用户名: 密码: 验证码:
铁屑内电解法对苎麻废水的预处理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苎麻废水的COD浓度高、色度高、可生化性差,且其中有些物质对微生物有毒害。本研究在探讨内电解工艺的基本原理和反应机理的基础上,从如下三个方面具体研究铁屑内电解法对苎麻废水的预处理情况:
    1)通过正交实验研究各工艺影响因素对处理效果的影响大小。选定PH值、停留时间、通气量和温度为研究的影响因素,以COD、BOD、色度等为指示参数来评价处理效果。结果显示,他们的影响大小依次为:PH值→通气量→温度→停留时间。在PH值越低、停留时间越长、通气量越大、温度越高的情况下,处理效果越好。一般的,色度和COD的去除率分别为30%和20%,且可生化性提高,毒性减少,达到了预处理的目的。再对PH值和停留时间分别进行了单因素实验,结果显示PH值在2~4之间效果最好,停留时间在40min以上,处理效果趋于稳定。
    2)研究在铁碳填料中添加的金属氧化物对处理效果的影响。现有的盐及单质金属作为添加剂有一定的局限性,本文选定三氧化二铝、二氧化锰和氧化铜这几种金属氧化物作为添加剂。发现在相同的条件下,添加了不同比例不同的金属氧化物后,处理效果均有提高,通过监测,COD的去除率可由原来的32.5%上升到38.3~48.6%左右,色度去除率由原来的42%上升到47~48.6%之间。可见金属氧化物对处理效果有促进作用。
    3)将铁屑内电解法与铁盐混凝法均用于处理苎麻废水,铁屑内电解效果优于铁盐混凝法效果,铁屑内电解法对COD与色度的去除率为32.5%与42%,而铁盐混凝法对COD与色度的去除率为26.3%与30%。
    通过本论文的研究,为工程设计及运行提供初步的理论及工艺条件基础。在工程中应根据实际进一步调试,使处理效果达到最佳
In this article, the working principle and action mechanism of Fe chipping inner-electrolysis process are studied. It is used to pretreat ramie wastewater that has high COD concentration, high color and some toxicants to microorganics.
    This research has three sections:
    1) Some technology control-factors are studied through orthogonal experiment to study their impact on treating effect. PH value, retention time, aeration, and temperature are chosen as control factors. COD, BOD and color are indicating indexes for estimating treating effect. The result shows that effecting order is PH value, aeration, and temperature, retention time. The lower the PH value is, the longer the retention time is, the bigger the aeration is, and the higher the temperature is, the better the efficiency is. Generally, the removal rate of colors and COD are respectively 30% and 20%. The biogradability of effluent is improved and the toxicity is reduced. It achieves the goal of pretreating. The single factor experiments to PH value and retention time are conducted respectively. The results show that when PH value is 2~4,the treating effiency is the best; when retention time is exceeding 40min, the efficiency goes to stabilization.
    2) The influences of metal oxides are studied through adding them to the Fe-C carrier. Now, salt and metals are used as additives, but they both have limits. In this article Al2O3, MnO2, CuO are chosen as additives. At the same conditions, when adding different metal oxides with different proportions, the removal rate of COD is improved to 38.3~48.6% from 32.5%.The removal rate of color is improved to 47~60% from 42%. It can be concluded that the metal oxides contribute to the reaction.
    3) The inner-electrolysis process and iron coagulation process are both used to pretreat ramie wastewater. The results show that the efficiency of inner-electrolysis process is better than the one of iron coagulation process. The removal rates of COD and color of inner-electrolysis process are 32.5% and 42%, while the ones of iron coagulation process are 26.3% and 30%.
    Via this experiment research, the elemental theory and technology foundation can be offered for project design and running. In the real project, the factors should be modified according to the reality to get the best result
引文
[1] 庄玉贵.水处理中含铁废料综合利用的研究进展.环境污染与防治.1997.19(6):27~29
    [2] 周培国.微电解工艺研究进展. 环境污染治理技术与设备.2001.2(4):18~24
    [3] 陈郁.零价铁处理污水的机理及应用.环境科学研究.2000, 13(5):24~26
    [4] 张亚静等.铁碳内电解法处理印染废水.环境污染与防治.2000, 22(5):33~36
    [5] 韩洪军.铁屑-炭粒法处理纺织印染废水.工业水处理.1997, 17(6):15~17
    [6] 徐根良.微电解处理分散染料废水的研究.水处理技术.1999, 25(4):235~238
    [7] 孙华.内电解法处理染料生产废水试验研究.工业用水与废水.2001, 32(3):22~25
    [8] 罗凡.还原铁粉/紫外光体系对活性艳红X-3R溶液的脱色.环境污染与防治.1999.21(5):1~4[7]罗凡.还原铁粉/紫外光体系对活性艳红X-3R溶液的脱色.环境污染与防治.1999.21(5):1~4
    [9] 王小文.铁屑/炭电化学反应-混凝沉淀法处理制罐废水.化工环保.1998, 18(4):220~222
    [10] 贺启环.微电解-生化工艺处理化工制药生产废水的试验与实践.污染防治技术,1998,11(4):237~239
    [11] 雍文彬.铁屑微电解法处理农药废水的研究.环境污染治理技术与设备.2002.3(3):86~87转64
    [12] 肖利平.微电解-厌氧水解酸化-SBR串联工艺处理制药废水试验研究.工业水处理.2000,20(11):25~27
    [13] 曹微寰等.酯化废水铁还原预处理的研究.化工环保.1999,19(4):195~199
    [14] 欧阳玉祝.铁屑微电解法预处理酿酒废水的研究.工业水处理,2001,21(10):16~18
    [15] 韩洪军.微电池滤床法处理含油废水.化工环保.2000,20(5):19~21
    [16] 陈水平.铁屑内电解法处理船舶含油废水的研究.水处理技术.1999,25(5):303~306
    [17] 刘林.混凝气浮-微电解-SBR工艺处理油墨与黏合剂混合废水.环境工程,2001,19(5):16~18
    [18] 李护林.内电解法处理造气含氰废水的设计.化工给排水设计.1998, 2,8~9转4
    [19] 吴金义.铁炭还原法处理乡镇企业电镀综合污水. 环境污染与防治.1989,11(1):32~35
    [20] 潘涌璋.铁屑内电解法处理印刷电路板厂废水的试验.上海环境科学.1996,15(6):28~29
    [21] 马业英.铁粉、铸铁粉及磁性铸铁粉净化含铬电镀废水的比较研究.武汉工业大学
    
    学报.1990.2:56~60
    [22] 魏云鹤.铁屑与铝渣混合处理钢铁钝化含铬废水的研究.水处理技术.1998,24(2):122~124
    [23] 彭根槐.电石渣-铁屑法去除硫酸废水中的氟和砷.化工环保,1995,15(5):280~284
    [24] 张天胜. 铁屑内电解法处理含酚废水.环境保护,1997,8:17~20
    [25] 王萍.海绵铁除磷技术研究.环境科学学报,2000,20(6):798~800
    [26] 何伟光.铁-碳絮凝床处理厨房污水.环境科学.1994,15(1):39~41
    [27] 曹曼.铁屑固定床及其在废水处理中的应用.上海环境科学,1994,13(2):43转9
    [28] 熊英健.一种新型水处理技术-絮凝床法现状及展望.工业水处理,1996,16(3):4~7
    [29] K.J. Cantrell and D.I.Kaplan. Zero-Valent Iron Colloid Emplacement in Sand Columns. Journal of Environmental Engineering. May, 1997:499~504
    [30] Baolin Deng et al.. Hydrocarbon Formation in Metallic Iron/Water Systems. Environ.Sci.Technol.1997, 31: 1185~1190
    [31] B.Gu et al. Biogeochemical Dynamics in Zero-valent Iron Columns: Implications for Permeable Reactive Barriers. Environ. Sci. Technol. 1999, 33:2170~2177
    [32] D.H.Phillips et al. Performance Evaluation of a Zerovalent Iron Reactive Barrier: Mineralogical Characteristics. Environ.Sci.Technol. 2000, 34:4169~4176
    [33] Brian.A et al. Fe (0)-Supported Autotrophic Denitrification. Environ. Sci. Technol. 1998, 32:634~639
    [34] Jan Kielemoes et al. Influence of Denitrification on the Corrosion of Iron and Stainless Steel Powder .Environ. Sci. Technol. 2000, 34:663~671
    [35] Hui-Ming Hung et al. Kinetics and Mechanism of the Enhanced Reductive Degradation of Nitrobenzene by Elemental Iron in the Present of Ultrasound. Environ. Sci. Technol. 2000, 34, 1758~1763
    [36] Charlotte Scheuze et al. Removal of Halogenated Organic Compounds in Landfill Gas by Top Covers Containing Zero-Valent Iron. Environ. Sci. Technol. 2000, 34:2557~2563
    [37] Francis X.M.Casey, Say Kee Ong and Robert Horton. Degradation and Transformation of Trichloroethylene in Miscible -Displacement Experiments through Zerovalent Metals. Environ. Sci. Technol. 2000, 34:5023~5029
    [38] Young-Hun Kim et al. Dechlorination of Pentachlorophenol by Zero Valent Iron and Modified Zero Valent Irons. Environ. Sci. Technol. 2000, 34:2014~2017
    [39] Wolfgang F.Wüst et al. Combined Zero- and First-Order Kinetic Model of Degradation of TCE and cis-DCE with Commercial Iron. Environ. Sci. Technol. 1999, 33:4304~
    
    4309
    [40] Hwa K.Yak, Bernd W.Wenclawiak et al. Reductive Dechlorination of Polychlorinated Biphenyls by Zerovalent Iron in Subcritical water. Environmental Science &Technology. 1999, 33(8):1307~1310
    [41] James Farrell et al. Investigation of the Long-Term Performance of Zero-Valent Iron for Reductive Dechlorination of Trichloroethylene. Environ. Sci. Technol. 2000, 34:514~521
    [42] Joseph N.Fiedor et al. Understanding the Mechanism of Uranium Removal from Groundwater by Zero-Valent Iron Using X-ray Photoelectron Spectroscopy. Environ. Sci. Technol. 1998, 32:1466~1473
    [43] Sherman M Ponder et al.Remediation of Cr(VI) and Pb(II) Aqueous Solutions Using Supported Nanoscale Zero-valent Iron. Environ. Sci. Technol. 2000, 34:2564~2569
    [44] Thomas Astrup et al. Immobilization of Chromate from Coal Fly Ash Leachate Using an Attenuating Barrier Containing Zero-valent Iron. Environ. Sci. Technol. 2000, 34:4163~4168
    [45] Tamara E. Shokes and Gregory Moller. Removal of Dissolved Heavy Metals from Acid Rock drainage Using Iron Metal. Environ. Sci. Technol. 1999, 33:282~287
    [46] Laurent Charlet et al. Decontamination of TCE-and U-Rich Waters by Granular Iron: Role of Sorbed Fe(II). Journal of Environmental Engineering. 1998 January:25~30
    [47] Zhaohui Li et al. Enhanced Reduction of Chromate and PCE by Pelletized Surfactant-modified Zerolite/Zerovalent Iron. Environ. Sci. Technol. 1999,33:4326~4330
    [48] 贺延龄.废水的厌氧生物处理[M].北京:中国轻工业出版社.1998
    [49] 唐受印.戴友荃.水处理工程手册[M].北京:化学工业出版社.2000
    [50] 章红胜.SBR工艺处理麻生物脱胶废水.环境工程.2001.19(1):7~9
    [51] 黄瑾辉.复合混凝剂PMZ在脱胶废水处理中的应用.环境工程.2000.18(6):13~14
    [52] 奚旦立.环境监测(修订版).北京:高等教育出版社.1996(1999重印)
    [53] 黎家明.金属腐蚀理论及应用.北京:化学工业出版社.1984
    [54] 蒋全勋.金属腐蚀学.北京:国防工业出版社.1986
    [55] 汤兵.铁氧体化法在重金属污染物解毒处理中的应用.环境导报.2001.2:26~29
    [56] 李军.铁氧体沉淀法处理重金属废水.电镀与环保.1999.19(1):30~31
    [57] 张朝升.废水处理中单宁、木素类物质降解规律.中国给水排水.1998.14(6):52~53
    [58] 全燮.零价铁对水中氯代烃还原脱氯的研究进展.环境科学进展.1997.12(增刊):25~28
    [59] 姚杏明.微电解催化氧化处理对硝基苯胺系列废水.环境工程.2001.19(3):26~27
    
    
    [60] 赵德明.Fe-C微电解法+H2O2组合工艺处理对氯硝基苯废水.城市环境与城市生态.2002.15(1):32~34
    [61] 李荣生.催化作用基础(第二版).北京:科学出版社.1990
    [62] 全燮.钯-铁催化还原法对水中三氯乙烯的快速脱氯研究.大连理工大学学报.1997.37(1):46~48
    [63] 全燮.二元金属体系对水中多氯有机物的催化还原脱氯特性.中国环境科学.1998.18(4):333~336
    [64] 马子川.新生MnO2对甲基橙废水的脱色特性研究.城市环境与城市生态.2001.14(5):23~24
    [65] 刘瑞霞.不同染料化合物在天然锰矿界面的脱色特性.环境化学.2000.19(4):341~347
    [66] 白树林.用δ-MnO2处理含亚砷酸盐的饮用水.化工环保.1998.18(2):86~88
    [67] 程正东.连续处理酸性沉钒废水的研究.环境工程.1994.12(4):6~9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700