用户名: 密码: 验证码:
改性颗粒天然菱铁矿吸附剂制备及其除氟性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,氟是人体健康不可缺少的元素,但过量的摄入氟能导致氟中毒。在众多除氟技术中,吸附法一直被广泛关注。虽然有些吸附剂具有良好的除氟性能,但它们主要作为粉末状存在,大大限制了在实践中的应用。为了克服这些缺点,本论文研究一种以天然菱铁矿为骨架的新型颗粒状除氟吸附剂。
     本文研制了硫酸铝和铝溶胶联合改性天然菱铁矿(AMNS)。通过批实验,探讨了初始氟浓度、接触时间、共存阴离子和温度等因素对AMNS除氟性能的影响。AMNS的除氟容量是未改性天然菱铁矿的7.5倍,吸附过程符合伪二级速率方程。AMNS吸附氟是自发吸热反应。HCO3-或PO43-对氟吸附有明显的负面作用,而Cl-、SO42-和NO3-对氟吸附无显著抑制作用。
     通过优化天然菱铁矿、硫酸铝和铝溶胶的混合比、灼烧温度和时间,进一步优化吸附剂的除氟性能,得到最优除氟吸附剂(OMNS)。溶液pH值在3.5-10.0之间对氟去除率没有明显影响。动力学结果表明,氟离子吸附遵循二级动力学方程。外扩散和内扩散同时促进了氟的吸附。柱实验表明,在进水氟浓度和流量较高的情况下,吸附柱的除氟容量较低。通过X射线衍射研究表明,氟离子吸附主要是由于改性材料中赤铁矿和γ-氧化铝的形成。
     此外,研制了硫酸铝、膨润土和可溶性淀粉联合改性天然菱铁矿(ABS-NS),并表征了其除氟性能。溶液pH值在5-7之间时,保持比较高的除氟容量。吸附过程符合二级动力学模型,内扩散不是控制吸附速率的决定性因素。热力学数据表明,氟的吸附是自发吸热反应。阴离子在溶液中与氟离子共存时,对ABS-NS吸附氟的影响程度依次为PO43-> HCO3-> SO42-> Cl-> NO3-;As(V)、Ca2+和Mg2+的存在,对氟离子的吸附起促进作用。
     选取昌平小汤山苗圃高氟地下水为原水,利用灼烧-浸泡方法改性天然菱铁矿(CS-NS)进行中试除氟试验。结果表明,调节进水pH能显著提升CS-NS除氟容量。单柱运行,调节进水pH,合格出水量是未调节进水pH时的6.5倍;双柱串联运行,调节进水pH,处理的合格水量是两柱串联未调节进水pH时的6.7倍。吸附柱再生三次后,吸附柱仍有较高的除氟性能。
It is well known that fluoride is an indispensable element for human health, butexcessive fluoride intake can result in endemic fluorosis. Adsorption is believed to be agood technology for fluoride removal from water solution, which has been receivedmuch attention. Although many adsorbents had good fluoride adsorption capacities,most of them were commonly fine powders, leading to the limitation in practicalapplication. To overcome these limitations, this study has developed a novel granularadsorbent for defluoridation using natural siderite.
     Aluminum modified granular natural siderite (AMNS) was fabricated for fluorideremoval from drinking water. Effects of initial fluoride concentration, contact time,coexisting anions, and reaction temperature on F-adsorption on AMNS wereinvestigated. Adsorption capacity of AMNS was7.5times higher than pristine naturalsiderite. Adsorption closely followed the pseudo-second-order rate equation. Fluorideadsorption on AMNS was reasonably spontaneous and endothermic. Moreover, it wasobserved that the coexistence of HCO3-or PO43-negatively affected F-removal, whileCl-, SO42-, and NO3-had no significant effect on fluoride adsorption.
     The modified natural siderite was fabricated for F-removal by optimizing themixing ratio of natural siderite, Al2(SO4)3, and AlOOH, calcination temperatures andtime durations, and the optimaized adsorbent was obtained.(OMNS). Solution pH hadno significant effect on F-removal between3.5and10.0. Kinetic results showed thatadsorption followed the pseudo-second-order kinetic equation. Both the externaladsorption and the intra-particle diffusion contributed to adsorption processes.Thermodynamic data showed that fluoride adsorption was reasonably spontaneous andendothermic. Moreover, fluoride adsorption was obviously constrained by thecoexistence of HCO3-and PO43-. Column studies revealed that breakthrough time andadsorption capacity were lower at the higher F-concentration and/or higher flow rate.The XRD analysis indicated that the uptake of fluoride attributed to the coexistence ofhematite and γ-Al2O3in the modified material.
     In addition, aluminum, bentonite and soluble starch were used to modify naturalsiderite (ABS-NS) for fluoride removal from drinking water. Solution pH had nosignificant effect on F-removal between5and7. Adsorption closely followed thepseudo-second-order rate equation, which indicated that both external mass transferand intra-particle diffusion controlled F-adsorption. Thermodynamic data showed thatF-adsorption was reasonably spontaneous and endothermic. Effects of co-existinganions on fluoride adsorption followed: PO43-> HCO3-> SO42-> Cl-> NO3-. Thepresence of As(V), Ca2+and Mg2+promoted fluoride adsorption on ABS-NS.
     Pilot test was conducted at Changping Xiaotangshan nursery to remove F-fromhigh F-groundwater, using calcination-soaked modified natural siderite (CS-NS).Influence of solution pH was significant for fluoride removal. In single column withadjusted pH around6.5in influents, fluoride adsorption capacity is6.5times higherthan that pristine groundwater as influents (pH=7.79). In double-column series withadjusted pH around6.5in influents, fluoride adsorption capacity is6.7times higherthan that pristine groundwater as influents (pH=7.79). Adsorbent still showed highadsorption capacity after three regeneration cycles.
引文
Arulanantham A.J., Ramakrishna T.V., Balasubramanium N. Studies on fluoride removal bycoconut shell carbon. Indian Journal of Environmental Health,1992,(12):531~536
    Ayoob S., Gupta A.K. Performance evaluation of alumina cement granules in removing fluoridefrom natural and synthetic waters. Chemical Engineering Journal,2006,36:433~487
    Camacho L.M., Torres A., Saha S., et al. Adsorption equilibrium and kinetics of fluoride onsol–gel-derived activated alumina adsorbents. Journal of Colloid and Interface Science,2010,349:307~313
    Chen L., Wu H.X., Wang T.J., et al. Granulation of Fe–Al–Ce nano-adsorbentfor fluoride removal from drinking water by spray coating on sand in a fluidized bed. PowderTechnology,2009,193(1):59~64
    Chen N., Zhang Z.Y., Feng C.P., et al. An excellent fluoride sorption behavior of ceramicadsorbent. Journal of Hazardous Materials,2010,183:460~465
    Chernet, T., Trafi, Y., Valles, V. Mechanism of degradation of the quality of natural water in thelakes region of the Ethiopian rift valley. Water Research,2002,35:2819~2832
    Czarnowski W., Wrzesniowska K., Krechniak J. Fluoride in drinking water and human urine inNorthern and Central Poland. Science of the Total Environment,1996,191:177~184
    Deng S.B., Liu H., Zhou W., et al. Mn–Ce oxide as a high-capacity adsorbent for fluoride removalfrom water. Journal of Hazardous Materials,2011,186(2–3):1360~1366
    Dolar D., Ko uti K., Vu i B. RO/NF treatment of wastewater from fertilizer factory—removalof fluoride and phosphate. Desalination,2011,265:237~241
    Drouiche N., Aoudj S., Hecini M., et al. Study on the treatment of pHotovoltaic wastewater usingelectrocoagulation: Fluoride removal with aluminium electrodes—Characteristics of products.Journal of Hazardous Materials,2009,169:65~69
    Erdem M., Gür F., Tümen F. Cr(VI) reduction in aqueous solutions by siderite. Journal ofHazardous Materials,2004,113:217~222
    Erdem M., zverdi A. Lead adsorption from aqueous solution onto siderite. Separation andPurification Technology,2005,43(3):259~264
    Freundlich H.M.F. Over the adsorption in solution. Journal of Physical Chemistry,1905,57:385~470
    Ganvir V., Kalyan D. Removal of fluoride from drinking water using aluminum hydroxide coatedrice husk ash. Journal of Hazardous Materials,2011,185(2–3):1287~1294
    Ghorai S., Pant K.K. Equilibrium, kinetics and breakthrough studies for adsorption of fluoride onactivated alumina. Separation and Purification Technology,2005,42(3):265~271,
    Ghorai S., Pant K.K. Investigations on the column performance of fluoride adsorption by activatedalumina in a fixed-bed. Chemical Engineering Journal,2004,98:165~173
    Guo H.M., Stüben D. Adsorption of arsenic(III) and arsenic(V) from groundwater using naturalsiderite as the adsorbent. Journal of Colloid and Interface Science,2007,315:47~53.
    Guo H.M., Zhang Y., Xing L.N., et al. Spatial variation in arsenic and fluoride concentrations ofshallow groundwater from the town of Shahai in the Hetao basin, Inner Mongoli. AppliedGeochemistry,2012,27:2187~2196
    Gupta V.K., Ali I., Saini V.K. Defluoridation of wastewaters using waste carbon slurry. WaterResearch,2007,41:3307~3316
    Hall K.R., Eagleton L.C., Acrivos A., et al. Pore and solid diffusion kinetics in fixed-bedadsorption under constant pattern conditions. Industrial and Engineering ChemistryFundamentals,1966,5:212~219
    Harrison P.T.C. Fluoride in water: A UK perspective. Journal of Fluorine Chemistry,2005,126:1448~1456
    Ho Y.S. Review of second-order models for adsorption systems. Journal of Hazardous Materials,2006,136:681~689
    Ho Y.S., McKay G. The sorption of lead (II) ions on peat. Water Research,1999,33:578~584
    Kabay N., Arar., Samatya S., et al. Separation of fluoride from aqueous solution byelectrodialysis: Effect of process parameters and other ionic species. Journal of HazardousMaterials,2008,153:107~113
    Kamble S.P., Deshpande G., Barve P.P., et al. Adsorption of fluoride from aqueous solution byalumina of alkoxide nature: Batch and continuous operation. Desalination,2010,264:15~23
    Ko D.C.K., Porter J.F., McKay G. Film-pore diffusion model for the fixed-bed sorption of copperand cadmium ions onto bone char. Water Research,2001,35:3876~3886
    Ku Y., Chiou H.M. The adsorption of fluoride ion from aqueous solution by activated alumina.Water Air and Soil Pollution,2002,133:349~361
    Langmuir I. The constitution and fundamental properties of solids and liquids. Journal ofthe American Chemical Society,1916,38:2221~2295
    Liang P., Zhang Y., Wang D.F., et al. Preparation of mixed rare earths modified chitosan forfluoride adsorption. Journal of Rare Earths,2013,31(8):817~822
    Liu H., Deng S.B., Li Z.J., et al. Preparation of Al–Ce hybrid adsorbent and its application fordefluoridation of drinking water. Journal of Hazardous Materials,2010,179:424~430
    Liu Q., Guo H.M., Shan,Y. Adsorption of fluoride on synthetic siderite from aqueous solution.Journal of Fluorine Chemisty,2010,131:635~641
    Ma W., Ya F.Q., Han M., et al. Characteristics of equilibrium, kinetics studies for adsorption offluoride on magnetic chitosan particle. Journal of Hazardous Materials,2007,143(1-2):296~302
    Mahramanlioglu M., Kizilcikli I., Bicer I.O. Adsorption of fluoride from aqueous solution by acidtreated spent bleaching earth. Journal of Fluorine Chemistry,2002,115:41~47
    Maliyekkal S. M., Shukla S., PHilip L., et al. Enhanced fluoride removal from drinking water bymagnesia-amended activated alumina granules. Chemical Engineering Journal,2008,140(1–3):183~192
    McKay G., Ho Y.S. Pseudo-second-order model for sorption processes. Process Biochemistry,1999,34:451~465
    Meenakshi S., Viswanathan N. Identification of selective ion-exchange resin for fluoride sorption.Journal of Colloid and Interface Science,2007,308:438~450
    Meenakshi, Maheshwari R.C. Fluoride in drinking water and its removal. Journal of HazardousMaterials,2006, B137:456~463
    Mohan S.V., Ramanaiah S.V., Rajkumar B., et al. Removal of fluoride from aqueous pHase bybiosorption onto algal biosorbent Spirogyra sp.-IO2: Sorption mechanism elucidation.Journal of Hazardous Materials,2007,141(3):465~474
    Natrayasamy V., Meenakshi S. Enriched fluoride sorption using alumina/chitosan composite.Journal of Hazardous Materials,2010,178:226~232
    Ndiaye P.I.,Monlin P.,Dominguez L.,et a1.Removal of fluoride from electronic industrialeffluent by RO membrane separation.Desalination,2005,173(1):25~32
    Onyango M. S., Kojima Y., Aoyi O., et al. Adsorption equilibrium modeling and solutionchemistry dependence of fluoride removal from water by trivalent-cation-exchanged zeoliteF-9. Journal of Colloid and Interface Science,2004,279(2):341~350
    Onyango M. S.,Leswifi T. L.,Ochieng A.,et a1.Breakthrough analysis for water defluoridationusing surface—tailored zeolite in a fixed bed column.Industrial&Engineering ChemistryResearch,2009,48(2):931~937zer A., zer D., zer A. The adsorption of copper (II) ions on to dehydrated wheat bran (DWB):determination of the equilibrium and thermodynamic parameters. Process Biochemistry,2004,39:2183~2191
    Pan B.C., Xu J.S., Wu B., et al. Enhanced Removal of Fluoride by Polystyrene Anion ExchangerSupported Hydrous Zirconium Oxide Nanoparticles. Environmental Science&Technology,2013,47:9347~9354
    Raichur A.M., Jyoti B.M. Adsorption of fluoride onto mixed rare earth oxides. Separation andPurification Technology,2001,24(1-2):121~127
    Rao N. Fluoride and environment-a review. In: Springer Netherlands. Proceedings of the ThirdInternational Conference on Environment and Health. Chennai, India,2003.386~399
    Rao, S. N., Devadas D. J. Fluoride incidence in groundwater in an area of Peninsular India.Environmental Geology,2003,45:243~251
    Reimann C., Bjorvatn K., Frengsta B., et al. Drinking water quality in the Ethiopian section of theEast African Rift Valley I-data and health aspects. Science of the Total Environment,2003,311:65~80
    Richards L. A., Vuachère M., Sch fer A. I. Impact of pH on the removal of fluoride, nitrate andboron by nanofiltration/reverse osmosis. Desalination,2010,261:331~337
    Sequeira A.T., Miranda V.M., Ríos M.S., et al. Aluminum and lanthanum effects in naturalmaterials on the adsorption of fluoride ions. Journal of Fluorine Chemistry,2013,148:6~13
    Shan Y. and Guo H.M. Fluoride adsorption on modified natural siderite: Optimization andperformance. Chemical Engineering Journal,2013,223:183~191
    Solangi I.B., Memon S., Bhanger M.I. Removal of fluoride from aqueous environment bymodified Amberlite resin, Journal of Hazardous Materials,2009,171(1–3):815~819
    Solangi I.B., Memon S., Bhanger M.I. An excellent fluoride sorption behavior of modifiedamberlite resin. Journal of Hazardous Materials,2010,176(1–3):186~192
    Sun X.B., Xi C.J., Hou Z.C. Study on modification and fluoride-adsorption capacity of zeolite.Challenges in Environmental Science and Computer Engineering,2010,1:354~357
    Sun Y.B., Fang Q.H., Dong J.P., et al. Removal of fluoride from drinking water by natural stilbitezeolite modified with Fe(III). Desalination,2011,277(1–3):121~127
    Sun Y.B., Fang Q.H., Dong J.P., et al. Removal of fluoride from drinking water by natural stilbitezeolite modified with Fe(III). Desalination,2011,277:121~127
    Sundaram C.S., Viswanathan N., Meenakshi S. Fluoride sorption by nano-hydroxyapatite/chitincomposite. Journal of Hazardous Materials,2009,172(1):147~151
    Teng S.X., Wang S.G., Gong W.X., et al. Removal of fluoride by hydrous manganeseoxide-coated alumina: Performance and mechanism. Journal of Hazardous Materials,2009,168:1004~1011
    Thakre D., Jagtap S., Bansiwal A., et al. Synthesis of La-incorporated chitosan beadsfor fluoride removal from water. Journal of Fluorine Chemistry,2010,131(3):373~377
    Tor A., Cengeloglu Y., Aydin M.E., et al. Removal of pHenol from aqueous pHase by usingneutralized red mud. Journal of Colloid and Interface Science,2006,300:498~503
    Tripathy S.S, Bersillon J.L., Vopal K. Removal of fluoride from drinking water by adsorption ontoalum-impregnated activated alumina. Separation and Purification Technology,2006,50(3):310~317
    Trond P. F.Aluminum as a risk factor in Alzheimer’s disease with empHasis on drinkingwater. Brain Research Bulletin,2001,55(2): l87~l96
    Un U. T., Savas Koparal A., Ogutveren U. B. Fluoride removal from water and wastewater with abach cylindrical electrode using electrocoagulation. Chemical Engineering Journal,2013,223(5):110~115
    Viswanathan N., Sundaram C.S., Meenakshi S. Development of multifunctional chitosan beadsfor fluoride removal. Journal of Hazardous Materials,2009,167(1/2/3):325~331
    Viswanathan N., Sundaram C.S., Meenakshi S. Sorption behaviour of fluoride on carboxylatedcross-linked chitosan bead. Colloids and Surfaces B-Biointerfaces.2009,68(1):48~54
    Wang W.Y., Li, R.B., Tan, J.A.,et al. Adsorption and leaching of fluoride in soils of China.Fluoride,2002,35:122~129
    Wang X.H., Song R.H., Yang H.C., et a1. Fluoride adsorption on carboxylated aerobic granulescontaining Ce(III). Bioresource Technology,2013,127:106~111
    Weber W.J., Morris J.C. Kinetics of adsorption on carbon from solution, Journal of the SanitaryEngineering Division, American Society of Civil Engineers,1963,89:31~60
    WHO. Guidelines for Drinking Water Quality. World Health Organization, Geneva,1993
    Wu H.X., Wang T.J., Chen L., et al. Granulation of Fe–Al–Ce hydroxide nano-adsorbent byimmobilization in porous polyvinyl alcohol for fluoride removal in drinking water. PowderTechnology,2011,209(1–3):92~97
    Wu X.M., Zhang Y., Dou X.M., et al. Fluoride removal performance of a novel Fe–Al–Ce trimetaloxide adsorbent. ChemospHere,2007,69:1758~1764
    Wu X.M., Zhang Y., Dou X.M., et al. Fluoride adsorption on an Fe–Al–Ce trimetal hydrous oxide:Characterization of adsorption sites and adsorbed fluorine complex species. ChemicalEngineering Journal,2013,223:364~370
    Zeni M., Riveros R., Melo K., et al. Study on fluoride reduction in artesian well—water fromelectrodialysis process. Desalination,2005,185:241~244
    Zhang Z.J., Tan Y., Zhong M.F. Defluorination of wastewater by calcium chloride modifiednatural zeolite. Desalination,2011,276(1–3):246~252
    Zhao B., Zhang Y., Dou X.M., et al. Granulation of Fe–Al–Ce trimetal hydroxide as a fluorideadsorbent using the extrusion method. Chemical Engineering Journal,2012,185-186:211~218
    白卯娟,娄壮义.含氟水治理方法分析.青岛建筑工程学院学报,2002,23(1):83~86
    蔡宏道,鲁生业.环境医学.北京:中国环境科学出版社,1990
    陈秉衡,屈卫东.世界卫生组织对氟化物的卫生评价.中国地方病学杂志,2000,19(6):477~478
    陈绪钰.聚合硫酸铁去除水中氟的试验研究.中国农村水利水电,2009,11:95~97
    戴向前,刘昌明,李丽娟.我国农村饮水安全问题探讨与对策.地理学报,2007,63(9):907~916
    邓昌亮,徐海宁,王鲁敏.龙口褐煤对氟离子吸附的研究.1999,11(2):199~201
    董岁明,董西芳. D001改性树脂除氟过程的热力学和动力学研究.延安大学学报(自然科学版),2009,28(4):58~61
    胡勇有,陈兰英.电凝聚法去除地热水中氟的研究.环境污染与防治,1997,9(4):14~16
    华根福,刘焕芳,吴心蓉,等.活性氧化铝除氟性能的试验研究.地下水,2009,31(2):113~116
    黄丽玫,陈红红,毋福海,等.沸石的载锆改性及对含氟水的除氟效果研究.环境与健康杂志,2011,28(5):429~432
    金浩,林冠烽,唐丽荣,等.饮用水除氟技术研究进展.广东化工,2011,38(3):18~19
    雷德林,付学功,耿红凤,等.沧州市高氟水分布规律及环境影响分析.水资源保护,2007,23(2):43~46
    李亭亭,李亚峰.饮用水除氟技术的现状及进展.辽宁化工,2009,38(7):472~474
    李雪玲,刘俊峰,李培元.石灰沉淀法除氟的应用.水处理技术,2000,26(6):359~361
    李永富,孟范平,姚瑞华.饮用水除氟技术开发应用现状.水处理技术,2010,36(7):10~13
    林年丰.医学环境地球化学.吉林:科学技术出版社,1991
    凌铃,黄肖容,隋贤栋.改性天然沸石的除氟性能研究.生态环境学报,2009,18(5):1727~1731
    菱铁矿矿床学术会议论文集编辑组.菱铁矿矿床学术会议论文集.北京:科学出版社,1983
    罗立群.菱铁矿选矿开发研究与发展前景.金属矿山,2006,355:68~72
    彭铁辉,杨培兴.聚合硫酸铁除氟的研究.桂林工学院学报,1998,18(3):293~295
    任伯帜,邓仁建.农村饮用水安全及其对策措施.中国安全科学学报,2008,18(5):11~17
    施锦,王萍,严子春.饮用水除氟技术的现状及进展.山西建筑,2007,33(35):17~19
    史婷婷,杨秀丽,王宁涛.聚合硫酸铁和钙盐除氟试验研究.安全与环境工程,2009(16)2:58~61
    苏庆珍,王丽萍.饮用水除氟技术及其机理.电力环境保护,2008,24(3):39~41
    佟元清,李金英.地下水降氟方法对比研究.中国水利,2007,10:116~118
    王东田,尹方平,杨兰.改性活性氧化铝的除氟效能及再生方法研究.工业水处理,2006,30(6):55~58
    王鲁敏,殷军港,邓昌亮,等.褐煤型吸附剂对氟离子的吸附.烟台大学学报(自然科学与工程版),2003,16(4):293~297
    王晓昌,郭小娟,川原一之,等.地下水氟暴露和地方性氟中毒的相关性研究.中国地方病学杂志,2001,20(6):434~437
    王玉坤,王翠华,顾宝群,等.电渗析与反渗透技术在沧州农村分质供水中的除盐降氟效果分析.南水北调与水利科技,2010,8(4):48~52
    王振宇,王金生,滕彦国,等.高氟地下水混凝沉淀降氟试验研究.水文地质工程地质,2004(5):42~45
    魏红.壳聚糖改性去除饮用水中氟离子的研究.西北农林科技大学学报(自然科学版),2010,38(11):209~213
    薛英文,杨开,梅健.混凝沉淀法除氟影响因素试验研究.武汉大学学报(工学版),2010,43(4):478~493
    闫秀芝. CaCl2+磷酸盐法处理含氟废水的探讨.环境保护科学,1998,24(2):12~14
    严刚.镁型活化沸石除氟性能研究.青海大学学报(自然科学版),2005,23(3):9~11
    姚培慧.中国铁矿志.北京:冶金工业出版社,1993
    于桂生,暴大鹏,康敏.新型氟离子吸附剂活性二氧化钛除氟的研究.天津师范大学学报(自然科学版),2001,21(4):41~43
    于桂生.氟离子吸附剂活性氧化锆的除氟研究.天津化工,2003,17(4):9~51
    余文娟,岳秀萍.钙盐沉淀法处理氟微量超标饮用水.科学之友,2002,3:135~136
    张金辉,李思,李萍,等.国内外含氟废水吸附处理方法研究进展.水处理技术,2013,39(5):7~10
    张锦波.包头市及近郊潜水氟成因类型的初步探讨.中国地质学会首届环境水文学术讨论会论文选编.北京:地质出版社,1987
    张迎春,杨秀红,施倪承,等.菱铁矿的综合利用研究.金属矿山,2001(295):48~53
    赵丽军,孙玉富,于光前,等.评价地方性氟中毒防控效果的唯一标准——地方性氟中毒病区控制标准(GB17017-2010)解读.中国疾病预防控制中心地方病控制中心,中国卫生标准管理,2011,02:37~40
    赵雅萍,祁旭,徐斌.载La(Ⅲ)和载Fe(Ⅲ)氨基膦酸酸型鳌合树脂对氟吸附性能的比较.上海环境科学,2004,23(3):96~99
    中华人民共和国国家标准委和卫生部. GB5749~2006.生活饮用水卫生标准.北京:中国标准出版社,2006-12-29
    中华人民共和国环境保护局. GB7478-1987.水质—氟化物的测定离子选择电极法.北京:中国标准出版社,1987-08-01
    中华人民共和国水利部.全国农村饮水安全现状调查评估报告.2005
    中华人民共和国卫生部.中国卫生统计提要.北京:中国卫生出版社
    朱其顺,许光泉.中国地下水氟污染的现状及研究进展.环境科学与管理,2009,34:42~51

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700