用户名: 密码: 验证码:
镧系元素对氧化钡—氧化镧—二氧化钛微波陶瓷的改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文概述了微波介质陶瓷体系尤其是BaO-Ln_2O_3-TiO_2体系的研究现状。BaO-Ln_2O_3-TiO_2体系的有效电场分析表明高介电常数的根源在于电子-离子位移极化耦合,A位阳离子对介电常数的影响并不大; BaO-Ln_2O_3-TiO_2体系本征损耗分析结果则表明阳离子的有序分布和八面体倾斜角的增大有利于损耗的降低以及热稳定性的增强。鉴于以上两点,镧系元素对BaO-Ln_2O_3-TiO_2体系的改性研究主要集中在镧系离子对晶体结构和介电性能的影响。论文最后对BaO-Ln_2O_3-TiO_2体系的改性实例和特例进行了实验研究,以验证前述的规律总结。
     BaO-Ln_2O_3-TiO_2(Ln = La, Pr, Nd, Sm, Gd)微波介质陶瓷的主晶相Ba_(6-3x)Ln_(8+2x)Ti_(18)O_(54)固溶体属于有限置换型固溶体。XRD物相分析和晶胞参数计算结果表明各体系的固溶限分别为:Ln=La时0 .1≤x≤0.8;Ln=Pr时0 .1≤x≤0.8;Ln=Nd时0 .2≤x≤0.7;Ln=Sm时0 .3≤x≤0.7;Ln=Gd时x=0.5。随着镧系离子半径的增大,体系的固溶限逐渐减小,直至唯一取值。
     在BaO-Ln_2O_3-TiO_2体系中,当稀土元素含量一定时,随着Ln3+离子半径的增大,晶胞在垂直于C轴的ab平面上扩张,晶胞参数主要表现为a和b的增大,c的增幅较小;当稀土元素种类确定时,随着Ln3+含量的增加,Ba_(6-3x)Ln_(8+2x)Ti_(18)O_(54)固溶体的晶胞参数逐渐减小,晶胞体积出现收缩。此外Ba_(6-3x)Ln_(8+2x)Ti_(18)O_(54)固溶体中稀土阳离子半径的减小会增大钛氧八面体的倾斜角,从而导致晶胞体积的减小。
     稀土元素的离子半径、离子含量、电负性、极化率等因素对BaO-Ln_2O_3-TiO_2体系的微波介电性能也会产生影响。类钙钛矿钨青铜结构使所有的BaO-Ln_2O_3-TiO_2体系具有较高的介电常数,不同的稀土元素则使介电常数在一定的范围内变化。原料配方为Ba_(6-3x)Ln_(8+2x)Ti_(18)O_(54)的BaO-Ln_2O_3-TiO_2体系中,随着镧系元素离子半径、极化率和电负性的增大,介电常数逐渐增大。当x=2/3时,BaO-Ln_2O_3-TiO_2体系均具有最高的品质因数,Ln3+离子半径和电负性越小,品质因数的极值就越大。此外体系的内应力越小,品质因数也越大。在BaO-Ln_2O_3-TiO_2体系中,随着Ln3+离子含量的增加,离子半径的减小,体系结构容忍因子的减小,体系的谐振频率温度系数就更加趋近于零。
     BaO-Sm2O3-Nd2O3-TiO2复合体系和Bi2O3掺杂改性的BaO-Nd2O3-TiO2体系的晶胞参数变化规律及介电性能变化趋势满足前述规律的变化,验证了镧系元素的存在对BaO-Ln_2O_3-TiO_2体系的改性规律。BaO-CeO2-TiO2体系中由于Ce离子半径偏小及价态不稳定的原因最终无法形成类钙钛矿钨青铜结构的主晶相,成为体系的一个特例,烧结特性和物相组成均与其它体系不同,介电常数和品质因数也较其它BaO-Ln_2O_3-TiO_2体系低。
The researching of microwave dielectric ceramics, especially BaO-Ln_2O_3-TiO_2 was summarized in this thesis. The effective electric field analysis in BaO-Ln_2O_3-TiO_2 indicated that it was electron-ion displacement polarization coupling that caused high permitivity. The contribution to polarization of A position cation was not so big. While the analysis results of intrinsic loss of ion crystal indicated that the ordering distribution of the cations in BaO-Ln_2O_3-TiO_2 and the lean angle increment of the octahedron structure were advantaged to loss reduction and heat stability enhancement. Based on the mentioned two points, the modification of BaO-Ln_2O_3-TiO_2 was mainly focused on the effect of lanthanide ion to crystal structure and microwave dielectric properties. At last the modification system and special case of BaO-Ln_2O_3-TiO_2 were examined to identify the antecedent rules.
     The main part of BaO-Ln_2O_3-TiO_2(Ln = La, Pr, Nd, Sm, Gd)system, i.e., Ba_(6-3x)Ln_(8+2x)Ti_(18)O_(54) solid solution, belonged to finite substitution solid solution, and the limits were: when Ln=La, 0.1≤x≤0.8; when Ln=Pr, 0.1≤x≤0.8; when Ln=Nd, 0.2≤x≤0.7;when Ln=Sm, 0.3≤x≤0.7; when Ln=Gd, x=0.5.With the lanthanide cation diameter increment, the solid solubility limit of related system gradually reduced till reaching the only value.
     In BaO-Ln_2O_3-TiO_2 system, when the lanthanide concentration was determined, with the Ln3+ ion diameter increased, the crystal cell would mainly expand at AB plane that was vertical to C axis, so the change of crystal cell parameters were mainly represented as the increment of a and b, but the change of c was quite few. When the concentration of lanthanide ion increased, the whole crystal cell would shrink. Besides, the decrease of lanthanide cation diameter of Ba_(6-3x)Ln_(8+2x)Ti_(18)O_(54) solid solution will increase the lean angle of [TiO6] octahedral, while the lean angle increase would also lead to the crystal cell volume shrink.
     The effect of lanthanide ion diameter, ion content, electronegativity and polarizability to dielectric constant were researched in this thesis. The tungsten-bronze type like structure caused high permittivity of BaO-Ln_2O_3-TiO_2 system, while the exsistence of lanthanide ion resulted in the permittivity change in extent. With the raw material recipe Ba_(6-3x)Ln_(8+2x)Ti_(18)O_(54), with lanthanide ion diameter, polarizability and electronegativity increased, the dielectric constant showed a increasing trend. When x=2/3,the quality factor of BaO-Ln_2O_3-TiO_2 was the maximum. With the decrease of ion diameter and Ln3+ electronegativity, the maximum quality factor would increase accordingly.The lanthanide ion concentration increment , Ln3+ ion diameter decrease and structure torlerance factor decrease were advantaged to obtain near-zero resonant frequency temperature coefficient.
     The cell parameter and microwave dielectric properties of BaO-Sm2O3-Nd2O3-TiO2 and BaO-Nd2O3-TiO2 doped by Bi2O3 identify the rule as before. BaO-CeO2-TiO2 microwave dielectric ceramic was the special case in BaO-Ln_2O_3-TiO_2 seriers just because the smaller ion diameter and unstable valence. The sintering character and phase composition were different from other.And the permittivity and quality factor were lower than those of other BaO-Ln_2O_3-TiO_2 ceramics.
引文
[1]杨辉,张启龙,王家邦等.微波介质陶瓷及器件研究进展.硅酸盐学报, 2003, 31(10): 965~973
    [2]张绪礼,王筱珍,汤清华.微波介质陶瓷材料与器件.电子科技导报, 1997, (6): 29~33
    [3]高春华,黄新友.微波介质陶瓷及其展望.陶瓷, 2002, (1): 42~45
    [4]肖定全,杜若昕,熊亚玲.微波介质陶瓷的近期研究进展.功能材料, 1995, 26(1): 20~23
    [5]陈德荣.我国移动通讯发展概况.通讯产品世界, 1995, (3): 11~13
    [6]彭建中,王毅敏,李懋强.微波介质陶瓷在介质滤波器上的应用电子元件与材料, 1996, 15(1): 37~40
    [7]章锦泰,许赛卿,周东祥等.微波介质材料与器件的发展.电子元件与材料, 2004, 23(6): 6~9
    [8] David Cruickshank. 1-2GHz dielectrics and ferrites: Overview and perspectives. Journal of the European Ceramic Society, 2003, 23: 2721~2726
    [9] Yukio Higuchi, Hiroshi Tamura. Recent progress on the dielectric properties of dielectric resonator materials with their applications from microwave to optical frequencies. Journal of the European Ceramic Society, 2003, 23: 2683~2688
    [10] Ghosh I S, Hilgers A, Schlenker T, et al. Ceramic microwave antennas for mobile applications. Journal of the European Ceramic Society, 2001, 21: 2621~2628
    [11] Wolfram Wersing. Microwave ceramics for resonators and filters. Current opinion in solid state & materials science, 1996, 1(15): 715~731
    [12] Richtmyer R D. Dielectric resonators. Journal of Applied Physics, 1939(10): 391~398
    [13]吕文中,张道礼,黎步银等.高εr微波介质陶瓷的结构,介电性质及其研究进展.功能材料, 2000, 31(6): 572~576
    [14]徐建梅,周东祥.微波介质陶瓷的研究现状及发展趋势.非金属矿, 2001, 24(增刊): 47~49
    [15] O'Bryan H M, Yan M F. Second-phase development in Ba-doped rutile. Journal of American Ceramic Society, 1982, 65(12): 615~619
    [16] O'Bryan H M, Thompson J, Plourde J K. Effects of chemical treatment on loss quality of microwave dielectric ceramics. Ber. Dtsch. Keram. Ges., 1978, 55(7): 348~352
    [17]方亮,杨卫明,鄢俊兵等.微波介质陶瓷的研究现状与发展趋势.武汉理工大学学报, 2002, 24(2): 12~15
    [18]宋英,王福平,周玉.微波介质陶瓷材料的研究进展.材料科学与工艺, 1998, 6(2): 59~64
    [19]张绪礼.电介质物理与微波介质陶瓷.压电与声光, 1997, 19(5): 315~320
    [20]陈国华.微波介质陶瓷及其低温烧结研究进展.中国陶瓷工业, 2004, 11(5): 41~44
    [21]吴毅强,吴坚强.微波介质陶瓷材料的研制.南昌大学学报(工科版), 1996, 18(3): 77~80
    [22]田明波,梁彤翔.低介电常数陶瓷复合基板材料.半导体情报, 1995, 32(6): 7~13
    [23]何进.微波介质陶瓷材料综述.电子元件与材料, 1995, 14(2): 7~13
    [24]郑兴华,俞建长,汤德平.高介电常数微波介质陶瓷.山东陶瓷, 2004, 27(6): 28~32
    [25]毛雪婷,吕文中,汪小红等.低εr微波介质陶瓷的结构与介电性质.压电与声光, 2001, 23(5): 373~376
    [26]吴昊.含稀土微波介质陶瓷材料的研究进展.江西有色金属, 2004, 18(3): 39~46
    [27] Youn H J, Kim K Y, Kim H. Microstructural characteristics of Ba(Mg1/3Ta2/3)O3 ceramics and its related microwave dielectric properties. Jpn. J. Appl. Phys., 1996, 35: 3947~3953
    [28] Kim S Y, Lee H Y, Yang C K. Effect of perovskite impurity addition on microwave dielectric properties of Ba(Mg1/3Ta2/3)O3-Ba(Ni1/3Ta2/3)O3 ceramics. IEEE Inter. Symp. Appl. Ferroelectrics, 1994, 2: 617~621
    [29] Barber D J, Moulding K M, Zhou J I. Structural order in Ba(Zn1/3Ta2/3)O3, Ba(Zn1/3Nb2/3)O3 and Ba(Mg1/3Ta2/3)O3 microwave dielectric ceramics. J. Mater. Sci., 1997, 32: 1531~1544
    [30]姚尧,赵梅瑜,王依琳等.固相合成制备单相Ba2Ti9O20粉体及陶瓷.硅酸盐学报, 1998, 26(6): 797~801
    [31]韩家平,张绪礼,王筱珍等. BaO-TiO2系中Ba2Ti9O20相形成的研究.硅酸盐学报, 1996, 24(2): 173~178
    [32]汤清华,王筱珍,张绪礼等.化学共沉淀法制备Ba2Ti9O20超微粉的研究.功能材料, 1996, 27(6): 525~527
    [33] Chen Y C, Cheng H F, Wang G. Microwave dielectric imaging of Ba2Ti9O20 materials with a scanning-tip microwave near-field microscope. J. Europ. Ceram. Soc., 2003, 6: 2671~2675
    [34] Cheng W X, Ding A L, Qiu H. Properties of preferential (Zr0. 8Sn0. 2)TiO4 thin films prepared by RF magnetron sputtering for microwave application. Microelectronic Engineering, 2003, 4: 648~653
    [35] Huang G H, Zhou D X, Xu J M, et al. Low-temperature sintering and microwave dielectric properties of (Zr, Sn)TiO4 ceramics. Mater. Sci&Engin. B, 2003, 99: 416~420
    [36] Drago Kolar, Zmago Stadler, Sergej Gaberscek et al. Ceramic and dielectric properties of selected compositions in the BaO-Nd2O3-TiO2 system. Ber. Dt. Keram. Ges., 1978, 55 (7) : 346~348
    [37] Ezaki K, Baba Y, Takahashi H. Microwave dielectric properties of CaO-Li2O-Ln2O3-TiO2 ceramics. Jpn. J. Appl. Phys., 1993, 32: 4319~4322
    [38] Takahashi H, Baba Y, Ezaki K. Microwave dielectric properties and crystal structure of CaO-Li2O-(1-x)Sm2O3-xLn2O3-TiO2(Ln: lanthanide) ceramics system. Jpn. J. Appl. Phys., 1996, 35: 5069~5073
    [39] Kato J, Kagata H, Nishimoto K. Dielectric properties of lead alkaline-earth zirconate at microwave frequencies. Jpn. J. Appl. Phys., 1991, 30: 2343~2346
    [40] Kato J, Kagata H, Nishimoto K. Dielectric properties of (PbCa)(MeNb)O3 at microwave frequencies. Jpn. J. Appl. Phys., 1992, 31: 3144~3147
    [41]方俊鑫,殷之文.电介质物理学.北京:科学出版社, 1989: 1~6
    [42]朱建华,梁飞,汪小红等.微波介质陶瓷材料介电性能间的制约关系.电子元件与材料, 2005, 24(3): 32~35
    [43]李绪益,林志.电磁场与微波技术.广州:华南理工大学出版社, 1991: 165~167
    [44] Ubic R, Reaney I M, Lee W E. Microwave Dielectric Solid-solution Phase in System BaO-Ln2O3-TiO2( Ln=Lanthanide cation). International Materials Reviews, 1998, 43 (5) : 205~219
    [45]方俊鑫,殷之文.电介质物理学.北京:科学出版社, 1989: 327~330
    [46]金霞,张绪礼,王筱珍.微波介质陶瓷的低频介电特性.华中理工大学学报, 1998, 26(2): 91~93
    [47]李标荣,王筱珍,张绪礼.无机电介质.武汉:华中理工大学出版社, 1995: 154~157
    [48]周东祥,胡明哲,姜胜林等.闭腔谐振法测试微波介质陶瓷介电参数.华中科技大学学报(自然科学版), 2004, 32(8): 50~53
    [49]吴正娴,王良刚,李晓蓉.复介电常数的快速无损测量.武汉大学学报(自然科学版), 1994, 3: 35~42
    [50]唐宗熙.介质谐振器介电参数频响特性及频率温度系数的测量.计量学报, 2002, 23(1): 57~61
    [51]吕文中,赖希伟.平行板谐振法测量微波介质陶瓷介电性能.电子元件与材料, 2003, 22(5): 4~6
    [52]吴毅强,卢金平,胡友根等.微波介质陶瓷介电常数测量的简单方法.电子元件与材料, 2004, 23(4): 15~18
    [53]李婷,王筱珍,张绪礼.微波介质陶瓷相对介电常数的简单测量.电子元件与材料, 1996, 2: 41~45
    [54]周东祥,潘杰夫,龚树萍等.一种微波介质谐振器复介电常数测试方法.压电与声光, 2003, 25(5): 433~435
    [55]陈晓平.介质加载谐振腔的理论分析及其在微波介电测试中的应用研究, [博士学位论文].武汉:华中科技大学图书馆, 2003
    [56]余晓华,周东祥,龚树萍. BaO-Ln2O3-TiO2系微波介质陶瓷的研究进展.材料导报, 2007, 21(2): 30~33
    [57]司敏杰,李谦,黄金亮. BaO-Ln2O3-TiO2系微波介质陶瓷的研究进展.陶瓷, 2005, 1: 17~20
    [58]顾永军,孙道明,李谦等.微波介质陶瓷的助烧与掺杂改性.硅酸盐通报, 2005, 4: 80~84
    [59]田中青,刘寒星,余洪涛等.微波介质陶瓷粉体的合成方法研究.材料导报, 2003, 17(12): 48~51
    [60]徐业彬,陈湘明.微波介质陶瓷粉末的湿化学合成.压电与声光, 1999, 21(4): 323~328
    [61]王毅敏,李懋强,彭建中.聚合物分解法制备微波介质陶瓷粉体的研究.粉体技术, 1996, 2(2): 13~17
    [62]金霞,王筱珍,张绪礼.工艺因素对Ba6-3x(Sm1-yNdy)8+ 2xTi18O54陶瓷微波特性的影响.电子元件与材料, 1998, 17(1): 4~8
    [63] Yi Li, Chen Xiang Ming, Effects of sintering conditions on microstructures and microwave dielectric properties of Ba6-3x(Sm1-yNdy)8+2xTi18O54 ceramics (x=2/3), Journal of the European Ceramic Society, 2002, 22: 715~719
    [64] Christian Hoffmann and Rainer Waser. Hot-forging of Ba6-3xRe8+2xTi18O54 ceramics (Re=La, Ce, Nd, Sm). Ferroelectrics, 1997, 201: 127~135
    [65] Guha J P. Synthesis and Characterization of Barium lanthanum Titanates. J. Am. Ceram. Soc., 1991, 74 (4): 878-880
    [66]雷文,郑勇,汪胜祥.微波介质陶瓷的界面特性及其对介电性能的影响.中国陶瓷工业, 2005, 12(3): 16~20
    [67]徐翠艳,李成,王文新.半导体陶瓷粉末制备方法的比较研究.渤海大学学报(自然科学版), 2005, 26(1): 61~64
    [68] Takahashi Junichi, Takashi lkegami. Occurrence of Dielectric 1: 1: 4 Compound in the Ternary System BaO-Ln2O3-TiO2(Ln=La, Nd, and Sm): I, An Improved Coprecipitation Method for Preparing a Single-Phase Powder of Ternary Compound in the BaO-La2O3-TiO2 System. J. Am. Ceram. Soc., 1991, 74(8): 1868~1872
    [69] Takahashi Junichi, Takashi lkegami. Occurrence of Dielectric 1: 1: 4 Compound in the Ternary System BaO-Ln2O3-TiO2(Ln=La, Nd, and Sm): II, Reexamination of Formation of isostructural Ternary Compounds in Identical Systems. J. Am. Ceram. Soc., 1991, 74(8): 1873~1879
    [70]周东祥,徐建梅,陈晓平等.水热法合成Ba2Ti9O20陶瓷粉.华中科技大学学报(自然科学版), 2003, 31(10): 26~34
    [71]徐建梅.水热合成Ba-Ti基微波介质陶瓷的研究, [博士学位论文].武汉:华中科技大学图书馆, 2003
    [72] Xu Yebin. Preparation of Ba6-3xNd8+2xTi18O54 via Ethylenediaminetetraacetic acid precursor. J. Am. Ceram., 2000, 83(11): 2893~2895
    [73] Xu Yebin, He Yanyan, Chen Xiangming, et al. Characteristics of Ba6?3xNd8+2xTi18O54 microwave dielectric ceramics derived from thlenediaminetetraacetic acid precursor. Journal of materials science: materials in electronics, 2002, 13: 197~201
    [74] Xu Yebin, Huang Guohua, He Yanyan. Sol–gel preparation of Ba6?3xSm8+2xTi18O54 microwave dielectric ceramics. Ceramics International, 2005, 31: 21~25
    [75] Yue Zhengxing, Qin Chengbin, Zhang Yingchun, et al. Preparation and microwave dielectric properties of Ba4(Sm1?xNdx)9. 3Ti18O54 ceramics via a citrate sol-gel process. Journal of Materials Science, 2004, 39: 1087~1089
    [76] Keiichi Katayama, Yasuo Azuma. Molten salt synthesis of single-phase BaNd2Ti4O12 powder. Journal of Materials Science, 1999, 34: 301~305
    [77] Kensuke Wada, Ken-ichi Kakimoto, Hitoshi Ohsato. Control of temperature coefficient of resonant frequency in Ba4Sm9. 33Ti18O54 ceramics by templated grain growth. Science and Technology of Advanced Materials, 2005, 6: 54~60
    [78] Guo Yiping, Kakimoto Ken-ichi, Hitoshi Ohsato. Microwave dielectric properties of Ba6-3xSm8+2xTi18O54(x=2/3) ceramics produced by spark plasma sintering. Jpn. J. Appl. Phys., 2003, 42: 7410~7413
    [79] Drago Kolar, Zmago Stadler, Sergej Gaberscek, et al. Ceramic and dielectric properties of selected compositions in the BaO-Nd2O3-TiO2 system. Ber Dt Keram Ges, 1978, 55(7): 346~348
    [80] Ohsato H, Mizuta M, Ikoma T, et al. Microwave dielectric properties of tungsten bronze-type Ba6-3xR8+2xTi18O54 (R = La, Pr, Nd and Sm) solid solutions. Journal of the Ceramic Society of Japan, 1998, 106(2): 178~182
    [81] Yamada H, Okawa T, Tohdo Y, et al. Microwave dielectric properties of BaxLa4Ti3+xO12+3x(x = 0. 0-1. 0) ceramics. Journal of the European Ceramic Society, 2006, 26: 2059~2062
    [82] Fukami Y, Wada K, Kakimoto K, Ohsato H, Microstructure and microwave dielectric properties of BaLa4Ti4O15 ceramics with template particles, Journal of the European Ceramic Society 26 (2006) : 2055–2058
    [83] Hitoshi Ohsato, Yosuke Futamata, Ken-ichi Kakimoto, et al. Microwave dielectric properties of Ba6-3xEu8+2xTi18O54. Ferroelectrics, 2002, 272: 249~254
    [84] Matjavz Valant, Danilo Suvorov, Drago Kolar. X-Ray Investigations and Determination of the Dielectric Properties of the Compound Ba4. 5Gd9Ti18O54. Jpn. J. Appl. Phys., 1996, 35: 144~150
    [85]张欣,庄志强,吕鹏程等. BaO-Sm2O3-TiO2系MWDC的制备工艺研究.功能材料, 2001, 32(1): 88~90
    [86]吴坚强. BaO-TiO2-Sm2O3系微波陶瓷的研究.中国陶瓷工业, 2002, 9(3): 5~9
    [87]郑朝贵,王双艳. BaO-Gd2O3-TiO2体系相关系,相结构与电性质的研究.硅酸盐学报, 1995, 23(5): 584~586
    [88]周东祥,余晓华,王鹤等. BaO-CeO2-TiO2微波介质陶瓷的烧结特性及物相组成.无机材料学报(已收稿)
    [89] Wu Y J, Chen X M. Modified Ba6-3xNd8+2xTi18O54 Microwave Dielectric Ceramics. Journal of the European Ceramic Society, 1999, 19: 1123~1126
    [90] Kensuke Wada, Kakimoto Ken-ichi, Hitoshi Ohsato. Grain-orientation control and microwave dielectric properties of Ba4Sm9. 33Ti18O54 ceramics. Jpn. J. Appl. Phys., 2003, 42: 6149~6153
    [91] Kensuke Wada, Kakimoto Ken-ichi, Hitoshi Ohsato. Microstructure and microwave dielectric properties of Ba4Sm9. 33Ti18O54 ceramics containing columnar crystals. Journal of the European Ceramic Society, 2003, 23: 2535~2539
    [92] Jung Sung-Wook, Lee Joon-Hyung, Kim Jeong-Joo, et al. Phase development andmicrowave dielectric properties of BaO-xSm2O3-4. 5TiO2 (x=0-1. 25) ceramics. Materials Chemistry and Physics, 2003, 79: 282~285
    [93] Huang ChengLiang. Chen YaoChung. Microwave dielectric properties and microstructure of Ba2-xSm4-2x/3Ti8-yO24+2y ceramics. Materials Science and Engineering A, 2003, 345: 106~112
    [94] Anatolii G Belous, Oleg V Ovchar, Matjaz Valanta, et al. Anomalies in the temperature dependence of the microwave dielectric properties of Ba6-xSm8+2x/3Ti18O54. Applied Physics Letters, 2000, 77(11): 1707~1709
    [95] Chen YaoChung, Huang ChengLiang. Microwave dielectric properties of Ba2?xSm4+2/3xTi9O26 ceramics with zero temperature coefficient, Materials Science and Engineering A, 2002, 334: 250~256
    [96] Hitoshi Ohsato, Junichi Sugino, Atsushi Komura, et al. Microwave dielectric properties of Ba4(Nd28/3-yRy)Ti18O54(R=Eu, Dy, Ho, Er and Yb) solid solutions. Jpn. J. Appl. Phys., 1999, 38: 5625~5628
    [97] Noboru Ichinose, Hideyuki Amada, Preparation and microwave dielectric properties of theBaO. (Sm1-xLax)2O3. 5TiO2 ceramic system, Journal of the European Ceramic Society 21 (2001) 2751–2753
    [98] Qin Ni, Liu XiaoQiang, Chen XiangMing. Phase Transition in Ba6-3x(Sm1-yLay) 8+2xTi18O54 (x=0. 5) Ceramics. J. Am. Ceram. Soc., 2006, 89(9): 2796-2803
    [99] Cheng ChungChin, Hsieh TsungEong, Lin INan. Effects of composition on low temperature sinterable Ba-Nd-Sm-Ti-O microwave dielectric materials. Journal of the European Ceramic Society, 2004, 24: 1787~1790
    [100] Wang SeaFue, Hsu YungFu, Wang YuhRuey, et al. Densification, microstructural evolution and dielectric properties of Ba6?3x(Sm1?yNdy)8+2xTi18O54 microwave ceramics. Journal of the European Ceramic Society, 2006, 26: 1629~1635
    [101] Hitoshi Ohsato, Hiromichi Kato, Makoto Mizuta, et al. Microwave Dielectric Properties of the Ba6-3x(Sm1-yRy) 8+2xTi18O54 (R=Nd and La) Solid Solutions with Zero Temperature Coefficient of the Resonant Frequency. Jpn. J. Appl. Phys., 1995, 34: 5413~5417
    [102]吴坚强,朱玉君,胡伯文等. BaO-TiO2-Nd2O3微波陶瓷材料介电性能的改善研究.陶瓷学报, 2003, 24(3): 139~143
    [103]戴维迪,靳正国,步绍静等.组成改性对BaO. Ln2O3. nTiO2介质材料温度稳定性的影响.硅酸盐通报, 2003, 5: 32~35
    [104]杨传仁,叶耀红,杨成韬等. BaO-Nd2O3-Sm2O3-TiO2四元系微波介质陶瓷.硅酸盐通报, 1999, 2: 48~51
    [105]金苗,张中太,唐子龙. Ba6-3x(Sm1-yPry)8+2xTi18O54微波介质陶瓷结构及性能研究.功能材料, 2000, 31(4): 403~405
    [106]吴坚强,施阳和,王海圣等.添加剂对BaO-TiO2-Sm2O3系微波陶瓷改性的研究.中国陶瓷, 2004, 40(1): 17~19
    [107]叶龙,金霞,王筱珍等. Pb掺杂BaO-Nd2O3-TiO2系微波介质陶瓷及其低频测量方法的研究.功能材料, 1998, 29 (1): 75~78
    [108]吴霞苑,石新月,王洪儒等. BaO-PbO-Bi2O3-Nd2O3-TiO2系陶瓷的物相和电性能.天津大学学报, 1994, 27(5): 537~544
    [109]吴霞苑,石新月,尹萍等.中温烧结BaO-PbO-Bi2O3-Nd2O3-TiO2系统陶瓷的组成与介电性能关系研究.硅酸盐学报, 1995(23)3: 259~265
    [110] Lee ChengChung, Lin Pang. Microwave Dielectric Properties and Microstructures of (Ba1-xPbx)O·La2O3·4. 7TiO2 Ceramics. Jpn. J. Appl. Phys., 1998, 37: 878~884
    [111] Qin N, Chen X M. Effects of Sm/Bi co-substitution on microstructures and microwave dielectric characteristics of Ba6?3xLa8+2xTi18O54 (x=2/3) solid solution. Materials Science and Engineering B, 2004, 111: 90~94
    [112] Wu YongJun, Chen XiangMing. Structures and microwave dielectric properties of Ba6?3x(Nd1-y, Biy)8+2xTi18O54(x=2?3) solid solution. J. Mater. Res., 2001, 16(6): 1734~1738
    [113] Nagatomo T, Otagiri T, Suzuki M, et al. Microwave dielectric properties and crystal structure of the tungstenbronze-type like (Ba1-αSrα)6(Nd1-βYβ)8Ti18O54 solid solutions. Journal of the European Ceramic Society, 2006, 26 : 1895~1898
    [114] Cheng PingShou, Yang ChengFu, Chen YingChung, et al. The microwave dielectric properties of (Ba, Sr)Sm2Ti4O12 ceramics (0    [115] Suvorov D, Valant M, Kolar D. The role of dopants in tailoring the microwave Properties of Ba6-xR8+2/3xTi18O54 (R=La-Gd) Ceramics. Journal of Materials Science, 1997, 32: 6483~6488
    [116] Motoaki Imaeda, Kiichiro Ito, Makoto Mizuta, et al. Microwave Dielectric Properties of Ba6-3xSm8+2xTi18O54 Solid Solutions with Sr Substituted for Ba. Jpn. J. Appl. Phys., 1997, 36: 6012~6015
    [117] Makoto Mizuta, Koji Uenoyama, Hitoshi Ohsato, et al. Formation of Tungsten Bronze-Type (Ba6-3xSm8+2x)αTi18-yAlyO54 (α=1+ y/36) Solid Solutions and Microwave Dielectric Properties. Jpn. J. Appl. Phys., 1996, 35: 5065~5068
    [118] Wu JennMing, Chang MingChu, Yao PeiChih. Reaction Sequence and Effects of Calcination and Sintering on Microwave Properties of (Ba, Sr)O-Sm2O3-TiO2 Ceramics. J. Am. Ceram. Soc., 1990, 73(6): 1599~1605
    [119] Wu YongJun, Chen XiangMing. Bismuth/Samarium Cosubstituted Ba6-3xNd8+2xTi18O54 Microwave Dielectric Ceramics. J. Am. Ceram. Soc., 2000, 83(7): 1837~1839
    [120] Choi J H, Kim J H, Lee B T, et al. Microwave dielectric properties of Ba-Nd-Ti-O system doped with metal oxides. Materials Letters, 2000, 44: 29~34
    [121] Takashi Okawa, Masaki Imaeda, Hittoshi Ohsato. Microwave dielectric properties of Bi-added Ba4Nd9. 33Ti18O54 solid solutions. Jpn. J. Appl. Phys., 2000, 39: 5645~5649
    [122] Okawa T, Imaeda M, Ohsato H, et al. Site occupancy of Bi ions and microwave dielectric properties in Bi-doped Ba6?3xR8+2xTi18O54 (R=rare earth, x=2/3) solid solutions. Materials Chemistry and Physics, 2003, 79: 199~203
    [123] Silva A, Azough F, Freer R, et al. Microwave dielectric ceramics in the system BaO-Li2O-Nd2O3-TiO2. Journal of the European Ceramic Society, 2000, 20: 2727~2734
    [124]王梅,赵梅瑜,殷之文.微波介质陶瓷的中低温烧结.无机材料学报, 2002, 17(5): 915~924
    [125]舒新兴,饶平根,陈大博.低温烧结微波介质陶瓷的研究现状及展望.中国陶瓷, 2005, 41(1): 43~48
    [126]陈尚坤,杨辉,王家邦等. BNT陶瓷低温烧成与性能.电子元件与材料, 2004, 23(5): 3~11
    [127]陈尚坤,杨辉,王家邦等. Ba4(Nd0. 85 Bi0. 15)28/3 Ti18O54陶瓷低温化研究,材料科学与工程学报, 2005, 23(1): 84~87
    [128] Zuo MingWen, Li Wei, Shi JianLin, et al. Influence of CuO addition to BaSm2Ti4O12 microwave ceramics on sintering behavior and dielectric properties. Materials Research Bulletin, 2006, 41: 1127~1132
    [129] Yoon JiMi, Lee JungA, Lee JoonHyung, et al. Sintering behavior and microwave dielectric characteristics of BaO-Sm2O3-4TiO2 ceramics with B2O3 and BaB2O4 addition. Journal of the European Ceramic Society, 2006, 26: 2129~2133
    [130] Cho In-Sun, Kim Dong-Wan, Kim Jeong-Ryeol, et al. Low-temperature sintering and microwave dielectric properties of BaO·(Nd1?xBix)2O3·4TiO2 by the glass additions, Ceramics International, 2004, 30: 1181~1185
    [131] Yutaka Ota, Ken-ichi Kakimoto, Hitoshi Ohsato, et al. Low-temperature sintering of Ba6-3xSm8+2xTi18O54 microwave dielectric ceramics by B2O3 and GeO2 addition. Journal of the European Ceramic Society, 2004, 24: 1755~1760
    [132] LIchun Chang, Bishiou Chiou. Effect of glass addition on the sintering behaviors and electrical electrical microwave properties of BaO-Nd2O3-Sm2O3-TiO2. Journal of Materials Science: Materials in Electronics, 2004, 15: 153~158
    [133] ChengChung Lee, Pang Lin. Effect of Glass Addition on Microwave Properties of BaO·La2O3·4. 7TiO2. Jpn. J. Appl. Phys., 1998, 37: 6048~6054
    [134] Sebastian M T, Jawahar I N, Mohanan P. A novel method of tuning the properties of microwave dielectric resonators. Materials Science and Engineering B, 2003, 97: 258~264
    [135] Ohsato H. Science of tungsten bronze-type like Ba6?3xR8+2xTi18O54 (R=rare earth) microwave dielectric solid solutions. Journal of the European Ceramic Society, 2001, 21: 2703~2711
    [136] Hitoshi Ohsato, Toshiyuki Ohhashi, Susumu Nishigaki, et al. Formation of Solid Solutions of New Tungsten Bronze-Type Microwave Dielectric Compounds Ba6-3xR8+2xTi18O54 (R=Nd and Sm, 0≤x≤1). Jpn. J. Appl. Phys., 1993, 32:4323~4326
    [137] Hitoshi Ohsato, Toshiyuki Ohhashi, Hiromichi Kato, et al. Microwave Dielectric Properties and Structure of the Ba6-3xSm8+2xTi18O54 Solid Solutions. Jpn. J. Appl. Phys., 1995, 34: 187~191
    [138] Negas T, Davies P K. Influence of chemistry and processing on the electrical properties of Ba6-3xLn8+2xTi18O54 solid solutions. Material and Processes for Wireless Communications. Ceramic Transactions., 1995, 53: 196~197
    [139] Matveeva R G, Varforomeev M B, ll’yuschenko L S. Refinement of the composition crystal structure of Ba3. 75Pr9. 5Ti18O54. J. Inorg. Chem., 1984, 29: 17~19
    [140] Hitoshi Ohsato, Susumu Nishigaki, Takashi Okuda. Superlattice and dielectric propertiesof BaO-R2O3-TiO2 (R=La, Nd and Sm) microwave dielectric compounds. Jpn. J. Appl. Phys., 1992, 31: 3136~3138
    [141] Okudera H, Nakamura H, Toraya H, et al. Tungsten Bronze-Type Solid Solutions Ba6-3xSm8+2xTi18O54(x=0. 3, 0. 5, 0. 67, 0. 71) with Superstructure. Journal of Solid State Chemistry, 1999, 142: 336-343
    [142] Rick Ubic, Ian M Reaney, William E Lee. Space Group Determination of Ba6?3xNd8+2xTi18O54. J. Am. Ceram. Soc., 1999, 82(5): 1336~1338,
    [143] Ohsato H, Futamata Y, Sakashita H, et al. Configuration and coordination number of cation polyhedra of tungstenbronze-type-like Ba6-3xSm8+2xTi18O54 solid solutions. Journal of the European Ceramic Society, 2003, 23: 2529~2533
    [144] Ohsato H, Kan A, Kakimoto K, et al. Microwave Dielectric Properties Correlated to Crystal Structure: An Analysis, IEEE, 2002: 75~78
    [145] Chen XiangMing, Li Yi. A and B Site Cosubstituted Ba6-3xSm8+2xTi18O54 Microwave Dielectric Ceramics. J. Am. Ceram. Soc., 2002, 85(3): 579~584
    [146] Takashi Okawa, Masaki Imaeda, Hitoshi Ohsato. Site occupancy of Bi ions and microwave dielectric properties in Ba6?3xNd8+2xTi18O54 solid solutions. Materials Science and Engineering B, 2002, 88: 58~61
    [147] Jeong Seog Kim, Chae II Cheon, TaRyeong Park, et al. Dielectric properties and crystal structure of Ba6–3x(Nd, M)8+2xTi18O54 (M=La, Bi, Y) microwave ceramics. Journal of Materials Science, 2000, 35: 1487~1494
    [148] Masafumi Suzuki, Hitoshi Ohsato, Ken-ichi Kakimoto, et al. Crystal structure andmicrowave dielectric properties of (Ba1?αSrα)6?3xSm8+2xTi18O54 solid solutions. Journal of the European Ceramic Society, 2006, 26: 2035~2038
    [149] Heung Soo Park, Ki Hyun Yoon, Eung Soo Kim. Effect of bond valence on microwave dielectric properties of complex perovskite ceramics. Materials Chemistry and Physics, 2003, 79: 181~183
    [150] Hornebecq V, Elissalde C, Porokhonskyy V, et al. Dielectric relaxation in tetragonal tungsten bronze ceramics. Journal of Physics and Chemistry of Solids, 2003, 64: 471~476
    [151]姜从盛.微波介质陶瓷和复合钙钛矿结构的研究.武汉理工大学学报, 2004, 26(4): 18~21
    [152]徐钦华,陈林丽,周湖云等.钨青铜TB型晶体材料的分子设计及其新进展.材料导报, 2003, 17(1): 24~27
    [153]郑兴华,丁剑,梁国栋等.钨青铜型TB材料.江苏陶瓷, 2005, 38(4): 19~23
    [154]郑兴华,周小红,梁炳亮等.新型钨青铜型高介微波陶瓷的研究进展.电工材料, 2005, 4: 29~32
    [155] Tang C C, Roberts M A, Azough F, et al. Structural studies of Ba6-3xNd8+2xTi18O54 microwave dielectric ceramics at T=10-295K. Nuclear Instruments and Methods in Physics Research, 2003, 199: 64~66
    [156] Matjaz Valant, Danilo Suvorov, Claudia J Rawn. Intrinsic reasons for variations in dielectric properties of Ba6?3xR8+2xTi18O54 (R=La-Gd) solid solutions. Jpn. J. Appl. Phys., 1999, 38: 2820~2826
    [157] Belous A G. Microwave dielectrics with enhanced permittivity. Journal of the European Ceramic Society, 2006, 26: 1821~1826
    [158] Belous A G, Ovchar O V, Valant M, et al. The effect of partial isovalent substitution in the A-sublattice on MW properties of materials based on Ba6-xLn8+2x/3Ti18O54 solid solutions. Journal of the European Ceramic Society, 2001, 21: 2723–2730
    [159] Hiroshi Kobayashi, Yasuhiko Hosokawa. Dielectric Constant Characteristics of a New Composite Dielectric Material. J. Am. Ceram. Soc., 1990, 73(6): 1774~1776
    [160] Hitoshi Ohsato, Masaki Imaeda. The quality factor of the microwave dielectric materials based on the crystal structure-as an example: the Ba6?3xR8+2xTi18O54.Materials Chemistry and Physics, 2003, 79: 208~212
    [161] Hitoshi. Ohsato, Motoaki Imaeda, Yuji Takagi, et al. Microwave quality factor improved by ordering of Ba and rare-earth on the tungsten bronze-type Ba6-3xR8+2xTi18O54(R=La, Nd and Sm) solid solutions, IEEE, 1998: 509~512
    [162] Hiroshi Tamura. Microwave dielectric losses caused by lattice defects. Journal of the European Ceramic Society, 2006, 26: 1775~1780
    [163] Anatolii Belous, Oleg Ovchar, Matjaz Valant, et al. Abnormal behavior of the dielectric parameters of Ba6?3xLn8+2xTi18O54 (Ln=La–Gd) solid solutions. Journal of applied physics. 2002, 92(7): 3917~3922
    [164] Kajfez D. Temperature characterization of dielectric-resonator materials. Journal of the European Ceramic Society, 2001, 21: 2663~2667
    [165] Colla E L, Reaney I M, Setter N. Effect of structural changes in complex perovskites on the temperature coefficient of the relative permittivity. J. Appl. Phys., 1993, 74 (5): 3414~3425
    [166]樊慧庆.驰豫型铁电体的宏观介电性能与极化机制研究.材料导报, 1998, 12(5): 70~70
    [167]吕文中,汪小红.电子材料物理.北京:电子工业出版社, 2002: 110~134
    [168]李德明.关于静电场中介质球电场的分析讨论.内蒙古电大学刊, 2005, 14: 63~64
    [169]李景德,符德胜,雷德铭.晶界层陶瓷慢极化机理,无机材料学报, 1996, 11(3): 471~475
    [170]方俊鑫,殷之文.电介质物理学.北京:科学出版社, 1989: 25~45
    [171]方俊鑫,殷之文.电介质物理学.北京:科学出版社, 1989: 327~341
    [172]方俊鑫,殷之文.电介质物理学.北京:科学出版社, 1989: 45~63
    [173]胡明哲.铅基钙钛矿高介电常数微波介质陶瓷的改性研究, [博士学位论文].武汉:华中科技大学图书馆, 2004
    [174]张良莹,姚熹.电介质物理.西安:西安交通大学出版社, 1991: 53~128
    [175]白学义.介质极化与场能关系的定量分析.河南电大, 1994(增刊): 51~52
    [176]方菲,张孝文,李龙土等.复合钙钛矿结构铁电陶瓷钛酸铅钙的介电弛豫特性.材料研究学报, 1997, 11(1): 89~92
    [177]范仰才,陆夏莲,李景德.钙钛矿结构极性相变的晶格动力学图像.哈尔滨理工大学学报, 2002, 7(6): 12~13
    [178]李智强,陆夏莲,陈敏等.钙钛矿结构中的简谐子软模.物理学报, 2002, 51(7): 1581~1585
    [179]石德珂.材料科学基础.第二版.北京:机械工业出版社, 2003: 138~144
    [180]胡志强.无机材料科学基础教程.北京:化学工业出版社, 2004: 71~81
    [181]杨秋红,金应秀,徐军.固溶率因子R对( Pb, Ca, La)( Fe, Nb)O3陶瓷微波介电性能的影响.硅酸盐学报, 2002, 30(5): 554~558
    [182]黄静,周东祥,胡明哲等. Ln系稀土元素对微波介质陶瓷的活性作用机理.华中科技大学学报(自然科学版), 2005(33)2: 19~21
    [183] Koichi Fukuda, Ryozo Kitoh, Far-infrared reflection spectra of dielectric ceramics for microwave applications. J. am. ceram. soc., 1994, 77(1): 149~154
    [184] Rawn C J, Makovec D, Golic L, et al. Mater. Res. Bull. 1997, 32(12): 1657~1672
    [185] Sreemoolanadhan H, Sebastian M T, Ratheesh R, et al. Microwave dielectric properties of BaO-2CeO2-nTiO2 ceramics. Journal of Solid State Chemistry, 2004, 177 : 3995~4000
    [186] Mudrodubova L P, Lisker K E, Totenberg B A, et al. Ser. Radiodet. Radiokomp., 1982, 1: 3–8
    [187] Hoffmann C, Waser R, Ferroelectrics, 1997, 201: 127-135
    [188] Rathesh R, Sebastian M T, Mohanan P, et al. Microwave characterisation of BaCe2Ti5O15 and Ba5Nb4O15 ceramic dielectric resonators using whispering gallery mode method. Materials Letters, 2000, 45: 279~285
    [189] Prabhakar P Rao, Ravindran Nair W K, Chandran M R, et al. Grain Growth of Microtubes During Sintering in Semiconducting Ba3Ce3-xBixTi5Nb5O30 (x=0. 5, 1. 0, 2. 0, and 3. 0) Ceramics. J. Am. Ceram. Soc., 2005, 88(6): 1662~16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700