用户名: 密码: 验证码:
锆改性凹凸棒石及锆/铝/铈体系复合除氟材料的制备及其除氟性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氟在阻止人体骨骼及一些器官疾病方面有着重要的作用。然而过量摄入氟会导致牙齿和骨骼疾病。世界卫生组织的标准规定,饮用水中氟离子浓度应不超过1.5mg/L,中国安全饮用水中氟离子浓度规定要小于1.0mg/L。在众多除氟方法中,吸附法因简单、方便而成为应用最广泛的方法之一。然而,现有的吸附剂大多数存在吸附量低、吸附缓慢以及最优pH值范围较窄等问题,虽然价格低廉,但依旧限制了它们的应用。因此,研究开发具有较高吸附容量、较快吸附速率以及较宽最优pH值范围的吸附剂成为一个亟待解决的问题。为解决上述这些技术问题,本文使用简单易行的方法制备了锆改性凹凸棒石(Zr-A)和锆/铝/铈体系(Zr-A1-Ce)两种复合除氟材料。通过大量实验,研究了其制备工艺条件,结合其结构及性能的表征,获得了较常规吸附剂具有更好吸附性能的除氟材料。
     使用XRD、FT-IR、SEM以及EDAX对锆改性凹凸棒石复合材料进行分析。结果表明,改性过程中,凹凸棒石的结构被破坏到一定的程度,纳米氧化锆粒子成功进入到凹凸棒石的层间或者表面。Zr-A吸附剂的除氟性能大大优于凹凸棒石原土的除氟性能,这主要是由Zr-A吸附剂表面电性的改变以及生成大量羟基离子造成的。溶液pH值控制了氟离子在固-液界面的吸附,因此对氟离子的吸附具有重要意义。氟离子通过离子交换吸附到吸附剂表面。
     Zr-A吸附剂对氟离子的吸附平衡数据较好地符合Langmuir吸附模型。溶液pH值为4.13,50℃下,按此模型计算出的最大吸附量为24.55mg/g。吸附过程符合准二级动力学模型。磷酸根离子、硫酸根离子以及碳酸氢根离子对吸附氟离子效果具有一定的影响,但是氯离子和硝酸根离子对吸附效果没有影响。该材料再生利用六次后,依然具有较高的吸附量。吸附及重复利用实验表明,Zr-A吸附剂可以成为一种有潜力的饮用水除氟剂。
     从实际应用角度出发,对Zr-A吸附剂进行了造粒和固定床吸附实验。Zr-A颗粒吸附剂的最佳制各条件为,粘结剂浓度为10wt.%,热处理温度为70℃C。实验结果表明,固定床进水流量越小,穿透吸附量越大;初始氟离子浓度越大,穿透吸附量越大。Zr-A颗粒吸附剂经过五次再生和重复利用后,仍具有较好的吸附效果。
     XRD和ζ电位分析结果表明,Zr-Al-Ce复合材料不是Zr02、A1203和Ce02的简单复合。FT-IR分析表明吸附剂表面的羟基离子参与到了反应中;XPS分析证明,参与反应的羟基离子来自于吸附剂表面与金属相结合的-OH而并非是归属于油酸的C-OH。
     Zr-Al-Ce吸附剂对氟离子的吸附平衡数据符合Langmuir吸附模型。溶液pH值为6.80±0.20,30℃C下,按照Langmuir吸附模型计算出的最大吸附量为250.0mg/g,说明该吸附剂具有很高的吸附容量。
     热力学研究表明,Zr-Al-Ce吸附剂对氟离子吸附过程为自发、吸热过程。吸附过程符合准二级动力学模型。共存阴离子对Zr-Al-Ce吸附剂除氟效果的影响按以下顺序递减,P043->HC03->S042->N03->C1-。Zr-Al-Ce吸附剂再生利用三次后,依然具有较高的吸附量。吸附和重复利用实验表明,Zr-Al-Ce吸附剂可以成为一种较有潜力的饮用水除氟剂。
     造粒实验表明,Zr-Al-Ce颗粒吸附剂的最佳制备条件为,Zr-Al-Ce和凹凸棒石的质量比为1:2,粘结剂浓度为15wt.%,热处理温度为80℃。固定床吸附实验证明,固定床进水流量越小,穿透吸附量越大;初始氟离子浓度越大,穿透吸附量越大。Zr-Al-Ce颗粒吸附剂经过再生和重复利用后,穿透吸附量只下降了8%,说明所制备的Zr-Al-Ce颗粒吸附剂具有较强的吸附性能,可以成为一种较有潜力的饮用水除氟剂。
Excess fluoride in bodies of water can lead to dental, skeletal, and nonskeletal forms of endemic public health problem. According to the WHO standards, the permissible limit of fluoride ions in drinking water is1.5mg/L. Chinese drinking water standard for it has been amended to lowering fluoride content in the in drinking water to less than1.0mg/L. Among some treatment technologies, adsorption because of its simplicity and conveniency, is still one of the most extensively used methods. Unfortunately, low adsorption capacities, slow adsorption processes and narrow optimum pH ranges of the most materials, though cheap, limit their practical applications. Therefore, an adsorbent with high fluoride adsorption capacity, fast adsorption processes and wide some optimum pH ranges is desired. In order to solve the above-mentioned technique problems, in the present paper, zirconium modified attapulgite (Zr-A) and Zr/Al/Ce system (Zr-Al-Ce) adsorbents were prepared by simple methods. The optimization preparation processes were carried out and the results showed that the Zr-A and Zr-Al-Ce adsorbents showed higher adsorption capacities in comparision with other adsorbents.
     The Zr-A composite adsorbent was characterized by XRD, FT-IR, SEM and ED AX analyses showed that the structure of attapulgite was destroyed to some extent during the modification process and the ZrO2nanoparticles were formed in the interlayers of attapulgite or on the surface of attapulgite. The fluoride adsorption capacity of the Zr-A adsorbent was higher in comparison with attapulgite, which was due to the changes of the surface charge of the adsorbent and the generation of abundant hydroxyl ions. The solution pH is very important for fluoride adsorption, which controls the adsorption of fluoride at the absorbent-water interface. Fluoride was adsorbed on the adsorbent via the ion-exchange mechanism.
     The adsorption data were better represented by the Langmuir isotherm than the Freundlich isotherm. A Langmuir maximum adsorption capacity of24.55mg/g was obtained at an initial pH of3.14and temperature of30℃. The adsorption process followed the pseudo-second-order model for fluoride. The fluoride adsorption was influenced by the phosphate, sulfate and bicarbonate ions, but not by the chloride and nitrate ions. After six regeneration and reuse cycles, the Zr-A adsorbent still showed high adsorption capacity. The results of adsorption and reuse experiments indicated that the Zr-A adsorbent could be employed as a promising adsorbent for fluoride adsorption from drinking water.
     From a practical perspective, the Zr-A adsorbent granulation and fixed-bed adsorption experiments were carried out. The optimal preparation conditions of the granular Zr-A adsorbent were as follows, the concentration of the caking agent was10wt.%and the heating temperature was70℃. The fixed-bed adsorption results indicated that the breakthrough capacity of the granular Zr-A adsorbent increased with the decrease of the water discharge and the increase of the initial fluoride concentration. After five regeneration cycles, the Zr-A adsorbent still showed high adsorption capacity.
     XRD and ζ analysis indicated that the Zr-Al-Ce composite was not a simple mixture of the ZrO2, Al2O3and CeO2. FT-IR analysis indicated that the hydroxyl groups on the adsorbent surface were involved in the fluoride adsorption. XPS analysis demonstrated that the hydroxyl groups bonded to metal (M-OH) were involved in fluoride adsorption but not the hydroxyl groups attributed to oleic acid (C-OH).
     The fluoride adsorption data on the Zr-Al-Ce adsorbent agreed well with the Langmuir mode. A Langmuir maximum adsorption capacity of250.0mg/g was obtained at an initial pH of6.80±0.20and temperature of30℃, which indicates that the Zr-Al-Ce adsorbent has a high fluoride adsorption capacity. The thermodynamic studies indicated that the adsorption process was spontaneous and endothermic. The adsorption process followed the pseudo-second-order model for fluoride. The effects of co-existing anions on the sorption of fluoride followed the decreasing order of PO43-> SO42-> HCO3-> NO3-> CI-. The Zr-Al-Ce adsorbent still showed high adsorption capacity after three regeneration and reuse cycles. The results of adsorption and reuse experiments indicated that the Zr-Al-Ce adsorbent could be employed as a promising adsorbent for fluoride adsorption from drinking water.
     The granulation experiments indicated that the optimal preparation conditions of the Zr-Al-Ce granular adsorbent were as follows, the mass ratio of the Zr-Al-Ce adsorbent to attapulgite was1:2, the concentration of the caking agent was15wt.%, and the heating temperature was80℃. The fixed-bed adsorption results indicated that the breakthrough capacity of the granular Zr-Al-Ce adsorbent increased with the increase of the initial fluoride concentration and the decrease of the water discharge. After regeneration and reuse experiments, the breakthrough capacity of the granular Zr-Al-Ce adsorbent was just decreased about8%, which indicated that the granular Zr-Al-Ce adsorbent had a good adsorption property and could be employed as a promising adsorbent for fluoride adsorption from drinking water.
引文
[1]郑宝山.地方性氟中毒及工业氟污染研究[M].北京,中国环境科学出版社,1992,1.
    [2]杨港.类水滑石合成及其对水体中氟离子的去除[D].大连,大连理工大学,2009.
    [3]姚瑞华.基于镧系金属改性壳聚糖的脱氟新技术研究[D].青岛,中国海洋大学,2009.
    [4]Guidelines for drinking-water quality [Electronic Resource]:Incorporating First Addendum, in: W.H.O. (Ed.),2006, pp.375-377.
    [5]Shen F, Chen X, Gao P, Chen G. Electrochemical removal of fluoride ions from industrial wastewater [J]. Chem. Eng. Sci.,2003,58(3-6):987-993.
    [6]金华市疾病控制中心. http://www.jhcdc.cn/Show_News.asp?id=785 [EB/OL].2006-6-2.
    [7]刘栋生,陈庆浴,余志成,等.我国地方性氟病的地球化学问题[J].地球化学,1980,3(1),13-22.
    [8]刘炯,郑照霞,林世刚,等.辽宁省改水降氟工程运行现状调查分析[J].中国地方病学杂志,2005,24(5),554-556.
    [9]马玉新.膨润土系列除氟剂的制备及其除氟性能研究[D].青岛,中国海洋大学,2004.
    [10]国家环保局.水和废水监测分析方法[M].北京,环境科学出版社,1989,574-575.
    [11]陈平.载体诱导沉淀结晶法软化水及脱氟的研究[D].西安,西安建筑科技大学,2004.
    [12]Joshi S V, Mehta S H, Rao A P, et al. Estimation of sodium fluoride using HPLC in reverse osmosis experiment [J]. Water Treatment,1992,7(19):207-210.
    [13]Emamjomeh M M, Sivakumar M. An empirical model for defluoridation by batch monopolar electrocoagulation/flotation (ECF) process [J]. J. Hazard. Mater. B,2006,131(1-3):118-125.
    [14]Huang C J, Liu J C. Precipitate flotation of fluoride-containing wastewater from a memiconductor manufacturer [J]. Water Res.,1999,33(16):3403-3412.
    [15]Yang M, Zhang Y, Shao B, et al. Precipitate removal of fluoride from electronics wastewater [J]. J. Environ. Eng.,2001,127(10):902-907.
    [16]Popat K M, Anand P S, Dasare B D. Selective removal of fluoride ions from water by the aluminium form of the aminomethylphosphonic acid-type ion exchanger [J]. Reactive polymers,1994,23(1):23-32.
    [17]Ku Y, Chiou H M, Wang W. The removal of fluoride ion from aqueous solution by a cation synthetic resin [J]. Sep. Sci. Technol.,2002,37(1):89-103.
    [18]陈国阶,余大富.环境中的氟[M].北京,科学出版社,1990,148.
    [19]韩卓育.改性粘土除氟剂的制备及除氟效果的研究[D].吉林,吉林大学,2009.
    [20]Viswanathan N, Meenakshi S. Role of metal ion incorporation in ion exchange resin on the selectivity of fluoride [J]. J. Hazard. Mater.,2009,162(2-3):920-930.
    [21]李晓云,王建萍,宋宽秀,等.负载铈的D412螯合树脂除氟性能的研究[J].离子交换与吸附,2001,17(2),37-43.
    [22]王桂燕,张昱,杨敏,等.氧化锆负载树脂处理含氟废水的研究[J].环境科学学报,2001,增刊(2),88-91.
    [23]李玲玲.硅胶负载氧化锆吸附剂的制备及吸附除氟研究[D].郑州,郑州大学,2006.
    [24]宋华,陈颖.化工分离工程[M].哈尔滨,哈尔滨工业大学出版社,2003,201-241.
    [25]Scheneiter R W, Middlebrooks E J. Arsenic and fluoride removal from groundwater by reverse osmosis [J]. Environ. Int.,1983,9(4):289-291.
    [26]Fu P, Ruiz H, Lozier J, et al. A pilot study on groundwater natural organics removal by low-pressure membrances [J]. Desalination,1995,102(1-3):47-56.
    [27]Arora M, Mahesawari R C, Jain S K, et al. Use of membrane technology for potable water production [J]. Desalination,2004,170(2):105-112.
    [28]Ndiaye P I, Moulin P, Dominguez L, et al. Removal of fluoride from electronic industrial effluent by RO membrane separation [J]. Desalination,2005,173(1):25-32.
    [29]Sehn P. Fluoride removal with extra low energy reverse osmosis membranes:three years of large scale field experience in Finland [J]. Desalination,2008,223(1-3):73-84.
    [30]Tahaikt M, Habbani R E, Haddou A A, et al. Fluoride removal from groundwater by nanofiltration [J]. Desalination,2007,212(1-3):46-53.
    [31]Hu C Y, Lo S L, Kuan W H, et al. Effects of co-existing anions on fluoride removal in electrocoagulation (EC) process using aluminum electrodes [J]. Water Res.,2003,37(18): 4513-4523.
    [32]冯玉杰,李晓岩,尤宏,等.电化学技术在环境工程中的应用[M].北京,化学工业出版社,2002,126-130.
    [33]Ghosh D, Medhi C R, Purkait M K. Treatment of fluoride containing drinking water by electrocoagulation using monopolar and bipolar electrode connections [J]. Chemosphere, 2008,73(9):1393-1400.
    [34]Emamjomeh M M, Sivakumar M. Fluoride rmoval by a continious flow electrocoagulation reactor [J]. J. Environ. Manage.,2009,90(2):1204-1212.
    [35]凌波.铝盐混凝沉降除氟[J].水处理技术,1990,16(6),418-421.
    [36]卢建杭,王红斌,刘维屏.铝盐混凝发去除氟离子的一般作用规律[J].化工环保,2000,20(6),7-11.
    [37]Nigussie W, Zewge F, Chandravanshi B S. Removal of excess fluoride from water using waste residue from alum manufacturing process [J]. J. Hazard. Mater.,2007,147(3): 954-963.
    [38]Popat K M, Anand P S, Dasare B D. Selective removal of fluoride ions from water by the aluminium from of the aminomethylphosphonic acid-type ion exchanger [J]. Reactive Polymers,1994,23(1):23-32.
    [39]Farrah H, Slavek J, Pickering W F. Fluoride interactions with hydrous aluminum oxides and alumina [J]. Australian J. Soil Res.,1987,25(1):55-69.
    [40]Bahena J L R, Cabrera A R, Valdivieso A L, et al. Fluoride adsorption onto α-Al2O3 and its effect on the zeta potential at the alumina-aqueous electrolyte interface [J]. Sep. Sci. Technol.,2002,37(8):1973-1987.
    [41]Wasay S A, Tokunaga S, Park S W. Removal of hazardous anions from aqueous solutions by La(III)- and Y(lll)-impregnated alumina [J]. Sep. Sci. Technol.,1996,16:1501-1514.
    [42]Eskandarpour A, Onyango M S, Ochieng A, et al. Removal of fluoride ions from aqueous solution at low pH using schwertmannite [J]. J. Hazard. Mater.,2008,152(2):571-579.
    [43]近藤精一,石川达雄,安部郁夫.吸附科学[M].北京,化学工业出版社,2006,1-118.
    [44]北川浩,铃木谦一郎.吸附的基础与设计[M].北京,化学工业出版社,1983,1-96.
    [45]冯孝庭.吸附分离技术[M].北京,化学工业出版社,2000,1-122.
    [46]黄文强.吸附分离材料[M].北京,化学工业出版社,2005,95-102.
    [47]Karthikeyan G, Pius A, Alagumuthu G. Fluoride adsorption studies of montmorillonite clay [J]. Indian J. Chem. Technol.,2005,12(3):263-272.
    [48]Tor A. Removal of fluoride from an aqueous solution by using montmorillonite [J]. Desalination,2006,201(1-3):267-276.
    [49]Zhang J, Xie S D, Ho Y S. Removal of fluoride ions from aquepus solution using modified attapulgite as adsorbent [J]. J. Hazard. Mater.,2009,165(1-3):218-222.
    [50]杜冬云.铝交联累托石的制备与应用研究[D].武汉,华中科技大学,2004.
    [51]Bansiwal A, Pillewan P, Biniwale R B, et al. Copper oxide incorporated mesoporous alumina for defluoridation of drinking water [J]. Microporous Mesoporous Mater.,2010,129(1-2): 54-61.
    [52]Batailer H, Lamaallam S, Lachaise J, et al. Cutting fluid emulsions produced by dilution of cutting fluid concentrate containing a cationie/nonionie surfactant mixture [J]. J. Mater. Process. Technolo.,2004,152(2):215-220.
    [53]Li Y H, Wang S G, Cao A Y, et al. Adsorption of fluoride fiom water by amorphous alumina supported on carbon nanotubes [J]. Chem. Phys. Lett.,2001,350(5-6):412-416.
    [54]Zhao Y P, Li X Y, Liu L, et al. Fluoride removal by Fe(III)-loaded ligand exchange cotton cellulose adsorbent from drinking water [J]. Carbohydr. Polym.,2008,72(1):144-150.
    [55]Gupta V K, Ali Imran, Saini V K. Defluoridation of wastewaters using waste carbon slurry [J]. Water Res.,2007,41(15):3307-3316.
    [56]Bhatnagar A, Kumar E, Sillanpaa M. Fluoride removal from water by adsorption—A review [J]. Chem. Eng. J.,2011,171(3):811-840.
    [57]Tang Y L, Guan X H, Wang J M, et al. Fluoride adsorption onto granular ferric hydroxide: Effects of ionic strength, pH, surface loading, and major co-existing anions [J]. J. Hazard. Mater.,2008,171(1-3):774-779
    [58]Sujana M G, Anand S. Iron and aluminium based mixed hydroxides:A novel sorbent for fluoride removal from aqueous solutions [J]. Appl. Surf. Sci.,2010,256(23):6956-6962.
    [59]Sundaram C S, Meenakshi S. Fluoride sorption using organic-iorganic hybrid type ion exchangers [J]. J. Colloid Interface Sci.,2009,333(1):58-62.
    [60 Luo F, Inoue K. The removal of fluoride ion by using metal(III)-loaded amberlite resins [J]. Solvent Extr. Ion Exch.,2004,22(2):305-322.
    [61]Mohapatra M, Anand S, Mishra B K, et al. Review of fluoride removal from drinking water [J]. J. Environ. Manage.,2009,91(1):67-77.
    [62]Daifullah A A M, Yakout S M, Elreefy S A. Adsorption of fluoride in aqueous solutions using KMn04-modified activated carbon derived from steam pyrolysis of rice straw [J]. J. Hazard. Mater.,2007,147(1-2):633-643.
    [63]Ma Y, Wang S G, Fan M H, et al. Characteristics and defluoridation performance of granular activated carbons coated with manganese oxides [J]. J. Hazard. Mater.,2009,168(2-3): 1140-1146.
    [64]郝素娥.稀土改性导电陶瓷材料[M].北京,国防工业出版社,2009,1-20.
    [65]杨遇春.稀土漫谈[M].北京,化学工业出版社,1999,1.
    [66]刘光华.稀土材料学[M].北京,化学工业出版社,2007,1-13.
    [67]Imai H, Nomura J J, Ishibashi Y, et al. Anion adsorption behavior of rare earth oxide hydrates [J].The Chemical Society of Japan,1987, (5):807-813.
    [68]Wasay S A, Haron M D J, Tokunage S. Adsorption of fluoride, phosphate and arsenate ions on lanthanum-impregnated silica gel [J]. Water Environ. Res.,1996,68(3):295-300.
    [69]Davis J A, Leckie J Q. Effect of adsorbed complexing legands on trace metal uptake by hydrous oxides [J]. Environ Sci Technol.,1978,12(12):1309-1315.
    [70张昱,杨敏,黄霞.铁铈复合氧化物阴离子吸附剂的表面酸碱特性研究[J].离子交换与吸附,2003,19(5),423-429.
    [71]焦忠志,张昱,杨敏,等.利用稀土基无机合成材料去除饮用水中砷的研究[J].环境化学,2002,21(4),355-370.
    [72]Raichur A M, Basu M J. Adsorption of fluoride onto mixed rare earth oxides [J]. Sep. Purif. Technol.,2001,24(1-2):121-127.
    [73]Zhou Y M, Yu C X, Shah Y. Adsorption of fluoride from aqueous solution on La3+-impregnated cross-linked gelatin [J]. Sep. Purif. Technol.,2004,36(2):89-94.
    [74]Wu H X, Wang T J, Chen L, et al. The roles of the surface charge and hydroxyl group on a Fe-Al-Ce adsorbent in fluoride adsorption [J]. Ind. Eng. Chem. Res.,2009,48(9): 4530-4534.
    [75]Ogata F, Takahashi K, Tominaga H, et al. Adsorption of phosphate by cerium hydroxide [J]. J. Surf. Sci. Nanotech.,2010,8:258-260.
    [76]徐应明,金家志,戴晓红,等.用于水体中氟净化的活性氧化铈/介孔分子筛除氟剂的制备[J].农业环境保护,2000,19(5),293-295.
    [77]Deng S B, Liu H, Zhou W, et al. Mn-Ce oxide as a high-capacity adsorbent for fluoride removal from water [J]. J. Hazard. Mater.,2011,186(2-3):1360-1366.
    [78]Tokunaga S, Hardon M J, Wasay S A. Removal of fluoride ions from aqueous solution by multivalent metal compounds [J]. Int. J. Environ. Stud.,1995,48(1):17-28.
    [79]寿文娟CSBR(BR)/凹凸棒土复合材料的研究[D].上海,上海交通大学,2008.
    [80]Bradley W F. The structural scheme of attapulgite [J]. Am. Mineral.,1940,25(6):405-410.
    [81]Van Olphen H, J F J. Data handbook for clay materials and other non-metallic minerals [M]. New York: Pergamon Press,1979.
    [82]郑茂松,王爱琴,詹庚申.凹凸棒石粘土应用研究[M].北京,化学工业出版社,2007,53-60.
    [83]Hayashi H, Otsuka R, Imai N. Infrared study of sepiolite and paly-gorskite on heating [J]. American Mineralogist.,1969,54(11-12):1613-1624.
    [84]全球辅料网. http://www.texlogo.com/News.asp?ID=11672 [EB/OL].2005-8-1.
    [85]蔡元峰.链层状矿物——坡缕石的酸溶解、吸附和解吸附的表面矿物学机理[D].南京,南京大学,2004.
    [86]赵娣芳,周杰,刘宁.凹凸棒石改性剂里研究进展[J].2005,(3),67-69.
    [87]赵萍,姚莹,林峰,等.凹凸棒石改性方法及其应用现状[J].2006,13(5),47-49.
    [88 Fan Q H, Shao D D, Lu Y, et al. Effect of pH, ionic strength, temperature and humic substances on the sorption of Ni(Ⅱ) to Na-attapulgite [J]. Chem. Eng. J.,2009,150(1): 188-195.
    [89]Potgiter J H, Potgiter-Vermaak S S, Kalibantonga P D. Heavy metals removal from solution by palygorskite clay [J]. Miner. Eng.,2006,19(5):463-470.
    [90]彭书传,王诗生,陈天虎,等.凹凸棒石吸附水溶性染料的热力学研究[J].硅酸盐学报,2005,33(8),1012-1017.
    [91]Ye H P, Chen F Z, Sheng Y Q, et al. Adsorption of phosphate from aqueous solution onto modified palygorskites [J]. Sep. Purif. Technol.,2006,50(3):283-290.
    [92]胡涛,张强华,李东,等.改性凹凸棒石粘土处理含氟废水研究[J].非金属矿,2006,29(3),52-55.
    [93]Zhang G K, Ding X M, He F S, et al. Low-temperature synthesis and photocatalytic activity of TiO2 pillared montmorillonite [J]. Langmuir,2008,24(3):1026-1030.
    [94]Zhang G K, Gao Y Y, Zhang Y L, et al. Fe2O3-pillared rectorite as an efficient and stable Fenton-like heterogeneous catalyst for photodegradation of organic contaminants [J]. Environ. Sci. Technol.,2010,44(16):6384-6389.
    [95]张高科,贺志丽,甘慧慧,等.一种凹凸棒/氧化锆复合除氟材料的制备方法.中国, CN102247797A[P],2011-11-23.
    [96]Zhang G K, He Z L, Xu W. A low-cost and high efficient zirconium-modified-Na-attapulgite adsorbent for fluoride removal from aqueous solutions [J]. Chem. Eng. J.,2012,183: 315-324.
    [97]水质氟化物的测定-离子选择电极法[S].中国人民共和国国家标准(GB 7484-87),1987.
    [98]王幸宜.催化剂表征[M].广州,华东理工大学出版社,2008,1-222.
    [99]张庆军.材料现代分析测试实验[M].北京,化学工业出版社,2006,1-107.
    [100]奚旦立,孙裕生,刘秀英.环境监测(第三版)[M].北京,高等教育出版社,2005.
    [101]卜显忠.高效吸附性可见光响应型N-TiO2/累托石催化剂的合成及其性能研究[D].武汉,武汉理工大学,2011.
    [102]王富耻.材料现代分析测试方法[M].北京,北京理工大学出版社,2005,206-210.
    [103]姚超,刘敏,李卫民,等ATTP/ZnO纳米复合材料的制备及其对亚甲基蓝吸附性能的影响[J].非金属矿,2009,32(3),57-60.
    [104]汤枫秋,黄校先.纳米氧化锆粉体流变性能的研究[J].材料科学与工程,1999,17(1),8-11.
    [105]Fan Q H, Shao D D, Hu J, et al. Comparison of Ni2+ sorption to bare and ACT-graft attapulgites:Effect of pH, temperature and foreign ions [J]. Surf. Sci.,2008,602(3): 778-785.
    [106]任俊,沈健,卢寿慈.颗粒分散科学与技术[M].北京,化学工业出版社,2005,174-179.
    [107]Frost R L, Xi Y F, He H P. Synthesis, characterization of palygorskite supported zero-valent iron and its application for methylene blue adsorption [J]. J. Colloid Interface Sci.,2010, 341(1):153-161.
    [108]Cao J L, Shao G S, Wang Y, et al. CuO catalysts supported on attapulgite clay for low-temperature CO oxidation [J]. Catal. Commun.,2008,9(15):2555-2559.
    [109]Idakiev V, Tabakova T, Naydenov A, et al. Gold catalysts supported on mesoporous zirconia for low-temperature water-gas shift reaction [J]. Appl. Catal., B,2006,63(3-4):178-186.
    [110]Pan J M, Zou X H, Wang X, et al. Selective recognition of 2,4-dichlorophenol from aqueous solution by uniformly sized molecularly imprinted microspheres with β-cyclodextrin/attapulgite composites as support [J]. Chem. Eng. J.,2010,162(3):910-918.
    [111]Wu J C S, Cheng Y T. In situ FT-IR study of photocatalytic NO reaction on photocatalysts under UV irradiation [J]. J Catal.,2006,237(2):393-404
    [112]Lopez Valdivieso A, Reyes Bahena J L, Song S, et al. Temperature effect on the zeta potential and fluoride adsorption at the a-Al2O3/aqueous solution interface [J]. J. Colloid Interf. Sci.,2006,298(1):1-5.
    [113]Brett D, Binning T P, Stipp S L S. Fluoride removal by calcite evidence for fluoride precipitation and surface adsorption [J]. Environ. Sci. Technol.,2005,39(24):9561-9568.
    [114]Ho Y S, Mckay G. A comparison of chemisorption kinetics models applied to pollutant removal on various sorbents [J]. Process Saf. Environ. Prot.,1998,76(4):332-341.
    [115]Rudzinski W, Panczyk T. Kinetics of isothermal adsorption on energetically heterogeneous solid surfaces:a new theoretical description based on the statistical rate theory of interfacial transport [J]. J. Phy. Chem. B,2000,104(39):9149-9162.
    [116]Paria S, Khilar K C. A review on experimental studies of surfactant tant adsorption at the hydrophilic solid-water interface [J]. Adv. Colloid Interface Sci.,2004,110(3):75-95.
    [117]Al-Futaisi A, Jamrah A, Al-Hanai R. Aspects of cationic dye molecule adsorption to palygorskite [J]. Desalination,2007,214(1-3):327-342.
    [118]吴焕领,魏赛男,崔淑玲.吸附等温线的介绍及应用[J].染整技术,2006,28(10),12-14.
    [119]Langmuir I, The constitution and fundamental properties of solids and liquids [J]. J Am Chem Soc.,1916,38(11):2221-2295.
    [120]Freundlich H, Uber die adsorption in losungen [J]. Z Phys Chem.,1906,57:385-470.
    [121]Miyata S. Anion-exchange properties of hydrotacite-like compounds [J]. Clays Clay Miner., 1983,31(4):305-311.
    [122]张晓瑾.镁铁类水滑石及复合氧化物制备及其对水中腐植酸去除效果的研究[D].济南,山东大学,2007.
    [123]Roustila A, Chene J, Severac C. XPS study of hydrogen and oxygen interactions on the surface of the NiZr intermetallic compound [J]. Int. J. Hydrogen Energy,2007,32(18): 5026-5032.
    [124]Yuchi A, Matsunaga K, Niwa T, et al. Separation and preconcentration of fluoride at the ng mL-1 level with a polymer complex of zirconium(Ⅳ) followed by potentiometric determination in a flow system [J]. Anal. Chim. Acta,1999,388(1-2):201-208.
    [125]Wang S G, Ma Y, Shi Y J, et al. Defluoridation performance and mechanism of nano-scale aluminum oxide hydroxide in aqueous solution [J]. J. Chem. Technol. Biotechnol.,2009, 84(7):1043-1050.
    [126]Dey S, Goswami S, Ghosh U C. Hydrous Ferric Oxide (HFO):a scavenger for fluoride from contaminated water [J]. Water, Air, Soil Pollut.,2004,158(1):311-26.
    [127]孙秀云,王连军,周学铁.凹凸棒土一粉煤灰颗粒吸附剂的制备及改性[J].江苏环境科技,2003,16(2),1-3.
    [128]Chen L, Wu H X, Wang T J, et al. Granulation of Fe-Al-Ce nano-adsorbent for fluoride removal from drinking water by spray coating on sand in a fluidized bed [J]. Powder techonology,2009,191(1):59-64.
    [129]Lounici H, Addour L, Belhocine D, et al. Study of a new technique for fluoride removal from water [J]. Desalination,1997,114(3):241-251.
    [130]Choon-Ki N. Hyun-Ju P. Defluoridation from aqueous solution by lanthanum hydroxide [J]. J. Hazard. Mater.,2010,183(1-3):512-520.
    [131]Liu H. Deng S B, Li Z J. Preparation of Al-Ce hybrid adsorbent and its application for defluoridation of drinking water [J]. J. Hazard. Mater.,2010,179(1-3):424-430.
    [132]王艳琴MgAlFe类水滑石制备及其对水体中苯酚和对硝基苯酚的吸附性能研究[D].济南,山东大学,2006.
    [133]陈位锁Mg/Al/Ce(IV) LDH制备表征及其复合氧化物吸附水中Cr(VI)效果研究[D].济南,山东大学,2009.
    [134]Wu X M, Zhang Y, Dou X M, et al. Fluoride removal performance of a novel Fe-Al-Ce trimetal oxide adsorbent [J]. Chemosphere,2007,69(11):1758-1764.
    [135]Das N, Pattanaik P, Das R. Defluoridation of drinking water using activated titanium rich bauxite [J]. J. Colloid Interf. Sci.,2005,292(1):1-10.
    [136]Uchida M, Kim H-M, Kokubo T. Apatite-forming ability of zirconia/alumina composite induced by chemical treatment [J]. J. Biomed Mater Res.,2002,60(2):277-282.
    [137]Kaneko K, Ishii C, Ruike M, et al. Origin of superhigh surface area and microcrystalline graphitic structures of activated carbons [J]. Carbon,1992,30(7):1075-1088.
    [138]Vartapetyan R S, Voloshchuk A M. The mechanism of the adsorption of water molecules on carbon adsorbents [J]. Russian Chemical Reviews,1995,64(11):985-1001.
    [139]Chen H, He J, Zhang C, et al. Self-assembly of novel mesoporous manganese oxide nanostructures and their application in oxidative decomposition of formaldehyde [J]. J. Phys. Chem. C,2007,111(49):18033-18038.
    [140]丁建芳,姜继森.油酸钠对油相法制各的Fe304纳米粒子的表面改性研究[J].2007,22(5),859-863.
    [141]Li Z J, Deng S B, Yu G., et al. As(Ⅴ) and As(Ⅲ) removal from water by a Ce-Ti oxide adsorbent:Behavior and mechanism [J]. Chem. Eng. J.,2010,161(1-2):106-113.
    [142]Kameshima Y, Sasaki H, Isobe T, et al. Synthesis of composites of sodium oleate/Mg-Al-ascorbic acid-layered double hydroxides for drug delivery applications [J]. Int. J. Pharm.,2009,381(1):34-39.
    [143]王国良.油酸表面修饰的Ce203纳米微粒的制备和钝钒研究[J].炼油设计,2001,31(5),34-37.
    [144]马振叶,李凤生,叶明泉,等.Fe203/油酸纳米复合离子的结构及性能表征[J].南京理工大学学报,2004,28(4),436-450.
    [145]Lewis W K, Rosenberger A T, Gord J R, et al. Multispectroscopic (FT-IR, XPS, and TOFMS-TPD) investigation of the core-shell bonding in sonochemically prepared aluminum nanoparticles capped with oleic acid [J]. J. Phys. Chem. C,2010,114(14):6377-6380.
    [146]Long F, Gong J L, Zeng G M, et al. Removal of phosphate from aqueous solution by magnetic Fe-Zr binary oxide [J]. Chem. Eng. J.,2011,171(2):448-455.
    [147]Levasseur B, Ebrahim A M, Bandosz T J. Role of Zr4+ cations in NO2 adsorption on Ce1-xZrxO2 mixed oxides at ambient conditions [J]. Langmuir,2011,27(15):9379-9386.
    [148]Das D P, Das J, Parida K. Physicochemical characterization and adsorption behavior of calcined Zn/Al hydrotalcite-like compound (HTlc) towards removal of fluoride from aqueous solution [J]. J. Colloid Interface Sci.,2003,261(2):213-220.
    [149]Sigg L. In aquatic surface chemistry: chemical processes at the particle-water interface [M]. New York: Stumm, W., Ed.; John Wiley and Sons,1987.
    [150]Davis J A, Kent D B. Surface complexation modeling in aqueous geochemistry, in: M.F. Hochella, A.F.White (Eds.), Minearal-Water Interface Geochemistry [M]. Washington:Rev. Mineral. Soc. of America,1990.
    [151]张婧.凹凸棒土处理含铅废水与高氟废水的吸附热力学及机理研究[D].北京,北京大学,2008.
    [152]Luo P, Zhao Y, Zhang B, et al. Study on the adsorption of Neutral Red from aqueous solution onto halloysite nanotubes [J]. Water Res.,2010,44(5):1489-1497.
    [153]Akar T, Tosun I, Kaynak Z, et al. Assessment of the biosorption characteristics of amacro-fungus for the decolorization of Acid Red 44 (AR44) dye [J]. J. Hazard. Mater.,2009, 171(1-3):865-871.
    [154]Milonjic S K. A consideration of the correct calculation of thermodynamic parameters of adsorption [J]. J. Serb. Chem. Soc.,2007,72(12):1363-1367.
    [155]Gupta V K. Equilibrium uptake, sorption dynamics, process development and column operations for the removal of copper and nickel from aqueous solution and wastewater using activated slag, a low-cost adsorbent [J]. Ind. Eng. Chem. Res., 1998,37(1):192-202.
    [156]Viswanathan N, Sundaram C S, Meenakshi S. Sorption behavbur of fluoride on carboxylated cross-linked chitosan beads [J]. Colloids Surf., B,2009,68(1):48-54.
    [157]Stumm T. Chemistry of the Solid-Water Interface [M]. New York: John Wiley,1992.
    [158]Liao X P, Bi S. Adsorption of fluoride on zirconim(Ⅳ)-impregnated collagen fiber [J]. Environ. Sci. Technol.,2005,39(12):4628-4632.
    [159]Zhang Y, Yang M, Dou X M, et al. As(V) adsorption on an Fe-Ce bimetal oxide adsorbent: role of surface properties [J]. Environ. Sci. Technol.,2005,39(18):7246-7253.
    [160]Deliyanni E A, Nalbandian L, Matis K A. Adsorptive removal of arsenites by a nanocrystalline hybrid surfactant-akaganeite sorbent [J]. J. Colloid Interf. Sci.,2006,302(2): 458-466.
    [161]Lim S F, Zheng Y M, Chen J P. Organic arsenic adsorption onto a magnetic sorbent [J]. Langmuir,2009,25(9):4973-4978.
    [162]Thomas S, Sherwood P. Valence band spectra of aluminum oxides, hydroxides, and oxyhydroxides interpreted by Xa calculations [J]. Anal. Chem.,1992,64(21):2488-2495.
    [163]Li W, Cao C Y, Wu L Y, et al. Superb fluoride and arsenic removal performance of highly ordered mesoporous aluminas [J]. J. Hazard. Mater.,2011,198(30):143-150.
    [164]Zhou J B, Cheng Y, Yu J G, et al. Hierarchically porous calcined lithium/aluminum layered double hydroxides:Facile synthesis and enhanced adsorption towards fluoride in water [J]. J. Mater. Chem.,2011,21:19353-19361.
    [165]Thakre D, Rayalu S, Kawade R, et al. Magnesium incorporated bentonite clay for defluoridation of drinking water [J]. J. Hazard. Mater.,2010,180(1-3):122-130.
    [166]Sanjay P K, Priyadarshini D, Sadhana S R, et al. Defluoridation of drinking water using chemically modified bentonite clay [J]. Desalination,2009,249(2):687-693.
    [167]Meenakshi S, Sairam C, Sukumar R. Enhanced fluoride sorption by mechanochemically activated kaolinites [J]. J. Hazard. Mater.,2008,153(1-2):164-172.
    [168]杨胜科,王文举.改性海泡石除氟影响因素分析及机理探讨[J].化工矿物与加工,2000,(4):1-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700