用户名: 密码: 验证码:
天然沸石和粉煤灰的改性及在城市景观水体脱氮除磷中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市景观水体具有封闭、纳污能力低,水质改变快等特点,极易发生富营养化。本论文针对富营养化的城市景观水体水质特征考察了天然沸石和粉煤灰的改性方法及其改性后的脱氮、除磷效果,所得结果及结论为:
     天然沸石由于孔道堵塞和带电等原因,其脱氮能力受到限制,需要使用一定的改性方法充分挖掘其潜在的脱氮能力。采用NaCl、AlCl_3、MgCl_2、HCI、煅烧等改性方法改性沸石后,沸石的吸附容量均有了一定的提高,其中用NaCl改性的效果最好;选用1mol/L的NaCl溶液,在固液比1:5的情况下改性30min的沸石具有较好的脱氮性能;改性沸石处理低浓度氨氮废水时选用60-100目粒径的沸石、在pH在6-8之间、搅拌强度G值为126.2s~(-1)、搅拌25min时可达到较好的脱氨效果;改性沸石吸附氨氮的反应可以用Langmuir等温吸附方程式描述,拟合系数为0.9937,其氨氮吸附容量为2.42mg/g。改性沸石滤床的试验表明,在不改变水箱水pH值和温度的条件下,滤速对氨氮的去除率影响不大,当滤速在8m/h以下时,氨氮去除率均大于94%。在8m/h的流速进行模拟城市景观水处理且进水氨氮浓度在5.25-0.51mg/L变化时,沸石滤床对氨氮的去除率很高,最高去除率达95.6%,氨氮的浓度可降到0.23mg/L。
     未经改性的粉煤灰去除水中的磷酸盐主要依靠粉煤灰中的CaO水解,因此必须在极高的pH值下才能有很好的去除效果,在实际的应用中受到很大限制,出水的pH值也因过高无法达标,为了进一步提高粉煤灰除磷的能力及解决出水的pH值过高的问题,必须对粉煤灰进行改性。采用硫酸改性后,粉煤灰具备了很好的除磷能力。用0.5mol/L的硫酸,在固液比1:4条件下干燥的粉煤灰具有良好的除磷性能;改性灰比原灰有更快的吸附速率,5min之内可基本达到磷吸附平衡;pH对磷吸附效果有很大影响,在pH值分别为6~7和12左右时改性灰有最好的吸附效果,但除磷的机理不同;原灰和改性灰的磷吸附反应均符合Langmuir方程,相关系数分别达到0.997和0.998。最大吸附容量分别达到14.88mg/g和9.34mg/g。改性灰的最大吸附容量虽在数值上有所下降,但其除磷机理却更有实际运用意义。模拟水体试验中,pH在6-7之间、搅拌强度G值为49.7s~(-1)、搅拌5min的条件下,当灰水比分别为1/1500、1/4500和1/10000时,磷浓度分别为1 mg/L、0.2mg/L和0.04mg/L的模拟城市景观水体出水磷浓度都下降到了富营养化的发生浓度0.02mg/L左右,而当灰水比分别提高到1/1000、1/4000和1/8000时,三种水体的出水磷浓度均无法检出。处理极低磷浓度的水体时,如果灰水比过低,出水磷浓度反而略微上升,因此在实际应用中应该避免这种情况的出现。实际景观水体实验中,不同富营养化程度的两种城市景观水体按1/4000的灰水比投加改性粉煤灰处理后,出水TP都降到了0.02mg/L的水平,DP则都为0.0101mg/L,而且当灰水比提高到1/2000时都可将TP降至0.01mg/L的水平。出水pH都呈中性,对COD也有很好的去除效果,两种水体的COD去除率分别达到88.81%和66.37%。实验结果表明,改性粉煤灰在控制城市景观水体的富营养化方面有很好的应用前景。
     粉煤灰由于本身不具有类似沸石的结构,无法与氨氮发生离子交换吸附,因此未经过活化的粉煤灰几乎没有脱氮能力,需要使用一定的方法改性后才能具备脱氮能力。采用硫酸和氢氧化钠复合改性后,粉煤灰具备了较强的脱氮能力。硫酸改性的粉煤灰用3mol/L的NaOH溶液,在固液比1:4条件下回流反应1h即可具有较好的脱氮性能;用改性灰处理低浓度氨氮废水时,pH在6-8之间、搅拌强度G值为49.7s~(-1)、搅拌15min即可达到较好的脱氨效果;改性粉煤灰的脱氮过程可以用Langmuir等温吸附方程式描述,拟合系数为0.9924。其氨氮吸附容量达到26.18mg/g。改性粉煤灰滤床的试验表明,在不改变水箱水pH值和温度的条件下,滤速对氨氮的去除率影响不大,当过滤速度小于或等于8m/h时的脱氮效果较好,氨氮去除率大于97%。当选取8m/h的流速进行模拟城市景观水处理且进水氨氮浓度在5.25~0.32 mg/L变化时,改性粉煤灰滤床对氨氮的去除率很高,最高去除率达97.7%,氨氮的浓度可降到0.12mg/L。结果表明改性灰的脱氮效果要好于改性沸石。
The urban landscape water which is closed,of low-pollutant carrying capacity and rapid changes in water quality characteristics will be prone to eutrophication.This paper researched the modified method of natural zeolite and fly ash and the removal effect of ammonia nitrogen and phosphorus using modified zeolite and modified fly ash from the urban landscape eutrophication water.The result and conclusions were shown as follows:
     It is difficult for ammonia nitrogen removal to use natural zeolite because of the structure and other reasons.In order to exploit its potential capacity fully it need modifying.After using NaCl,AlCl_3,MgCl_2,HCl,calcining and other modification methods to modified the zeolite,the absorption capacity of the zeolite was improved, and the study also showed that among all modification methods the effect of NaCl was the best.The experiment was carried out under the condition that the concentration of NaCl was 1mol/L,the ratio of solid to liquid was 1:5 in the case of the modified 30 min, which showed that the zeolite had a good performance of ammonia nitrogen removal; under the experimental condition that the size of zeolite was 60~100 mesh,pH was 6~8 and the G was 126.2s~(-1)and stirring time was 25 min,the good efficiency of ammonia nitrogen removal was achieved.This study also showed that the adsorption reaction of ammonia nitrogen by modified zeolite could be described through Langmuir formula with R~2 of 0.9937,and on this condition the absorption capacity of ammonia nitrogen is 2.42 mg/g.The experiments of modified zeolite filter beds showed that the filtration rate plays a trivial role in the removal rate of ammonia nitrogen without changing the pH and temperature of the raw water,and when the filtration rate below 8m/h,the removal rate of ammonia nitrogen is more than 94%.When the experiment to treating the simulate urban landscape water was carried out with the filtration rate of 8m/h and the concentration of ammonia nitrogen changing between 5.25~0.51mg/L, the removal rate of ammonia nitrogen by zeolite filter bed is high,and the highest removal rate was up to 95.6%,then the concentration of ammonia nitrogen could be reduced to 0.23mg/L.
     The fly ash remove phosphate from water rely mainly on the CaO hydrolysis,it is necessary of high pH to getting a good effect.So the practical applications is largely limited,and the pH of output water is too high to reach the standards.In order to further enhance the ability of removing phosphorus and solve the problem of high pH of output water,it has to modify,the fly ash.After Modified by sulfuric acid,the fly ash has a very.good capacity of phosphorus removal.under the condition that the concentration of sulfuric acid was 0.5mol/L and the ratio of solid to liquid was 1:4,the modified fly ash has a good performance to remove phosphorus.The experiment showed that the modified fly ash has much faster absorption rate than the fly ash,.and it takes less than 5 min to reach P-adsorption-Balance;pH plays an important role on the absorption of phosphorus,when the pH was 6~7 and about 12 respectively,the modified fly ash has the best absorption effect,but the mechanism of phosphorus removal is different from each other.The P-adsorption reaction of the fly ash and the modified fly ash are both follow with Langmuir equation with the R~2 of 0.997 and 0.998 respectively,and the greatest absorption capacity reached 14.88mg/g and 9.34mg/g respectively.The biggest absorption capacity of modified fly ash decline,but its mechanism of phosphorus removal has much more significance of practical application.When the ratio of ash to water was 1/500,1/4500 and 1/10000 respectively,and the phosphorus concentration of simulated urban landscape water was 1mg/L,0.2mg/L and 0.04mg/L respectively,the phosphorus concentration of output water dropped to about 0.02mg/L under the condition that the pH was 6~7,the G was 49.7s~(-1)and stirring time was 5 min.while the ratio of ash to water up to 1/1000,1/4000 and 1/8000 respectively,the concentrations of phosphorus of the three output water can not be detected,if the ratio of ash to water was too low,the phosphorus concentration of output water rise slightly When dealing with the water of very low phosphorus concentration,so we should avoid such a situation in practical application.After treating by adding modified fly ash with the ratio of ash to water at 1/4000,TP of both the two urban landscape water dropped to 0.02mg/L,and DP dropped to 0.0101mg/L;when the ratio of ash to water was enhanced to 1/2000,TP reduced to 0.01mg/L.The pH of effluent water all was neutral,and the COD also had a good removal effect,COD removal ratio were up to 88.81%and 66.37%respectively.Experimental results showed that the modified fly ash has a very good prospect in the eutrophication-control of the urban landscape water.
     The fly ash almost has no capacity of exchanging adsorption with ammonia nitrogen since lacking the structure of zeolite,After using H_2SO_4 and NaOH to modify the fly ash,the absorption capacity of the fly ash had great increase,The experiment was carried out under the condition that the concentration of NaOH was 3mol/L,the ratio of solid to liquid was 1:4 in the case of the modified 1h,which showed that the fly ash has a good performance of ammonia nitrogen removal;under the experimental condition that the pH was 6~8 and the G was 49.7 s~(-1)and stirring time was 15 min,the good efficiency of ammonia nitrogen was achieved.This study also showed that the adsorption reaction of ammonia nitrogen by modified fly ash could be described through Langmuir formula with R~2 of 0.9924,and on this condition the absorption capacity of ammonia nitrogen is 26.18mg/g.The experiments of modified fly ash filter beds showed that the filtration rate plays a trivial role in the removal rate of ammonia nitrogen without changing the pH and temperature of the raw water,and when the filtration rate below 8m/h,the removal rate of ammonia nitrogen is more than 97%. When the experiment to treating the simulate urban landscape water was carried out with filtration rate of 8m/h and the concentration of ammonia nitrogen changing between 5.25~0.32 mg/L,the removal rate of ammonia nitrogen by fly ash filter bed is high,and the highest removal rate was up to 97.7%,then the concentration of ammonia nitrogen could be reduced to 0.12 mg/L.
引文
[1]金相灿.中国湖泊富营养化控制技术,2000重庆,二十一世纪中国环境战略学术研讨会,2000,9
    [2]李祚泳,张辉军.我国若干湖泊水库的营养状态指数TSIc及其与各参数的关系[J],环境科学学报,1993,13(4),391-397
    [3]胡明星等.湖泊水质富营养化评价的多准则神经网络法[J],上海环境科学,1998,17(4),14-16
    [4]蔡煜东等.水质富营养化程度的人工神经网络决策模型[J],中国环境科学,1995,15(2),123-127
    [5]金腊华等.浅水湖泊群水质模型的近似解析解法[J].中国环境科学,1995,15(1),59-63
    [6]吴根福.杭州西湖底泥释磷的初步研究[J],中国环境科学,1998,18(2),107-110
    [7]虞左明等.大红德永摇蚊种群生态在西湖氮磷循环中作用的调查[J],环境污染与防治,1997,19(1),28-31
    [8]Edinger J.E.duttweeiler D.W and Geyer J.C.,the Response of Water Temperture to Meteorological Condition,Water Resources Research,Vol.4,No.5.1137-1145
    [9]郭少聪,任海.污染对华南植物园水生生态系统的影响[J].生态科学,2000,19(3):37-40.
    [10]张庆费,袁俊峰.公园水体的综合管理技术措施[J].上海建设科技,2001,(3):31-32.
    [11]况琪军,夏宜睁.太湖水库的浮游藻类与营养型评价[J].应用生态学报,1992,3(2):165-168.
    [12]杨清心.太湖水华成因及控制途径初探[J].湖泊科学,1996,8(1):67-74.
    [13]陈少莲,刘肖芳.鳝鲡在东湖生态系统的氮、磷循环中的作用[J].水生生物学报,1991,15(1):8-26.
    [14]祝心如,姚渭溪.巢湖西北部水域的有机污染和富营养化[J].海洋与湖沼.1993,24(2):191-196.
    [15]戴莽,高村典子.利用大型围隔研究沉水植物对水体富营养化的影响[J].水生生物学报.1999,23(2):98-101.
    [16]淮培民.健康水生态系统的退化及其修复-理论、技术及应用[J].湖泊科学,2001,13(3):201-211.
    [17]王俊,姜建样.吉林省湖、库水质评估及其污染防治[J].湖泊科学,1996,8(1):75-80.
    [18]于永才.公园水体污染防治研究[J].中国园林,1997,13(2):59-60.
    [19]Carvalho L;Bekliogh M;Moss B.Changes in a deep lake following sewage diversion-a challenge to the orthodoxy of external PHosPHorus control as a restoration strategy.Freshwater biology,1995,34(2):399-410
    [20]顾岗,刘鸿志.琵琶湖和太湖污染治理的比较和对太湖治理的建议[J].世界环境.2001,(3):32-34
    [21]Perrow M R;Meijer M;Dawidowiez P;etal.BiomaniPulation in shallow lake:State of the art.Hydrobiologia,1997,342/343:355-365
    [22]Naiman R J;Magnuson JJ;Mcknight D M;etal.Freshwater Eeosystems and Their Management:A National Initiative.Seienee,1995,270:584-585
    [23]孙刚,盛连喜.湖泊富营养化治理的生态工程[J].应用生态学报,2001,12(4):590-592
    [24]宋祥甫,邹国燕,吴伟明等.浮床水稻对富营养化水体中氮、磷的去除效果及规律研究[J].环境科学学报,1998,18(5):489-494
    [25]戴全裕,蒋兴昌,汪耀斌等.太湖人湖河道污染物控制生态工程模拟研究[J].应用生态学报, 1995,6(2):201-205
    [26]Gumbrieht T.Nutrient removal Processes in freshwater submersed maeropHyte systems,Eeologieal Engineering,1993,2:1-30
    [27]Sand-Jensen K;Jeppesen E;Nielsen;etal.Growth of maeropHytes and eeosystem eonsequenees in alowl and Danish stream.Freshwater Biology,1989,22:15-32
    [28]Blindow I;Andersson G;Hargeby A;etal.Long-term pattern of alternative stable states in two shallow eutrovhic lakes.Freshwater Biology,1993,30:159-167
    [29]Noe Gregory B.;Childers Daniel L.;Edwards Adrienne L.;etc.Short-termehanges in vhospHorus storage in an oligotropHie Everglades wetland ecosystem receiving experimental nutrient enriehment,Biogeoehemistry,2002,7:239-267
    [30]Qiu.S.;MeComb,A.J.:Bell,R.W.PHosPHorus-ieaehing from litterfall in wetland eatehlllents of the Swan Coastal Piain,southwestern Australia,Hydrobiologia,2002,3:95-105
    [31]祝万鹏,杨津湘,杨志华等,氨氮在饱水粉砂土和亚砂土层中吸附过程及其模拟[J].环境科学,1996,17(2):9-11
    [32]Lahaw O,Green M,Ammonium Removal Using Ion Exchange and Biological Regeneration[J].Water Research,1998,32(7):2019-2028
    [33]傅东,天然沸石及其在环保领域中的应用前景[J],中国非金属矿工业导刊,2002,4:31-32
    [34]林嗣荣.朱静华,一种改性沸石的合成,[P]1018947,1988.05.04
    [35]高繁华,张永民,高雄厚,沸石的改性技术[J],工业催化,1998年,3(2):20-29
    [36]王绪绪,陈旬.徐海兵等,沸石分子筛的表面改性技术进展[J],无机化学学报,2002,18(6):541-549
    [37]Bowr(?),R.S.,Haggerty G..M.,Hudles(?)on R.G..Sorption.of a nonpolar organic compounds,inorganic cations and inorganic oxyanions by surfactant-modified zeolites.Americal Chemical Society;Washington,DC.1995,54-64
    [38]李晔,肖文浚,彭长琪,沸石改性及其对氨氮废水处理效果研究[J],非金属矿,2003,26(2):54-55
    [39]田文华,文湘华,钱易.沸石滤料曝气生物滤池去除COD和氨氮[J].中国给水排水,2002,18(12):13-15.
    [40]袁俊生,郎宇琪,张林栋等.沸石法工业污水氨氮治理技术研究[J].环境污染治理技术与设备,2002,3(12):60-62.
    [41]赵丹,王曙光,栾兆坤,等.改性斜发沸石吸附水中氨氮的研究[J].环境化学,2003,22(1):59-63.
    [42]Jorgensen T C,Weatherley L R.Ammonia removal from wastewater by ion exchange in the presence of organic contaminants[J].Water Research,2003,37:1723-1728.
    [43]Lee H S,Park S J,Yoon T I.Wastewater treatment in a hybrid biological reactor using powdered minerals:effects of organic loading rates on COD removal and nitrification[J].Proeess Biochemistry,2002,38:81-88.
    [44]张晓丽,温俨,武果香.沸石去除废水中氨氮的实验研究[J].科技情报开发与经济,1999,(1):14-17.
    [45]Lahav O,GreenM.W ater Sci Teehnol[J],2000,42(1-2):179-185.
    [46]CharuckyiL,Cook sey P A.Denit rificat io in p roeess.A ust ralia,CLA SS:ICM:C02F001-42.WO 2000-AU 622 31 May 2000.
    [47]Kataoka,Katsush i.M ethod fo r removal of ammonium nit rogen from organic wastewater by biological nitrat ion and denit rification with zeolite regeneration.Japan,CLA SS:ICM:C02F003-34.Jpn.Kokai Tokkyo Koho JP 09314186 A 2 9 Dec 1997.
    [48]Kataoka Katsuyuk i.M ethod and apparatus for h ighly effect ive denit rificat ion of w astew ater using activated sludge process.Japan,CLA SS:ICM:C02F003-34.ICS:C02F003-34.Jpn.Kokai TokkyoKoho JP 09314183 A 29 Dec 1997.
    [49]举振明,高忠爱,祁梦兰,吴天宝,固体废弃物的处理与处置脚[M],高等教育出版社,2002,18-22。
    [50]王小英,韩宝平,粉煤灰治理污染物的机理及应用[J],中国资源综合利用,2002(3):19-22
    [51]P.Bankowski,L.Zou,R.Hodes,Reduction of menatl leaching in brown coal fly ash using geopolymer,Jounral of Hazardous Materials,B114(2004):59-67
    [52]朱天益,美国粉煤灰利用[J],粉煤灰综合利用,1994(3):51-58
    [53]阎存仙,粉煤灰处理含磷废水的研究[J],上海环境科学,2000,19(1):33-36
    [54]电力工业部,我国电厂灰渣处置和利用现状及2000年控制目标[J],粉煤灰综合利用,1995(1):62-65
    [55]孙俊民,韩德馨.粉煤灰的形成和特性及其应用前景[J].煤炭转化,1999(1):10-14
    [56]郑雨寿.煤岩成分对炭颗粒微结构及其烧烧特性的影响[J].煤炭学报,1990,15(2):80-84.
    [57]郑雨寿.显微组分的残炭类型及其燃烧方式[J]中国矿业大学学报,1992,21(3):41-45.
    [58]Gibbins.J.R,Williamson.J。The Origin of unburnt carbon in pulverized fuel ash.Canada:Proc Int Conf on Coal Sci,1993.35-38.
    [59]王运泉,张建平,郑燕君.粉煤灰的组分特征及其系统分类[J].环境科学研究,1998(6):1-4.
    [60]李剑超,褚君达,右华丽,等。粉煤灰在废水处理中的最新应用研究[J]。电力环境保护,2001,17(4):40-42
    [61]李亚峰,孙风海,牛晚扬,等。粉煤灰处理废水的机理及应用[J]。矿业安全与环保,2001,18(2):30-32
    [62]黄彩海,苏广路,杨丽娟,粉煤灰基混凝剂的制备及应用研究[J],环境科学,1994,16(2):47-49
    [63]夏畅斌,何湘柱,李德良,酸改性粉煤灰处理焦化废水的工艺研究[J],环境工程2000,18(6):28-29
    [64]刘汉利,改性粉煤灰处理含油废水的应用研究[J],电力环境保护,2001,17(1):16-17
    [65]A.Katz,microscopic sutdy of alkali-activated fly ash,Cement and Concert Reseacrh,1998,28(2):197-208
    [66]C.D.Wbolad,etal.Evaluation of the use modified coal ash as a potential sorbent for organic waste sterams.Applied Geoehemistry 2002,(17):1159-1164
    [67]邵颖,刘维屏,王青清,活化粉煤灰对弱酸性艳绿GS吸附性能的研究[J],工业水处理,1997,17(1):21-23
    [68]王敏欣,何绪文,谷庆宝,无机改性粉煤灰对模拟染料废水吸附脱色的作用[J],黑龙江矿业学院学报,2000,10(31):13-16
    [69]黄继国,张永详,曹玉清等,含氟废水的粉煤灰处理实验研究[J],水文地质工程地质,2001,(4):43-44
    [70]黄彩海,杨丽娟.粉煤灰中氟污染地下水的试验研究[J].环境科学.1989,10(3):26-29
    [71]张建平,张振声,尹连庆,董树军.粉煤灰处理废水的机理及应用[J].粉煤灰综合利用,1996,4:33-35
    [72]何水清.粉煤灰处理废水的机理与应用[J].中国资源综合利用.2001,6:13-15
    [73]李亚峰,孙凤海,牛晚扬,任秀坤.粉煤灰处理废水的机理及应用[J].矿业安全与环保,2001,4:30-33
    [74]王小英,韩宝平.粉煤灰治理污染物的机理及应用[J].中国资源综合利用.2002,3:19-23
    [75]李亚峰,杨辉,赵红.粉煤灰处理废水的理论与实践[J].粉煤灰处理废水的理论与实践.1999,3:1-3
    [76]董树军,何风鸣,尹连庆,姚万业.粉煤灰处理生活污水[J].华北电力大学学报.1997,4:83-87
    [77]刘学伦,王孚懋,王霞.粉煤灰在环境工程中的应用[J].山东环境.2000,5:58-59
    [78]夏畅斌,何湘柱,李德良.酸改性粉煤灰处理焦化废水的工艺研究[J].环境工程.2000,12:28-31
    [79]夏畅斌,何湘柱,李德良.酸浸粉煤灰对焦化厂含酚废水处理的研究[J].工业水处理.2000,4:20-22
    [80]陈应福,黄泓.粉煤灰处理造纸废水及零排放[J].造纸科学与技术.2001,6:60-61
    [81]刘吉福,刘树军.造纸废水的厂外双段综合治理[J].北方造纸.1996,4:67-68
    [82]于衍真,尚书贤,伊爱焦.用粉煤灰处理造纸废水的研究[J].粉煤灰综合利用.2000,1:24-25
    [83]佟巍.用粉煤灰处理含铬废水的研究[J].粉煤灰综合利用.2000,8:34-35
    [84]王桂山,仲兆庆.铁屑-粉煤灰处理含铬电镀废水的探讨[J].环境与开发.2001,1:24-25
    [85]王淑英,张警声,巩振飞.褐煤-粉煤灰联合处理含铬废水[J].东北电力学院学报.2001,4:50-52
    [86]张警声,王淑英,宋强.利用粉煤灰处理含氟工业废水的试验[J].吉林电力技术.2000,6:45-47
    [87]李亚峰,徐文涛.混凝吸附法处理高浓度含氟磷废水的研究[J].当代化工.2001,12:193-195
    [88]贾毅竹.粉煤灰处理印染废水[J].内蒙古环境保护.2000,1:32-34
    [89]阎存仙,周红,李世雄.粉煤灰对染料废水的脱色研究[J].环境污染与防治.2000,5:3-6
    [90]桑敏慧,李成云.印染废水处理中的助凝助沉试验[J].水处理技术.1999,4:239-242
    [91]杨静,刘心悦,薛彦辉.用粉煤灰处理印染废水的研究[J].山东科技大学学报.2000,4:25-28
    [92]相会强、杨宏等.改性粉煤灰去除磷酸盐的试验研究及机理分析[J]环境科学与技术2005.28(5)18-20
    [93]刘丽娜,刘志明等.粉煤灰吸附去除城市景观水体中磷的初步研究[J]环境科学与技术,2006,29(6)40-42
    [94]赵统刚,吴德意,陈建刚等.粉煤灰合成沸石同步脱氨除磷特性的研究[J].环境科学.2006,27(4):696-699
    [95]刘丽娜,刘志明,吴德意等.粉煤灰吸附去除城市景观水体中磷的初步研究[J].环境科学与技术,2006,29(2):40-42.
    [96]国家环保局.水和废水监测分析方法[M].北京:中国环境科学出版社,1989.
    [97]金相灿.湖泊富营养化控制和管理技术[M].北京:化学工业出版社,2001.
    [98]相会强,杨宏,巩有奎等.改性粉煤灰去除磷酸盐的试验研究及机理分析[J].环境科学与技术,2005,28(5):18-20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700