,其余的238个大豆品种均接种SC3和SC7株系。共筛选到26份抗性较好的材料。科丰1号、齐黄1号、PI96983、PI486355、Kwanggyo这5个品种对SC3和SC7均表现抗侵染,齐黄22、大白麻、早熟18、徐豆1号、Davis、Buflla这6个品种只对SC3表现抗侵染,Q0807、南农307、Q0806、中作056082等15个品种接种SC3和SC7后发病症状较轻,病情指数均在20%以内,对SMV有较好的抗扩展能力。
     251份品种无论接种优势流行弱毒株系(SC3和SC18)还是优势流行强毒株系(SC7和SC15),品种抗性分布都有如下规律:抗性表现为中间类型(中抗和中感)的品种所占比例很高,均在60%以上,表现高抗病和高感的品种比例很低,低于5%。并且抗弱毒株系的品种所占比例高于抗强毒株系的品种比例。
     国内黄淮海大豆生态区的山东、北京、山西3省(市)的抗性资源丰富,品种平均病情轻,品种间抗性变异度大。
     2.大豆对SMV株系SC3的抗性遗传与抗病基因的等位性分析
     七个抗性材料分别与感病材料南农1138-2杂交获得杂交后代。对各组合亲本及后代接种SMV株系SC3鉴定其抗感表型,并对调查结果做卡方适合性测验。结果显示:齐黄1号、科丰1号、Davis、广吉、早熟18、徐豆1号、PI96983分别与感病品种南农1138-2杂交的F1表现抗病,F2呈3抗:1感的分离比例,F2:3家系符合1抗:2分离:1感的分离比例,初步表明它们各有一对基因控制对SMV株系SC3的抗性,且抗性基因为显性。
     针对这七个抗性材料配制抗抗杂交组合,对各组合亲本及后代接种SMV株系SC3鉴定其抗感表型,并对调查结果做卡方适合性测验。结果显示:齐黄1号×广吉、齐黄1号×早熟18、Davis×广吉、Davis×早熟18、徐豆1号×广吉、PI96983×广吉六组抗抗杂交组合的F1,F2均未发现感病植株,初步表明齐黄1号、广吉、早熟18、Davis、徐豆1号、PI96983所携带的对SC3的抗性基因是等位的或紧密连锁的。科丰1号×广吉和科丰1号×早熟18两组抗抗杂交组合F1都表现为抗病,F2经卡方测验呈15抗:1感的分离比例,初步表明科丰1号所携带的对SC3的抗性基因与广吉、早熟18分别携带的对SC3的抗性基因在不同的位点上,且两个基因独立遗传。
     3.大豆对SMV株系SC12的抗性基因的定位及对RSC12、 RSC14Q的标记辅助选择研究
     杂交组合齐黄22(R)×南农1138-2(S)的亲本及后代接种SMV株系SC12,F1表现抗病,F2群体抗感分离比例符合3:1,F2:3家系呈1抗:2分离:1感的分离比例,表明齐黄22对SMV株系SC12的抗性是由一对显性基因控制,以Rsc12表示。
     利用齐黄22×南农1138-2的包含219个单株的F2作图群体,采用常规摩擦接种法对群体各单株进行表型鉴定,依据分离群体分组分析法,应用Mapmaker3.0软件进行表型与基因型的连锁分析,对抗性基因Rsc12进行标记定位,将Rscl2定位在F连锁群上,7个SSR标记均与抗病基因RSC12连锁,标记与RSCl2顺序和距离为:Sat_2976.4cM Sat_2344.9cM Sat_1541.1cM Satt1140.7cM SOYHSP1761.6cM Satt3342.4cM RSC126.3cM Sct033。
     利用抗病基因RSC12、Rsc14Q两侧的SSR分子标记Satt334和Sct033对齐黄22×南农1138-2的F2、F3和F4世代以及齐黄1号×南农1138-2的F5、F6世代进行抗病基因的标记辅助选择效率研究。结果表明:单独使用标记Satt334或Sct_033对Rscl2在齐黄22×南农138-2的三个世代以及对Rscl4Q在齐黄1号×南农1138的两个世代MAS准确率均在85%以上,同时使用两个标记准确率达95%。证明2个标记可以有效地代替人工接种鉴定用于大豆抗SMV育种中对抗病基因RSC12、RSC14Q的选择。
     4.大豆对SMV抗病基因RSC14Q的精细定位研究
     利用RSC14Q的初步定位结果,在重组自交系中筛选目标区间杂合、遗传背景纯合的单株,即剩余杂合体,共筛选到的四株剩余杂合体。构建了一个由剩余杂合体自交获得的包含680个单株的次级分离群体。经接种鉴定群体符合3抗:1感的分离比例,可以作为Rscl4Q基因的定位研究的定位群体。
     根据大豆基因组序列信息,针对目标区段开发新的标记,成功开发出了2个InDel标记和1个SNP标记,所获得的InDel标记分别命名为MY750, MY26530,所获得的SNP标记命名为MY525。新标记的获得有助于提高目的基因区域遗传图谱的精度,精细定位RSC14Q。
     本研究将RSC14Q定位在Satt334和MY750之间,分别与之相距0.6cM和0.5cM,根据已公布的大豆基因组序列,将包含RSC14Q的区段限定在1.18Mb区间内。根据单株及其后代的鉴定表型及标记数据,将RSC14Q锁定在标记MY525和MY750之间,依据大豆基因组序列信息,进一步将RSC14Q限定在616kb区间内,为图位克隆Rscl4Q基因奠定了基础。
Soybean mosaic virus (SMV) disease is the major virus disease in soybean (Glycine max (L.) Merr.) worldwide, resulting in substantial yield losses and significant seed-quality deterioration. Breeding resistance varieties is the most economical, effective and environmentally sound approach to control this disease and guarantee a high and stable yield and good quality in soybean production. At present, the identification and distribution of strain groups of SMV in China has been accomplished by Nanjing Agriculture University. In this study, the major prevalent strains (SC3、SC7、SC18、SC15) in soybean production regions domestic were selected to evaluate the resistance of the new cultivars to SMV. Diallel crosses among susceptible cultivar and several resistant cultivars were made to investigate the inheritance of SMV resistance to SC3and to determine the allelic relationship of resistance genes in different resistant cultivars. The resistance gene to SC12was primary mapped and the feasibility of marker-assisted selection (MAS) for RSC12was evaluated by related markers. RSC14Q to SC14was fine mapped via an advanced F2population and the new developed molecular markers. This research supplied some useful information for soybean breeding for disease resistance and provided a foundation for MAS and map-based cloning of resistant genes. The main results were as follows:
     1. Evaluation of the soybean cultivars resistance to SMV strains SC3, SC7, SC15and SC18
     13cultivars from the south China tropicalt ecoregion were all inoculated with SMV strain SC18and SC15. The other238cultivars were all inoculated with SC3and SC7.26cultivars were seleceted for their better resistance to SMV. Kefeng No.1, Qihuang No.1, PI96983, PI486355and Kwanggyo were the ones resistant in infection to SMV strains SC3and SC7. Qihuang22, Dabaima, Zaoshul8, Xudou No.1, Davis and Buflla were only resistant in infection to SMV strain SC3.15cultivars including Q0807, Nannong307, Q0806, Zhongzuo056082and so on all showed light symptoms after inoculation of SC3and SC7and their disease index were all within20%, which indicated that they had better resistance in development to SMV strains.
     The resistance distribution of251cultivars evaluated by weak strains (SC3and SC18) or virulent strains (SC7and SC15) showed that the middle type (middle resistant and middle susceptible) cultivars with a high ratio were more than60%while cultivars in the two ends grades were less than5%. And the cultivars resistant to weak strains were more than to virulent.
     Soybean resource resistant to SMV is abundant in the provinces of Jing, Lu, Jin in Huang-Huai-Hai ecoregion, where soybean average diseases index was low and variance degree of the resistance among the soybeans is high.
     2. Studies on inheritance and allelism of resistance genes to SMV strain SC3in soybeans
     Seven cultivars (Qihuang No.1, Kefeng No.1, Davis, Kwanggyo, Zaoshu18, Xudou No.1and P196983) resistant(R) to SMV strain SC3were crossed respectively with the susceptible(S) cultivar Nannong1138-2to determine the inheritance of their resistance reaction to SC3. As a result, F1from each cross were all resistant to SC3. F2from each cross were all fitted a ratio of3(R):1(S), and their separate F2:3lines segregated with a fitness to1(R):2(segregating):1(S). The results showed that a dominant gene controlled the resistance to SC3in each of Qihuang No.1, Kefeng No.1, Davis, Kwanggyo, Zaoshu18, Xudou No.1and PI96983.
     The R parents were also crossed with each other to evaluate the allelic relationships between the genes in them. There were no susceptible plant in F1and F2from the correspond crosses of Qihuang No.1×Kwanggyo, Qihuang No.1×Zaoshu18, Davis×Kwanggyo, Davis×Zaoshu18, Xudou No.1×Kwanggyo, PI96983×Kwanggyo, which indicated that the single dominant gene with resistance to SC3in Qihuang No.1, Kwanggyo, Zaoshul8, Davis, Xudou No.1and PI96983were allelic at a common locus or very closely linked. F1from the two crosses of Kefeng No.1×Kwanggyo and Kefeng No.1×Zaoshu18were all resistant while their correspond F2population segregated in a ratio of15(R):1(S), which indicated that the single dominant gene resistant to SC3in Kefeng No.1and the gene resistant to SC3in each of Kwanggyo and Zaoshul8were not at the same locus and the two different genes inherited independently in their separate hybrid progenies.
     3. Molecular mapping RSC12and marker assisted selection of resistance genes RSC12and RSC14Q to SMV in soybean
     The P1, P2, F1plants, F2population and F2:3lines from the cross of Qihuang22and Nannong1138-2were all inoculated with the SMV strain SC12for identification of their resistance in the greenhouse. Qihuang22and F1individuals were resistant, and Nannong1138-2were susceptible. F2plants exhibited a good fit to3R:1S, and F2:3lines segregated with an acceptable fitness to1R:2segregating:1S. These results obviously indicated that a single dominant gene, designated as RSC12, controlled resistance to SC12in Qihuang22.
     A F2population of Qihuang22(R) XNannong1138-2(S) with219individuals was constructed for molecular mapping of resistance gene RSC12to SMV in soybean. Linkage analysis between inoculation phenotype and genetic markers by using the software MAPMAKER/EXP3.0b demonstrated that the resistance gene Rsc12was located on the linkage group F and linked with seven SSR markers. The order and genetic distance linked RSC12were Sat_2976.4cM Sat_2344.9cM Sat_1541.1cM Satt1140.7cM SOYHSP1761.6cM Satt3342.4cM RSC126.3cM Sct_033.
     The MAS efficiency of SSR markers Satt334and Sct_033for Rsc12and RSC14Q was evaluated in F2, F3and F4populations from Qihuang22XNannong1138-2and F5, F6populations from Qihuang No.1XNannong1138-2. The results indicated that the MAS efficiency of Satt334and Sct_033for RSC12or RsSC14Q was more than85%, and that the MAS efficiency reached as high as95%when these two markers were co-used. Therefore, the two SSR markers can be used effectively in selecting for resistance genes RSC12and RSC14Q to SMV instead of inoculation identification
     4. Fine mapping of resistance gene RSC14Q to SMV
     Based on the primary mapping of RSC14Q on the linkage group F (Li et al,2006),4residual heterozygous lines (RHLs) which have a heterozygous aim segment and a homozygous genetic background were screened from a recombinant inbred line (RIL) of soybean. The RILs were obtained from a cross between Qihuang No.1(R) and Nannong1138-2(S). The advanced F2population with680individuals constructed by selfing of4RHLs (F8) could be used for fine mapping of RSC147Q since its segregation ratio fitted to3R:1S after phenotype identification.
     Based on the physical position of RSC14Q region, two InDel markers (MY750and MY26530) and one SNP marker (MY525) were newly developed by re-sequencing PCR products using primers designed from the soybean genome sequence. The new markers obtained to saturate the genetic map of target gene were helpful to fine map RSC14Q·
     By linkage analysis between inoculation phenotype and genetic markers, RSC14Q was located at interval between Sart334and MY750, with genetic distance of0.6cM and0.5cM, respectively, which corresponded to a physical distance on the Williams82draft assembly (Glyma1.13) of1.18Mb. And then according to the genetic analysis and recombination information of the two individuals and their separate F2:3lines, RSC14Q was concluded to be located at a narrower interval between MY525and MY750. Thus the genomic region containing RSC14Q was further confined to616kb interval based on the soybean genome information. These results provided a foundation for MAS and map-based cloning of RSC14Q·
引文
1.白丽,李海朝,马莹,等.大豆对大豆花叶病毒SC-11株系抗性的遗传及基因定位[J].大豆科学,2009,28(1):1-6
    2.白丽,李凯,陈应志,等.部分国家和省(市)区试品种对大豆花叶病毒病的抗性分析[J].中国油料作物学报,2007,29(1):86-89
    3.陈红旗,陈宗祥,倪深,等.利用分子标记技术聚合3个稻瘟病基因改良金23B的稻瘟病抗性[J].中国水稻科学,2008,22(1):23-27
    4.陈庆山,张忠臣,刘春燕,等.应用Charleston X东农59重组自交系群体构建SSR大豆遗传图谱[J].中国农业科学,2005,38(7):1312-1316
    5.陈珊宇,郑桂杰,杨中路,等.我国大豆核心种质南方材料对SMV流行株系的抗性评价[J].中国油料作物学报,2009,31(4):513-516
    6.陈圣,倪大虎,陆徐忠,等.分子标记辅助选择聚合Xa23,Pi9和Bt基因[J].生物学杂志,2009,26(3):7-9
    7.陈怡,栾晓燕,黄承运,等.大豆对两个大豆花叶病毒株系的抗性遗传研究[J].黑龙江农业科学,1991,(5):21-24
    8.陈怡.大豆种质对SMV1号株系的抗性遗传[J].黑龙江农业科学,1999,(1):4-6
    9.陈永萱,薛宝娣,胡蕴珠.大豆花叶病毒(SMV)两个新株系的鉴定[J].植物保护学报,1986,13(4):221-226
    10.陈志伟,郑燕,吴为人,等.抗稻瘟病基因Pi-2(t)紧密连锁的SSR标记的筛选与应用[J].分子植物育种,2004,2(3):321-325
    11.东方阳.大豆对SMV株系抗性遗传分析和RAPD标记研究[D].南京:南京农业大学博士学位论文,1999
    12.董宏平,濮祖茂,濮祖芹,等.大豆花叶病毒(SMV)侵染大豆种胚的研究[J].南京农业大学学报,1997,20(1):35-38
    13.董淑静,许为钢.小麦条锈病抗性基因研究进展及分子标记辅助聚合育种[J].中国农学通报,2009,25(13):190-196
    14.范方军,樊叶杨,杜景红,等.水稻色素原基因C的精细定位[J].中国水稻科学,2007,21(5):454-458
    15.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种[M].北京:科学出版社,2001
    16.付三雄.大豆微卫星标记遗传图谱的构建及其在大豆抗病、虫基因定位中的应用[D].南京: 南京农业大学博十学位论文,2006
    17.盖钧镒,胡蕴珠,崔章林,等.大豆资源对SMV株系的抗性鉴定[J].大豆科学,1989,8(4):323-330
    18.盖钧镒,汪越胜.中国大豆品种生态区域划分的研究[J].中国农业科学,2001,34(2):139-145
    19.巩鹏涛,木金贵,赵金荣,等.一张含有315个SSR和40个AFLP标记的大豆分子遗传图的整合[J].分子植物育种,2006,4(3):309-316
    20.郭东全,王延伟,智海剑,等.大豆对SMV SC-13株系群的抗性遗传及基因定位的研究[J].大豆科学,2007,26(1):21-24
    21.郭东全,智海剑,王延伟,等.黄淮中北部大豆花叶病毒株系的鉴定与分布[J].中国油料作物学报,2005,27(4):64-68
    22.韩英鹏,李文滨,YuKF,等.耐大豆疫霉根腐病QTL定位的研究[J].大豆科学,2006,25(1):23-27
    23.胡国华,吴宗璞,高风兰.大豆抗种粒斑驳基因效应的研究[J].遗传学报,1995,22(2):133-141
    24.胡蕴珠,盖钧镒,马育华,等.大豆对两个大豆花叶病毒株系的抗性遗传[J].南京农业大学学报,1985,8(3):17-22
    25.贾继增.分子标记种质资源鉴定和分子标记育种[J].中国农业科学,1996,29(4):1-10
    26.李春鑫,许为钢.小麦白粉病抗病基因分子标记开发及应用研究进展[J].中国农学通报,2009,25(10): 53-58
    27.李海朝,智海剑,白丽,等.大豆对SMV株系SC-11的抗性遗传及抗病基因的等位性研究[J].大豆科学,2006,25(4):365-368
    28.李文福,刘春燕,高运来,等.大豆种粒斑驳抗性的遗传分析及基因定位[J].作物学报,2008,34(9):1544-1548
    29.李学湛.复合病毒感染对大豆叶片细胞超微结构的影响[J].电子显微学报,1991,10(1):12-16
    30.廖林,刘玉芝,孙大敏,等.大豆花叶病毒的抗性遗传——几个引用抗源对东北大豆花叶病毒二号株系的抗性遗传[J].遗传学报,1994,21(5):403-408
    31.廖林,刘玉芝,孙大敏,等.大豆花叶病引起的大豆顶端坏死症[J].作物学报,1995,21(6):707-710
    32.刘峰,陈受宜,庄炳昌.大豆基因组F连锁群高密度图谱的构建和基因定位[J].自然科学进展,2000a,10(11):1012-1017
    33.刘峰,庄炳昌,张劲松,等.大豆遗传图谱的构建和分析[J].遗传学报,2000b,27(11):1018-1026
    34.刘金元,刘大钧,陈佩度,等.分子标记辅助育种新尝试——与Pm2及Pm4a基因紧密连锁RFLP标记在小麦抗白粉病育种中的应用[J].南京农业大学学报,1997,20(2):1-5
    35.刘丽君,吴俊江,高明杰,等.大豆对SMV1株系抗性基因的分子标记研究[J].大豆科学,2002,21(2):93-95
    36.刘宁,马莹,王大刚,等.大豆花叶病毒株系间的交叉保护作用研究[J].中国油料作物学报,2009,31(2):213-218
    37.刘仁虎,孟金陵.MapDraw,在Excel中绘制遗传连锁图的宏[J].遗传,2003,25(3):317-321
    38.柳武革,王丰,金素娟,等.利用分子标记辅助选择聚合Pi-1和Pi-2基因改良两系不育系稻瘟病抗性[J].作物学报,2008,34(7):1128-1136
    39.吕蓓,张丽霞,宛煌篙,等.用AFLP标记饱和大豆SSR遗传连锁图[J].分子植物育种,2005,3(2):163-172
    40.吕文清,张明厚,魏培文,等.东北三省大豆花叶病毒(SMV)株系的种类与分布[J].植物病理学报,1985,15(4):225-229
    41.栾小燕,李宗飞,满为群,等.与大豆SMV 3号株系抗性相关的分子标记的鉴定[J].分子植物育种,2006,4(6):841-845
    42.栾晓燕.大豆对SMV3号株系成株抗性遗传的研究[J].大豆科学,1997,16(3):223-226
    43.罗瑞梧,杨崇良,尚佑芬.山东省大豆花叶病毒株系鉴定[J].山东农业科学,1990, (5)16-19
    44.马淑梅.中国大豆品种对大豆花叶病毒(SMV)病抗病性鉴定结果[J].大豆科学,1991,10(3):240-244
    45.梅丽艳.大豆花叶病毒种子带毒及其检测技术研究[J].黑龙江农业科学,1997,(3):17-19
    46.蒙忻,刘学义,方宣钧.利用大豆分子连锁图定位大豆孢囊线虫4号生理小种抗性QTL[J].分子植物育种,2003,1(1):6-21
    47.潘学彪,陈宗祥,左示敏,等.以分子标记辅助选择育成抗条纹叶枯病水稻新品种“武陵粳1号”[J].作物学报,2009,35(10):1851-1857
    48.濮祖芹,曹琦,房德纯,等.大豆花叶病毒的株系鉴定[J].植物保护学报,1982,9(1):15-19
    49.濮祖芹,曹琪.大豆品种(品系)对大豆花叶病毒六个株系的抗性反应[J].南京农学院学报,1983,(3):41-45
    50.丘永春,张书坤.小麦抗白粉病基因及其分子标记研究进展[J].麦类作物学报,2004,24(2):127-132
    51.尚佑芬,赵玖华,杨崇良,等.黄淮区大豆花叶病毒株系组成与分布[J].植物病理学报,1999,29(2):115-119
    52.苏成付,卢为国,赵团结,等.利用目标区段剩余杂合系进行大豆开花期QTL的验证和精细定位[J].科学通报,2010,55(4-5):332-341
    53.滕卫丽,李文滨,韩英鹏,等.SMV 3对抗感大豆品种叶片细胞超微结构的影响[J].作物杂志,2009,3:21-23
    54.滕卫丽,李文滨,韩英鹏,等.大豆抗感品种(系)接种SMV 1叶片细胞超微结构变化的比较[J].作物杂志,2008,1:34-36
    55.滕卫丽,李文滨,邱丽娟,等.大豆SMV3号株系抗病基因的SSR标记[J].大豆科学,2006(30):244-248
    56.宛煜嵩,王珍,肖英华,等.一张含有227个SSR标记的大豆遗传连锁图[J].分子植物育种,2005,3(1):15-20
    57.王大刚,卢卫国,马莹,等.新育成大豆品种对SMV和SCN的抗性评价[J].大豆科学,2009,28(6):949-953
    58.王关林,方宏筠.植物基因工程[M].北京:科学出版社,2002
    59.王丽侠,程须珍,王素华,等.小豆SSR引物在绿豆基因组中的通用性分析[J].作物学报,2009,35(5):816-820
    60.王文辉,邱丽娟,常汝镇,等.中国大豆种质抗SCN基因rhgl位点SSR标记等位变异特点分析[J].大豆科学,2003,22(4):246-250
    61.王心宇,陈佩度,张守忠.小麦白粉病抗性基因的聚合及其分子标记辅助选择[J].遗传学报,2001,28(7):640-646
    62.王修强,盖钧镒,喻德跃,等.大豆品种(品系)对黄淮和长江中下游地区SMV株系群的抗性反应[J].大豆科学,2003,22(4):241-245
    63.王修强.黄淮和长江中下游地区大豆花叶病毒株系鉴定、抗源筛选及抗性遗传的研究.硕士论文[D],南京:南京农业大学,2000
    64.王延伟,智海剑,郭东全,等.中国北方春大豆区大豆花叶病毒株系的鉴定与分布[J].大豆科学,2005,24(4):263-268
    65.王永军,东方阳,王修强,等.大豆5个花叶病毒株系抗性基因的定位[J].遗传学报,2004,31(1):87-90
    66.王永军,盖钧镒,邢邯,等.大豆抗感SCN基因的一个RAPD标记[J].大豆科学,2000,19(4):93-298
    67.王永军,吴晓雷,贺超英,等.大豆作图群体检验与调整后构建的遗传图谱[J].中国农业科学,2003,36(11):1254-1260
    68.王玉正,岳跃海.大豆玉米间作和同穴混播对大豆病虫发生的综合效应研究[J].植物保护,1998,1:13-15
    69.王月明,侯春燕,张孟臣,等.河北省推广大豆品种对六个SMV株系的抗性鉴定[J].华北农学报,2006,21:183-186
    70.吴为人,唐定中,李维明.数量性状的遗传剖析和分子剖析[J].作物学报,2000,26:501-507
    71.吴晓雷,贺超英,王永军,等.大豆遗传图谱的构建与分析[J].遗传学报,2001,28(11):1051-1061
    72.吴宗璞,高凤兰.大豆籽粒斑驳规律及其内外条件的关系[M].大豆育种应用基础和技术研究进展,江苏科学技术出版社,1990
    73.吴宗璞,钟兆西.大豆品种对SMV不同毒株抗性反应与种粒斑驳关系的研究[J].大豆科学,1986,5(2):153-160
    74.向远道,盖钧镒,马育华.大豆对四个大豆花叶病毒株系抗性及连锁遗传研究[J].遗传学报,1991,(2):20-24
    75.徐冉,时传娥,张礼凤,等.黄淮海大豆优异种质齐黄1号的育种应用[J].植物遗传资源学报,2004,5(2):170-175
    76.许志刚,Goodman R M, Polston J E.大豆花叶病毒株系的鉴定[J].南京农学院学报,1983,3:36-40
    77.许志刚,濮祖琴,曹琦,等.长江流域蚕豆病毒病的发生情况[Jl.南京农业大学学报,1985,4:42-28
    78.严隽析,马育华.大豆花叶病抗性遗传的初步研究[J].大豆科学,1985,4(4):249-259
    79.杨雅麟.长江中下游地区大豆花叶病毒(SMV)株系组成、分布及抗性研究[D].南京:南京农业大学硕十学位论文,2002
    80.杨喆,关荣霞,王跃强,等.大豆遗传图谱的构建和若干农艺性状的QTL定位分析[J].植物遗传资源学报,2004,5(4):309-314
    81.余子林.湖北地区大豆花叶病毒的研究[C].全国大豆病害学术讨论会论文摘要汇编,1986
    82.战勇,喻德跃,陈受宜,等.大豆对SMV SC-7株系群的抗性遗传与基因定位[J].作物学报,2006,32(6):936-938
    83.战勇,智海剑,喻德跃,等.黄淮地区大豆花叶病毒株系的鉴定与分布[J].中国农业科学,2006,39(10):2009-2015
    84.张德水,董伟,惠东威,等.用栽培大豆与半野生大豆间的杂种F2群体构建基因组分子标记连锁框架图[J].科学通报,1997,42(12):1326-1330
    85.张明厚,魏培文,张春泉.我国东北部五省市SMV对大豆主栽品种的毒力测定[J].植物病理学报,1998a,28(3):237-242
    86.张明厚,魏培文,张春泉,等.东北亚四国(地区)SMV株系毒力比较[J].大豆科学,1998b,17(2):101-107
    87.张伟,宋淑云,晋齐鸣,等.吉林省大豆新品种(系)抗大豆花叶病毒病鉴定及抗源筛选[J].吉林农业大学学报,2004,26(4):371-374,377
    88.张玉东,盖钧镒,马育华,等.大豆对两个大豆花叶病毒本地株系抗性的遗传研究[J].作物学报,1989,15(3):213-220
    89.张志永,陈受宜,盖钧镒.大豆花叶病毒抗性基因Rsa的分子标记[J].科学通报,1998,43(20):2197-2202
    90.郑崇珂.水稻抗白叶枯病新基因Xa32(t)的鉴定、分子标记定位及其近等基因系的培育[D].泰安:山东农业大学硕士学位论文,2009
    91.郑翠明,常汝镇,邱丽娟,等.大豆种质资源对SMV3号株系的抗性鉴定[J].大豆科学,2000,19(4):299-305
    92.郑翠明,常汝镇,邱丽娟.大豆对SMV 3号株系的抗性遗传分析及抗病基因的RAPD标记研究[J].中国农业科学,2001,34(1):14-18
    93.郑康乐,黄宁.标记辅助选择在水稻改良中的应用前景[J].遗传,1997,19(2):40-44
    94.智海剑,盖钧镒,陈应志,等.2002-2004年国家大豆区试品种对大豆花叶病毒抗性的评价[J].大豆科学,2005b,24(3):189-193
    95.智海剑,盖钧镒,何小红.大豆对SMV数量(程度)抗性的综合分级方法研究[J].大豆科学,2005c,24(2):5-11
    96.智海剑,盖钧镒.不同SMV抗性类型品种的细胞超微结构特征[J].南京农业大学学报,2005a,(1):6-10
    97.智海剑,盖钧镒.大豆对SMV数量抗性的表现形式与种质鉴定[J].中国农业科学,2004,37(10):1422-1427
    98.智海剑,盖钧镒.大豆花叶病毒在大豆品种上的症状反应的遗传研究[J].中国农业科学,2005d,38(5):944-949
    99.智海剑,胡蕴珠,刘天育.大豆花叶病毒对大豆生长的影响[J].中国油料,1996,18(10):44-47
    100.周斌,邢邯,陈受宜,等.大豆分子标记遗传图谱的整合及其应用[J].大豆科学,2009,28(4):557-565
    101.周建农,蒋伶活,濮祖琴,等.大豆花叶病毒的越冬寄主[J].江苏农业学报,1991,7(2):56-56
    102.周雪平,濮祖琴.自然侵染豌豆的大豆花叶病毒[J].南京农业大学学报,1990,13(1):53-56
    103. Akkaya M S, Shoemaker R C, Specht J E. Integration of simple sequence repeat DNA markers into a soybean linkage map [J]. Crop Sci,1995,35:1439-1445
    104. Apuya N R, Frazier B L, Keim P, et al. Restriction fragment length polymorphisms as genetic makers in soybean Glycine max (L.) Merrill [J]. Theor Appl Genet,1988,75:889-901
    105. Ashfield T, Bocian A, Held D, et al. Genetic and physical localization of the soybean Rpgl-b disease resistance gene reveals a complex locus containing several tightly linked families of NBS-LRR genes [J]. Mol Plant Microbe In,2003,16 (9):817-826
    106. Ashfield T, Danzer J R, Held D, et al. Rpgl, a soybean gene effective against races of bacterial blight, maps to a cluster of previously identified disease resistance genes [J]. Theor Appl Genet, 1998,96(8):1013-1021
    107. Bajwa A M A, Pacumbaba R P. Location of soybean mosaic virus in seed parts of individual dormant and germinating mottled and non mottled soybean seed [J]. Journal of Phytopathology, 1996,144 (3):51-55
    108. Ballini E, Morel J B, Droc G, et al. A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance [J].Mol Plant Microbe In,2008,21 (7):859-868
    109. Ballvora A, Ercolano M R, Weiss J, et al. The Rl gene for poato resistance to late blight (Phytophthora infestans) belongs to the leucine zipper/NBS/LRR class of plant resistance genes [J]. Plant J,2002,30 (3):361-371
    110. Bendahmane A.,Querci M.,Kanyuka et al. Agrobanterium transient expression system as a tool for the isolation of disease resistance genes:application to the Rx2 locus in potato [J], Plant J,2000,21: 73-81
    111. Bent A F, Kunkel B N, Dahlbeck D, et al. RPS2 of arabldopsis thaliana:a leucine-rich repeat class of plant disease resistance genes [J]. Science,1994,265 (5180):1856-1860
    112. Bittner-Eddy P D, Crute I R, Holub E B, et al. RPP13 is a simple locus in arabidpsis thaliana for alleles that specify downy mildew resistance to different avirulence determinants in Peronospora parasitica [J]. Plant J,2000,21:177-188
    113. Boswell K F, Gibbs A J. Viruses of Legumes [M]. Descriptions and keys from VIDE. Canberra: The Australian National University Research School of Biological Science,1983,77:107-107
    114. Botella M A, Parker J E, Frost L N, et al. Three genes of the arabidopsis Rppl eomplex resistance locus recognize distinct Peronospora Parasitica avirulence determinants [J]. Plant Cell,1998 10:1847-1860
    115. Bowers G R Jr, Paschal E H I I, Bernard R L, et al. Inheritance of resistance to soybean mosaic virus in'Buffalo'and HLS soybean [J]. Crop Sci,1992,32:67-72
    116. Burnham K D, Dorrance A E, VanToai T T, et al. Quantitative trait loci for partial resistance to phytophthora sojae in soybean [J].Crop Sci,2003,43:1610-1617
    117. Busehges R, Hollrieher K, Panstruga R, et al. The barley Mlo gene:a novel control element of plant pathogen resistance [J]. Cell,1997,88:695-705
    118. Buss G R, Chen P, Tolin S A, et al. Breeding soybean for resistance to soybean mosaic virus [M]. Proceedings of World Soybean Research Conference,1989, IV:1144-1154
    119. Buss G R, Ma G, Chen P, et al. Registration of V94-5152 soybean germplasm resistant to soybean mosaic potyvirus [J]. Crop Sci,1997,37:1987-1988
    120. Buss G R, Ma G, Kristipati S, et al. A new allele at the Rsv3 locus for resistance to soybean mosaic virus. In:World Soybean Res Conf VI, Chicago, IL,4-7 Aug,1999, Proceedings 490
    121. Buzzell R I, Tu J C. Inheritance of a soybean stem-tip necrosis reaction to soybean mosaic virus [J]. J. Hered,1989,80:400-401
    122. Buzzell R I, Tu J C. Inheritance of soybean resistance to soybean mosaic virus [J]. J Hered,1984, 75:82-82
    123. Byran G T, Wu K S, Farrall L. A single amino acid difference distanguishes resistance and susceptible alleles of the rice blast resistance gene Pi-ta [J]. Plant Cell,2000,12:2033-2046
    124. Chen J, Zheng H Y, Lin L, et al. A virus related to soybean mosaic virus from Pinellia ternate in China and its comparison with local soybean SMV isolates [J]. Arch Virol,2004,149 (2):349-363
    125. Chen P, Buss G R, Tolin S A. Resistance to soybean mosaic virus conferred by two independent dominant genes in PI486355 [J]. J. Hered.1993,84:25-28
    126. Chen P, Buss G R, Roane CW, et al. Allelism among genes for resistance to soybean mosaic virus in strain-differential soybean cultivars [J]. Crop Sci,1994,31:305-309
    127. Chen P, Buss G R, Tolin S A, et al. A valuable gene in Suweon 97 soybean for resistance to soybean mosaic virus [J]. Crop Sci,2002,42:333-337
    128. Chen P, Buss G R, Tolin S A. Resistance to soybean mosaic virus conferred by two independent dominant genes in PI486355 [J]. J Hered,1993,84:25-28
    129. Chen P, Ma G, Buss G R, et al. Inheritance and allelism tests of Raiden soybean for resistance to soybean mosaic virus [J]. J Hered,2001,92:51-55
    130. Cho E K, Choi S H, Cho W T. Newly recognized soybean mosaic virus mutants and sources of resistance in soybeans [J]. Res Rep ORD (S.P.M.U.),1983,25:18-22
    131. Cho E K, Goodman R M. Strains of soybean mosaic virus:classification based on virulence in resistant soybean cultivars [J]. Phytopathology,1979,69 (5):467-470
    132. Choi I Y, Hyten D L, Matukumalli L K, et al. A soybean transcript map:gene distribution, haplotype and single-nucleotide polymorphism analysis [J]. Genetics,2007,176:685-686
    133. Concibid V C, Diers B W, Arelli P R. A decade of QTL mapping for cystnematode resistance in soybean [J]. Crop Sci,2004,44:1121-1131
    134. Concibido V C, Young N D, Lange D A, et al. Targeted comparative genome analysis and qualitative mapping of a major partial-resistance gene to the soybean cyst nematode [J]. Theor Appl Genet,1996,93:234-241
    135. Conver R A. Studies of two viruses causing mosaic diseases of soybean [J]. Phytopathology,1948, 38,:724-735
    136. Cooper R L. A major gene for resistance to seed coat mottling in soybean [J].Crop Sci,1966,6: 290-292
    137. Cregan P B, Jarivk T, Bush A L, et al. An integrated genetic linkage map of the soybean genome [J]. Crop Sci,1999,39 (5):1464-1490
    138. Cregan P B, Mudge J, Fickus E W, et al. Two Simple sequence repeat markers to select for soybean cyst nematode resistance conditioned by the rhgl locus [J]. Theor Appl Genet,1999,99:811-818
    139. Deslandes L, Olivier J, Theulieres F, et al. Resistance to ralstonia solanacearum in arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes [J]. Proc Natl Acad Sci.USA,2002,99 (4):2404-9
    140. Diers B W, Mansur L, Imsande J, et al. Mapping phytophthora resistance loci in soybean with restriction fragment length polymorphism markers [J]. Crop Sci,1992,32 (2):377-383
    141. Dixon M S, Hatzixanthis K, Jones D A, et al. The tomato Cf-5 disease resistance gene and six homologs show pronounced allelic variation in leucine-rich repeat copy number [J]. Plant Cell, 1998,10:1915-1925
    142. Dixon M S, Jones D A, Keddie J S, et al. The tomato Cf-2 disease resistance locus comprises two functional genes encoding leueine-rich repeat proteins [J]. Cell,1996,84(3):451-459
    143. Doyle J J, Doyle J L. Isolation of plant DNA from fresh tissue [J]. Focus,1990,12 (1):13-15
    144. Flor H H. Host-parasite interaction in flax rust-its genetics and other implications [J]. Phytopathology,1955,45 (12):680-685
    145. Fu S, Zhan Y, Zhi H, et al. Mapping of SMV resistance gene Rsc-7 by SSR markers in soybean [J]. Genetica,2006,128:63-69
    146. Gai J, Yu H, Zhang Y, et al. Inheritance of resistance of soybean to four local strains of soybean [C]. Proceedings of the world soybean research conference IV, Buenos Aires Argentina,1989,182-1187
    147. Gardner M W, Kendrick J B. Soybean mosaic virus [J]. J Agr Res,1921,2(10):111-114
    148. Gassmann W, Hinsch M E, Staskawicz B J. The arabidopsis RPS4 bacterial-resistance gene is a member of the TIR-NBS-LRR family of disease resistance genes [J]. Plant J,1999,20:265-277
    149. Glover K D, Wang D, Arelli P R, et al. Near isogenic lines confirm a soybean cyst nematode resistance gene from PI88788 on linkage group J [J]. Crop Sci,2004,44:936-941
    150. Goodman. Evaluation of resistance in soybean to soybean mosaic virus strains [J]. Crop Sci,1982, 22(6):1133-1136
    151. Gore M A, Hayes A J, Jeong S C, et al. Mapping tightly linked genes controlling potyvirus infection at the Rsvl and Rpvl region in soybean [J]. Genome,2002,45 (3):592-599
    152. Grant M R, Godiard L, Straube E, et al. Structure of the arabidopsis RPM1 gene enabling dual specificity disease resistance [J]. Science,1996,269:843-846
    153. Gu K, Yang B, Tian D, et al. R gene expression induced by a type-Ⅲ effector triggers disease resistance in rice [J]. Nature,2005,435:1122-1125
    154. Gunduz I, Buss G R, Chen P, et al. Characterization of SMV resistance genes in Tousan 140 and Hourei soybean [J]. Crop Sci,2002,42:90-95
    155. Gunduz I, Buss G R, Chen P, et al. Genetic analysis of soybean mosaic virus in OX 670 and Harosoy soybean [J]. Crop Sci,2001,41:1785-1791
    156. Gunduz I, Buss G R, Chen P, et al. Genetic and phenotypic analysis of soybean mosaic virus resistance in PI88788 soybean [J]. Phytopathology,2004,94:678-692
    157. Guo B, Sleper D A, Nguyen H T, et al. Quantitative trait loci underlying resistance to three soybean cystnematode populations in soybean [J]. Crop Sci,2006,46:224-233
    158. Hammond-Kosaek, Parker J E. Deciphering Plant-Pathogen communication:fresh perspectives for molecular resistance breeding [J]. Curr Opin Bioteeh,2003,14:177-193
    159. Hayes A J, Jeong S C, Gore M A, et al. Recombination within a nucleotide-binding-site/ leucine-rich-repeat gene cluster produces new variants conditioning resistance to soybean mosaic virus in soybeans [J]. Genetics,2004,166 (1):493-503
    160. Hayes A J, Ma G, Buss G R, et al. Molecular marker mapping of Rsv4, a gene conferring resistance to all known strains of soybean mosaic virus [J], Crop Sci,2000,40:1434-1437
    161. Hill J H, Bailey T B, Benner H I, et al. Soybean mosaic virus:Effects of primary disease incidence of yield and seed quality [J]. Plant Dis,1987,3:237-239
    162. Huang N, Angeles E R, et al. Pyramiding of bacterial blight resistan genes in rice:marker assisted selection using RFLP and PCR [J]. Theor Appl Genet,1997,95 (3):313-320
    163. Hunst P L, Tolin S A. Ultrastrural cytology of soybean infected with mild and severe strains of soybean mosaic virus [J]. Phytopathology,1983,73 (4):615-619
    164. Hwang T Y, Moon J K, Yu S, et al. Application of comparative genomics in developing molecular markers tightly linked to the virus resistance gene Rsv4 in soybean [J]. Genome,2006,49 (4): 380-388
    165. Jeong S C, Hayes A J, Biyashev R M, et al. Diversity and evolution of a non-TIR-NBS sequence family that clusters to a chromosomal hotspot for disease resistance genes in soybean [J]. Theor Appl Genet,2001,103 (2):406-414
    166. Jeong S C, Kristipati S, Hayes A J, et al. Genetic and sequence analysis of markers tightly linked to the soybean mosaic virus resistance gene, Rsv3 [J], Crop Sci,2002,42:265-270
    167. Johal G S, Bridgs S P. Reductase activity encoded by the Hml disease resistance gene in maize [J]. Science,1992,258 (5084):985-987
    168. Jones D A, Thomas C M, Hammond-Kosack K E, et al. Isolation of the tomato Cf-9 gene for resistance to cladosporium fulvum by transposon tagging [J]. Science,1994,266:789-793
    169. Keim P, Diers B W, Olson T C, et al. RFLP mapping in soybean:association between marker loci and variation in quantitative traits [J]. Genetics,1990,126:735-742
    170. Keim P, Schupp J M, Travis S E, et al. A high-density soybean genetic map based on AFLP markers [J]. Crop Sci,1997,37:537-543
    171. Kennedy B W, Cooper R L. Association of virus infection with mottling of soybean seed coats [J]. Phytopathology,1967,57:35-37
    172. Kiihl R A S, Hartwig E E. Inheritance of reaction to a soybean mosaic virus in soybeans [J]. Crop Sci,1979,19:372-375
    173. Kim J S, Lee E J. A new virulent strain of soybean mosaic virus infecting SMV resistant soybean cultivar, Deogyou [J]. Korean J Plant Pathol,1991,7:37-41
    174. Kim Y H, Kim O S, Lee B C, et al. G7H, a new soybean mosaic virus strain:Its virulence and nucleotide sequence of CI gene [J]. Plant Dis,2003,87:1372-1375
    175. Kobayashi S, Araki E, Osaki M, et al. Localization, validation and characterization of plant-type QTLs on chromosomes 4 and 6 in rice (oryza sativa l.)[J]. Field Crop Res,2006,96 (1):106-112
    176. Kosaka Y, Fukunishi T. Application of cross-protection to the control of black soybean mosaic disease [J]. Plant Dis,1994,78 (4):339-341
    177. Kosambi D D. The estimation of map distances from recombination values [J]. Ann Eugen 1944,12: 172-175
    178. Koshimizu Y, Iizuka M. Studies on soybean virus diseases in Japan [J]. Bull Tohoku Agric Exp Stn, 1963,27:1-103
    179. Koshimizu Y. Relationship between virus disease and mottling seeds of soybean [J].Acta Jpn Soc Plant Pathol,1957,22:18-18
    180. Kwon S H, Oh J H. Resistance to a necrotic strain of soybean mosaic virus in soybean [J]. Crop Sci, 1979,20:403-404
    181. Lander E S, Green P, Abrahamson J, et al. MAPMAKER:an interactive computer package for constructing primary genetic linkage maps of experimenta land natural populations [J]. Genomics, 1987,1:174-181
    182. Lark K G, Weisemann J M, Matthews B F, et al.A genetic map of soybean(Clycine max L.) using intra specific cross of two cultivars:"Minsoy"and "Noir 1 "[J].Theor Appl Genet,1993,86:901-906
    183. Lawrence G J, Flnnegen E J, Ayliffe M A, et al. The L6 gene forf lax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N [J]. Plant Cell, 1995,7:1195-1206
    184. Li H C, Zhi H J, Gai J Y, et al. Inheritance and gene mapping of resistance to soybean mosaic virus strain SC14 in Soybean [J]. Journal of Integrative Plant Biology,2006,48(12):1466-1472
    185. Li K, Yang Q H, Zhi H J, et al. Identification and distribution of soybean mosaic virus strains in Southern China [J]. Plant Dis,2010,94 (3):351-357
    186. Liao L, Chen P, Buss G R, et al. Inheritance and allelism of resistance to soybean mosaic virus in Zao18 soybean from China [J]. J Hered,2002,93:447-452
    187. Lim S M. Resistance to soybean mosaic virus in soybeans [J]. Phytopathology,1985,75:199-201
    188. Lin F, Chen S, Que Z, et al. The blast resistance gene Pi37 encodes a nucleotide binding site-leucine-rich repeat protein and is a member of a resistance gene cluster on rice chromosome 1 [J]. Genetics,2007,177:1871-1880
    189. Liu G, Lu G, Zeng L, et al. Two broad-spectrum blast resistance genes, Pi9(t) and Pi2(t), are physically linked on rice chromosome 6 [J]. Mol Genet Genomics,2002,267 (4):472-480
    190. Liu X, Lin F, Wang L, et al. The in silico map based cloning of Pi36, a rice coiled-coil-nucleotide binding site leucine rich repeat gene that confers race specific resistance to the blast fungus [J]. Genetics,2007,176:2541-2549
    191. Ma G, Chen P, Buss G R, et al. Complementary action of two independent dominant genes in Columbia soybean for resistance to soybean mosaic virus [J]. J Hered,2002,93:179-184
    192. Ma G, Chen P, Buss G R, et al. Genetic characteristics of two genes for resistance to soybean mosaic virus in PI486355 soybean [J]. Theor Appl Genet,1995,91:907-914
    193. Ma G, Chen P. Buss G R, et al. Genetic study of alethal necrosis to soybean mosaic virus in PI507389 soybean [J]. J Hered,2003,94:205-211
    194. Mansur L M, Orf L H, Chase K, et al. Genetic mapping of agronomic traits using recombinant inbred lines of soybean [J]. Crop Sic,1996,36:1327-1336
    195. Martin G B, Brommonsehenkel S H, Chunwongse J, et al. Map-based cloning of a protein kinase gene conferring disease resistance in tomato [J]. Science,1993,262 (5138):1432-1436
    196. Mcdowell J M, Dhandaydham M, Long T A, et al. Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of arabidopsis [J]. Plant Cell,1998,10:1861-1874
    197. Meyers B C, Chin D B, Shen K A, et al. The major resistance gene cluster in lettuce is highly duplicated and spans several megabases [J]. Plant Cell,1998,10(11):1817-1832
    198. Mian M A R, Wang T, Phillips D V, et al. Molecular mapping of the Rcs3 gene for resistance to frogeye leaf spot in soybean [J]. Crop Sci,1999,39:1687-1691
    199. Michelmore R W, Paran I, Kesseli R V. Identification of markers linked to disease resistance genes by bulked segregant analysis:a rapid method to detect markers in specific genomic regions by using segregating populations [J]. Proc Natl Acad Sci USA,1991,88:9828-9832
    200. Milligan S B, Bodeau J, Yaghoobi J, et al. The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes [J]. Plant Cell,1998,10:1307-1319
    201. Mudge J, Cregam P B, Kenworthy J P, et al. Two SSR markers that flank the major soybean cyst nematode resistance locus [J]. Crop Sci,1997,37:1611-1615
    202. Olivier L,Virginie G,Alain T, et al. Quantitative trait loci controlling root growth and arehiteeture in arabidopsis thaliana confirmed by heterogeneous inbred family [J]. Theor Appl Genet,2005,110: 742-753
    203. Ori N, Eshed Y, Paran I, et al. The 12C family from the wilt disease resistance Locus 12 belongs to the nucleotide binding, leucine-rich repeat superfamily of plant resistance genes [J]. Plant Cell, 1997,10:521-532
    204. Owen F V. Hereditary and environment factors that produce mottling in soybeans [J]. J Aaric Res, 1927,34:559-587
    205. Parker J E, Coleman M J, Szabo V, et al.1997.The arabidopsis downy mildew resistance gene Rpp5 shares similarity to the toll and interleukin-1 receptors with N and L6 [J]. Plant Cell,1997,9: 879-894
    206. Peakall R, Gilmore S, Keys W, et al. Cross-species amplification of soybean (Glycine max) simple sequence repeats (SSRs) within the Genus and other legume genera:Implications for the transferability of SSRs in plants [J]. Mol Biol Evol,1998,15:1275-1287
    207. Prabhu R R, Njiti V N, Bell-Johnson B, et al. Selecting soybean cultivars for dual resistance to soybean cyst nematode and sudden death syndrome using two DNA markers [J]. Crop Sci,1999,39: 982-987
    208. Qu S, Liu G, Zhou B, et al. The broad-spectrurn blast resistance gene Pi9 encodes a nucleotide-binding site-leucine-rich repeat protein and is a member of a multigene family in rice [J]. Genetics,2006,172:1901-1914
    209. Saghai Maroof M A, Tucker D M, Skoneczka J A, et al. Fine mapping and candidate gene discovery of the soybean mosaic virus resistance gene, Rsv4 [J]. Plant genome,2010,3(1):14-22
    210. Salmeron J M, Oldroyd G E, Rommens C M, et al. Tomato Prf is a member of the leucine rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster [J].Cell,1996,86:123-133
    211.Sharma R K, Gupta P, Sharma V, et al. Evaluation of rice and sugarcane SSR markers for phylogenetic and genetic diversity analyses in bamboo [J]. Genome,2008,51:91-103
    212. Shen Y J, Jiang H, Jin J P, et al. Development of genome-wide DNA polymorphism database for map-based cloning of rice genes [J]. Plant Physiol,2004,135(3):1198-1205
    213. Shoemaker R C, Polzin K, Labate J, et al. Genome duplication in soybean (glycine subgenus soja) [J]. Genetics,1996,144 (1):329-338
    214. Shoemaker R C, Specht J E. Integration of the soybean molecular and classical genetic linkage groups [J]. Crop Sci,1995,35:436-446
    215. Simons G, Groenendijk J, Wijbrandi J, et al. Dissection of the fusarium 12 gene cluster in tomato reveals six homologs and one active gene copy [J]. Plant Cell,1998,10:1055-1068
    216. Smartt J. A guide to soybean cultivation in northern Rhodesia [J]. Rhodesia Agric,1960,57: 459^63
    217. Song Q J, Marek L F, Shoemaker R C, et al. A new integrated genetic linkage map of the soybean [J]. Theor Appl Genet,2004,109 (1):122-128
    218. Song W Y, Pi LY, Wang G L, et al. Evolution of the Xa21 disease resistance gene family [J]. Plant Cell,1997,9:1279-1287
    219. Song W Y, Wang G L, Chen L L, et al. A receptor kinase-like protein encoded by the rice disease resistance gene,Xa21[J]. Science,1995,270:1804-1806
    220. Spasic M. A contribution to the knowledge of the parasitic flora of the region Timocka Krajina [J]. Zast Bilja,1961,63:57-63
    221. Steinlage T A, Hill J H, Nutter F W Jr. Temporal and spatial spread of soybean mosaic virus (SMV) in soybeans transformed with the coat protein gene of SMV [J]. Phytopathology,2002,92 (5): 478-486
    222. Sun X, Cao Y, Yang Z, et al. Xa26, a gene confering resistance to Xanthomonas oryzae Pv.oryzae in rice, encodes an LRR receptor kinase-like protein [J]. Plant J,2004,37 (4):517-527
    223. Tai T H, Dahlbeck D, Clark E T, et al. Expression of the Bs2 pepper gene conferring resistance to bacterial spot disease in tomato [J]. Proc Natl Acad Sci USA,1999,96:14153-14158
    224. Takahashi K, Tanaka T, Iida W, et al. Studies on virus disease and causal viruses of soybean in Japan [J]. Bull Tohoku Natl Agric Exp Stn,1980,62:103-130
    225. Takken F L W, Thomas C M, Joosten M H A J, et al. A second gene at the tomato Cf-4 locuse confers resistance to cladosporium fulvum through recognition of a novel avirulence determineant [J]. Plant J,1999,20 (3):279-288
    226. Tanksley S D, Young N D, Paterson A H, et al. RFLP maping in plant breeding:New tools for an old seienee [J]. Biotechnology,1989,7:257-264
    227. Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers [J]. Nucleic Acids Res,1989,17:6463-6471
    228. Thomas C M, Jones D A, Parmiske M, et al. Characterization of the tomato Cf-4 gene for resistance to cladosporium fulvum identifies sequences that determine recognitional specificity in Cf-4 and Cf-9 [J]. Plant Cell,1997,9:2209-2224
    229. Tresnaputra U S, Ehara Y. Electron microscopy of soybean leaf cells infected with five stains of soybean mosaic virus [J]. Tohoku Joural of Agricultural Research,1989,39:2-4,61-71
    230. Tuinstra M R, Ejeta G, Goldsbrough P B. Heterogeneous inbred family (HIF) analysis:A method for developing near-isogenic lines that differ at quantitative trait loci [J]. Theor Appl Genet,1997, 95(5):1005-1011
    231. Tuinstra M R, Ejeta G, Goldsbrough P. Evaluation of near-isogenic sorghum lines contrasting for QTL markers associated with drought tolerance [J]. Crop Sci,1998,38 (3):835-842
    232. Van Ooijen J W, Voorrips R E. Joinmap 3.0, software for the calculation of genetic linkage maps [J]. Plant Research International, Wageningen,2001, The Netherlands:1-51
    233. Vos P, Marjo Bleeker R H, Reijans M, et al. AFLP:a new technique for DNA finger printing [J]. Nueleic Aeids Research,1995,23:4407-4414
    234. Wang X, Eggenberger A L. Nutter F W, et al. Pathogen-derived transgenic resistance to soybean mosaic virus in soybean [J]. Mol-breed,2001,8 (2):119-127
    235. Wang Y, Nelson R L, Hu Y. Genetic analysis of resistance to soybean mosaic virus in four soybean cultivars from China [J]. Crop Sci,1998,38:922-925
    236. Wang Z X, Yano M, Yamanouchi U, et al. The Pib gene for rice blast resistance belongs to the nucleotide binding and leucine-rich repeat class of plant disease resistance genes [J]. Plant J,1999, 19(1):55-64
    237. Warren R F, Henk A, Mowery P, et al. A mutation within the leucine-rich repeat domain of the arabidopsis disease resistance gene RPS5 partially suppresses multiple bacterial and downy mildew resistance genes [J]. Plant Cell,1998,10:1439-1452
    238. Welsh J, McClelland M. Finger printing genomes using PCR with arbitrary primers [J]. Nucleic Acids Res,1990,18:7213-7218
    239. Weng K Y, Anderson T R, Poysa V. Mapping genes conferring resistance to phytophthora root rot of soybean, Rpsla and Rps7[J]. J Heredity,2001,92 (5):442-446
    240. Wilcox J R, Laviolette F A. Seed coat mottling response of soybean genotypes to infection with soybean mosaic virus [J]. Phytopathology,1968,58:1446-1447
    241. Williams J G K, Kubelik A R, Livak K J, et al. DNA polymorphism amplified by arbitrary primers are useful as genetic markers [J]. Nucleic Acids Res,1990,18:6531-6535
    242. Wllitham S, Dinesh-Kumar S P, Choi D, et al. The product of the tobacco mosaic virus resistance gene N:similarity to toll and the interleukin-1 receptor [J]. Cell,1994,23,78 (6):1101-15
    243. Woodworth C M, Cole L J. Mottling of soybean [J]. J Hered,1924,15:349-354
    244. Yamanaka N, Watanabe S, Toda K, et al. Fine mapping of the FT1 locus for soybean flowering time using a residual heterozygous line derived from a recombinant inbred line [J]. Theor Appl Genet,2005,110 (4):634-639
    245. Yoshimura S, Yamanouchi U, Katayose Y, et al. Expression of Xal, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation [J]. Proc Natl Acad Sci USA,1998,95:1663-1668
    246. Yu J, Hu S N, Wang J, et al. A draft sequence of the rice genome (Oryza sativa L.ssp.indica) [J]. Seience,2002,296 (5565):79-92
    247. Yu S W, Fan Y Y, Yang C D, et al. Fine mapping of quantitative trait loci for grain length and grain width on the short arm of rice chromosome 1 [J]. Chinese J Rice Sci,2008,22 (5):465-471
    248. Yu Y G, Buss G R, Saghai Maroof M A. Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site [J]. P Natl Sci USA,1996,93 (21): 11751-11756
    249. Yu Y G, Saghai-Maroof M A, Buss G R, et al. RFLP and microsatellite mapping of a gene for soybean mosaic virus resistance [J]. Phytopathology,1994,84:60-64
    250. Zhang W K, Wang Y J, Luo G Z, et al. QTL mapping of ten agronomic traits on the soybean (Glycine max L.Merr.) genetic map and their association with EST markers [J]. Theor Appl Genet, 2004,108:1131-1139
    251. Zheng C, Chen P, Gergerich R. Effect of temperature on the expression of necrosis in soybean infected with soybean mosaic virus [J]. Crop Sci,2005,45:916-922
    252. Zheng C, Chen P, Gergerich R. Genetic analysis of resistance to soybean mosaic virus in J05 soybean [J]. J Hered,2006,97 (5):429-437
    253. Zhi Haijian, Gai Junyi. Performances and germplasm evaluation of quantitative resistance to soybean mosaic virus in soybeans [J]. Agricultural Science in China,2004,3 (4):247-253
    254. Zhou B, Qu S, Liu G, et al. The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specificity to Magnoporthe grisea [J]. Mol Plant-Microbe Interact,2006,19:1216-1228
    255. Zhu Y L, Song Q J, Hyten D L, et al. Single-nucleotide polymorphisms in soybean [J]. Genetics, 2003,163:1123-1134

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700