用户名: 密码: 验证码:
DBP/DEHP单一及与Pb复合污染对土壤微生物量碳及土壤酶的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
邻苯二甲酸酯(PAEs)类化合物是目前环境中普遍存在的污染物之一,主要用作塑料增塑剂和农药载体,目前全球增塑剂市场的80%为酞酸酯类化合物。PAEs与塑料之间结合并不紧密,很容易脱离塑料本体进入环境,因此塑料制品的广泛使用导致环境中PAEs大量增加。研究发现,酞酸酯类化合物具有潜在的生物毒性,已被很多国家限制使用,美国国家环保局将其列为环境优先污染物,PAEs也被人们称为“第二个全球性PCB污染物”。
     环境中各种污染物并不是孤立存在的,大多数是多种污染物共存形成的复合污染,其中有机物与重金属复合污染是一类主要的污染类型。本文选取两种典型的酞酸酯类化合物邻苯二甲酸二丁酯(DBP)、邻苯二甲酸二(2-乙基己基)酯(DEHP)和重金属Pb为研究对象,考察实际环境条件下不同土地利用方式土壤中DBP/DEHP含量的年度变化;在实验室模拟条件下研究不同浓度DBP/DEHP单一及与Pb复合体系在土壤环境中的降解动态,同时考察污染体系对四种土壤酶(过氧化氢酶、转化酶、脲酶和磷酸酶)活性、微生物生物量碳和代谢熵的影响,以期为酞酸酯与铅复合污染对土壤微生态环境的影响及污染控制研究提供科学依据。研究结果如下:
     1.不同土地利用方式土壤中DBP/DEHP的年度变化
     (1)从年度(2007年4月至2008年4月)监测结果可以发现,大棚土壤中DBP(7.70-14.63 mg/kg)和DEHP(4.92-10.82 mg/kg)含量高于大田土壤DBP(2.23-7.31 mg/kg)和DEHP(3.34-9.53 mg/kg)的含量,其中DBP的差异更显著,表明DBP可能更容易从塑料本体脱离进入周围环境。
     (2)大田和大棚土壤DBP和DEHP的含量在4月至9月期间逐渐升高,其中大田土壤DBP/DEHP含量在9月份达到最大值,随后逐渐降低;大棚土壤DBP含量分别在9月和11月达到最大值,DEHP含量则分别在9月、11月和次年4月达到最大值,不同大棚土壤DBP和DEHP的含量变化存在差异,可能是由于不同大棚种植的农作物及施用农药种类不同而导致。
     2. DBP/DEHP单一及与Pb复合污染的生物降解
     (1)土壤中DBP/DEHP主要以生物降解为主,不同浓度DBP/DEHP的生物降解过程可用一级动力学方程来描述(R2均大于0.9),土壤中二者浓度越高半衰期越长;在实验浓度范围(10-1000mg/kg)内,DBP在土壤中的生物降解半衰期为4.38-15.1天,DEHP在土壤中的生物降解半衰期为11.09-26.56天,且相同浓度处理DBP的半衰期小于DEHP,表明DBP的生物降解性高于DEHP。
     (2)复合污染体系中,Pb(300mg/kg)对DBP/DEHP在土壤中的生物降解有抑制作用,其中DBP的生物降解性高于DEHP;Pb胁迫下DBP/DEHP在土壤中的生物降解动态仍可用一级动力学方程描述(R2均大于0.9),与同浓度(10-500mg/kg)DBP/DEHP单一污染处理相比,Pb胁迫下DBP/DEHP生物降解半衰期显著延长,分别为6.19-19.21天和16.82-47.48天。
     3. DBP/DEHP单一及与Pb复合污染对土壤微生物生物量碳(Cmic)和代谢熵(qCO2)的影响
     (1)不同浓度DBP/DEHP处理,土壤Cmic呈现降低-升高-降低-恢复稳定的趋势;相同浓度(100mg/kg)的DBP/DEHP处理,其土壤Cmic的峰值响应不同,DBP处理组的峰值(148.53mg C/kg)出现在培养第6天,DEHP处理组的峰值(110.54 mg C/kg)出现在培养第15天,且相应的DBP处理土壤的qCO2低于DEHP,说明DBP比DEHP更容易被土壤微生物利用,DBP的碳源利用率高于DEHP。
     (2)DBP/DEHP与Pb(300mg/kg)复合污染对土壤微生物的影响并非简单相加作用,在培养初期(25-35天)DBP/DEHP与Pb交互作用对土壤微生物生物量碳的影响多小于两者单独作用之和,随着培养时间延长(从培养第35天开始至培养结束),交互作用逐渐高于单独作用之和,但DBP/DEHP的浓度变化对交互作用影响不显著。随培养时间的变化Pb对交互作用的影响不同,可能的原因是培养初期微生物将其作为微量元素加以利用,培养后期Pb与DBP/DEHP及其中间降解产物形成了毒性更高的复合体。
     4. DBP/DEHP单一及与Pb复合污染对土壤酶活性的影响
     (1) DBP/DEHP对土壤过氧化氢酶和磷酸酶主要表现为激活效应;DBP/DEHP对土壤转化酶的影响不同,DEHP对转化酶以抑制作用为主,DBP在低浓度(10-100mg/kg)时对转化酶有抑制作用,高浓度(500-1000mg/kg)时刺激了转化酶活性;DBP/DEHP对脲酶均表现为抑制作用。从培养第25-35天开始,各处理土壤酶活性有逐步恢复且趋于稳定的趋势。
     (2)对比DBP/DEHP单一及与Pb复合污染对土壤酶活性的作用可以发现,在复合污染体系中,各处理土壤酶活性从培养第42天开始逐渐表现出趋于稳定的趋势,即Pb的加入使复合处理体系土壤酶活性恢复并趋于稳定的时间有所延长。
     (3)与土壤微生物生物量碳和代谢熵相比,DBP/DEHP的浓度变化对土壤酶活性的影响更显著。
Phthalate esters (PAEs) compounds are prevalent in the current environment. They are mainly used for plastic plasticizers. In the global plasticizer market, 80% were the phthalate esters. PAEs are not chemical bonded with the PVC resins, which would bring about pollutions for water or soil. Numerous studies found that phthalate esters had potential biological toxicity. In many countries, the use of PAEs was restricted. The U.S. National Environmental Protection Agency lists them as environmental priority pollutants, PAEs have also been known as“the second global PCB pollutants”.
     A variety of pollutants in the environment was not exist alone. Most of pollutants are coexistent, including organic and heavy metal pollution. In this work, the concentrations of DBP and DEHP in farmland and greenhouse soil were monitored,DBP and DEHP were chose to study their degradation and impact in soil biochemical indicators (microbial biomass, metabolic quotients, catalase, invertase, urease and phosphatase). Their combined pollutions with Pb on these indicators were also studied. The findings are as follows:
     1. The concentrations of DBP and DEHP in soil were determined.
     (1) The same plastic greenhouses and field soil were selected to determine the concentrations of DBP and DEHP in the whole year. The concentrations of DBP (7.70-14.63 mg/kg) and DEHP (4.92-10.82 mg/kg) in field soil were lower than in greenhouses (2.23-7.31 mg/kg for DBP,3.34-9.53 mg/kg for DEHP). The results showed that DBP may be more easily from the plastic out into the surrounding environment.
     (2) DBP and DEHP contents were increased gradually from April to September in both greenhouses and farmland soils. The concentrations of DBP and DEHP in field soils reached the maximum and reduced later. The DBP in the greenhouse soil reached the maximum in September and November. The content of DEHP reached the maximum in September, November and April of the following year.
     2. Biodegradation of DBP and DEHP in the case of single and complex pollutions with Pb in soil
     (1) DBP/DEHP in soil were degradated mainly through biodegradation. Different concentrations of DBP/DEHP biodegradation processes could be described by pseudo first order reaction (R2 > 0.9). The higher DBP/DEHP concentration in soil, the longer half-life was. In the experimental concentration range, the half-life of DBP biodegradation in soil were 4.38-15.1 days, DEHP were 11.09-26.56 days. The half-life of DBP was less than DEHP in the same concentration, indicating that the biodegradability of DBP was better than DEHP.
     (2) Pb could inhibit the biodegradation of DBP/DEHP in soil. Biodegradation of DBP in the complex system was still higher than DEHP. When Pb was added, the biodegradation of DBP/DEHP could be also described by pseudo first order reaction (R2 > 0.9). The half-life of DBP/DEHP increased with the increasing initial concentrations. Compared with the same concentration of DBP/DEHP in single treatment, the half-life of DBP/DEHP biodegradation in complex pollutions was significantly longer (extended to 6.19-19.21 and 16.82-47.48 days, respectively).
     3. The effect of DBP/DEHP on soil microbial biomass carbon (Cmic) and metabolic quotient (qCO2) in single and complex pollution with Pb
     (1) The changement of microbial biomass carbon was lower-higher-lower-restore stability. The highest value of Cmic in DBP (148.53mg C/kg) treated soil was higher than DEHP (110.54 mg C/kg). The value of qCO2 in DBP treated soil was lower than DEHP. This result showed that the carbon utilization ratio of DEHP was lower than that of DBP.
     (2) The impact of DBP/DEHP in complex pollution with Pb on soil microbes was not a simple additive effect. In the prophase (25-35 days), the interaction of DBP and Pb on the microbial biomass carbon were smaller than the DBP and Pb alone. In the later experiment, (from 35 days to the end), the interaction gradually higher than the sum of DBP and Pb single. No significant difference was found in the different concentrations of DBP/DEHP and Pb complex treatments on the interaction of soil microbial biomass C.
     4. The influence of DBP/DEHP on soil enzyme activities in single and complex pollution with Pb
     (1) The activities of catalase and phosphatase were mainly by DBP/DEHP. The effects of DBP/DEHP on soil invertase were different. The activity of invertase were mainly inhibited by DEHP. DBP inhibited the activity of invertase at low concentrations (10-100mg/kg) and stimulated it at high concentrations (500-1000mg/kg). The activity of urease were inhibited by DBP/DEHP. From 25-35 days, the soil enzyme activities gradually restored and tended to stability.Cultured for 25-35 days from the start, the soil gradually restored the enzyme activity and tend to a stable trend.
     (2) Compared DBP/DEHP single and compound pollution could found that in the compound pollution soil, the activities of soil enzymes began to show a stable trend from the 42th day, i.e. the introduce of Pb prolonged the trend of soil enzyme activities restoring to stability.
     (3) Compared with microbial biomass carbon and metabolic quotient, the soil enzyme were nobatly influenced by the changement of DBP/DEHP concentrations in soil.
引文
[1]赵文红,厉曙光,蔡智鸣.酞酸酯类增塑剂毒理研究进展[J].环境与职业医学, 2003, 20(2): 135-138.
    [2]夏凤毅.邻苯二甲酸酯生物降解性研究[D]: [博士学位论文].杭州:浙江大学环资学院、环境工程系, 2002.
    [3]吴杰民.聚烯烃类农膜及酞酸酯类(PAEs)在环境中的残留及生物降解前景[J].环境科学, 1994, 15(2): 77-80.
    [4]骆祝华,黄翔玲,叶德赞.环境内分泌干扰物——邻苯二甲酸酯的生物降解研究进展[J].应用与环境生物学报, 2008, 14(6): 890-897.
    [5]胡雄星,韩中豪,刘必寅,等.邻苯二甲酸酯的毒性及其在环境中的分布[J].环境科学与管理, 2007, 32(1): 37-40.
    [6] Charles A. Staples,Dennis R. Peterson, Thomas F. Parkerton, et al. The environmental fate of phthalate esters: a literature review[J]. Chemosphere, 1997, 35(4): 667-749.
    [7]石万聪,赵晨阳.增塑剂的毒性与相关法规[J].塑料助剂, 2007, (2): 46-51.
    [8] Yin R., Lin X.G., Wang S.G., et al. Effect of DBP/DEHP in vegetable planted soil on the quality of capsicum fruit[J]. Chemosphere, 2003, (50):801-805.
    [9] Mo Ce Hui, Cai Quan Ying, Tang Shi Rong, et al. Polycyclic Aromatic Hydrocarbons and Phthalic Acid Esters in Vegetables from Nine Farms of the Pearl River Delta, South China[J]. Arch Environ Contam Toxicol, 2009, 56(2): 181-189.
    [10] Giuseppe Latini, Alberto Verrotti, Claudio De Felice. DI-2-ethylhexyl phthalate and endocrine disruption: a review[J]. Current drug targets - immune, endocrine & metabolic disorders, 2004, (4): 37-40.
    [11] L. Earl Gray Jr., Joseph Ostby, Johnathan Furr, et al. Perinatal Exposure to the Phthalates DEHP, BBP, and DINP, but Not DEP, DMP, or DOTP, Alters Sexual Differentiation of the Male Rat[J]. Toxicological Sciences, 2000(58): 350–365.
    [12] Mariko Matsumoto, Mutsuko Hirata-Koizumi, Makoto Ema. Potential adverse effects of phthalic acid esters on human health: A review of recent studies on reproduction[J]. Regulatory Toxicology and Pharmacology, 2008, (50): 37-49.
    [13] Zhu Ji Ping, Phillips Susan P., Feng Yong Lai, er al. Phthalate Esters in Human Milk: Concentration Variations over a 6-Month Postpartum Time[J]. Environ Sci Technol, 2006(40): 5276-5281.
    [14]王杉霖,张剑波.中国居民及动植物的环境激素暴露研究现状和建议[J].环境污染与防治, 2005, 27(9): 695-698.
    [15] Tabacova S, Little R, Balabaeva L. Maternal exposure to phthalates and complications of pregnancy[M]. Epidemiology, 1999, 10 (Suppl): S127.
    [16] Van Wezel A P, Van Vlaardingen P, Posthumus R, et al. Environmental risk limits for two phthalates,with special emphasis on enphasis on endocrine disruptive properties[J]. Ecotoxicol Environ Saf, 2000, 46 (3): 3205-3214.
    [17] Ankely G, Mihaich E, Stahl R, et al. Overview of a workshop on screening methods for detecting potential (anti-) estrogenic/androgenic chemicals in wildlife[J]. Environ Toxicol Chem, 1998, 17 (1): 68-87.
    [18]任仁.警惕邻苯二甲酸酯污染[J].大学化学, 2003, 18(6): 33-36.
    [19] Allen D. Godwin.增塑剂的选择与邻苯二甲酸酯的替代品[J].塑料助剂, 2009, (2): 10-15.
    [20]施京京.欧盟公布“双绿”指令修订案[J].中国质量技术监督, 2009, (3):66.
    [21]廖正品.可持续发展中的中国塑料工业[J].塑料制造, 2009,27(5): 20-46.
    [22]张娜,刘欣.邻苯二甲酸酯类化合物的研究进展[J].环境科学导刊, 2009, 28(3):25-28.
    [23]陈英旭,沈东升,胡志强,等.酞酸酯类有机毒物在土壤中降解规律的研究[J].环境科学学报, 1997, 17(3): 340-345.
    [24]黄昕,厉曙光.酞酸酯毒性作用及其机制的研究进展[J].环境与职业医学, 2004, 21(3): 198-201,204.
    [25]丁鹏,赵晓松,刘剑峰.酞酸酯类化合物(PAEs)研究新进展[J].吉林农业大学学报, 1999, 21(3): 119-123,128.
    [26]陈玺,孙继朝,黄冠星,等.酞酸酯类物质污染及其危害性研究进展[J].地下水, 2008, 30(2): 57-59.
    [27]王明林.蔬菜大棚中邻苯二甲酸酯分析方法及环境行为的研究[D]: [博士学位论文].泰安:山东农业大学资源与环境学院, 2007.
    [28]曾巧云,莫测辉,蔡全英.农业土壤中邻苯二甲酸酯的污染现状与危害[J].广东农业科学, 2009, (7): 90-96.
    [29] Xu Gang, Li Fasheng, Wang Qunhui. Occurrence and degradation characteristics of dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP) in typical agricultural soils of China[J]. Science of the Total Environment, 2008, (393): 333-340.
    [30]徐刚,李发生,汪群慧.模拟酸雨对聚氯乙烯农膜中增塑剂析出的影响[J].农业环境科学学报, 2006, 25(6): 1625-1630.
    [31] M.J. Bauer, R. Herrmann. Estimation of the environmental contamination by phthalic acid esters leaching from household wastes[J]. The Science of the Total Environment, 1997, (208): 49-57.
    [32] Guo Bao Yuan, Wen Bei, Shan Xiao Quan, et al. Separation and determination of phthalates by micellar electrokinetic chromatography[J]. Journal of Chromatography A, 2005, (1095): 189–192.
    [33] Hu Xiao Yu, Wen Bei, Shan Xiao Quan. Survey of phthalate pollution in arable soils in China[J]. J. Environ. Monit., 2003, (5): 649–653.
    [34]关卉,王金生,万洪富,等.雷州半岛典型区域土壤邻苯二甲酸酯(PAEs)污染研究[J].农业环境科学学报, 2007, 26(2): 622-628.
    [35]蔡全英,莫测辉,李云辉,等.广州、深圳地区蔬菜生产基地土壤中邻苯二甲酸酯(PAEs)研究[J].生态学报, 2005, 25(2): 283-288.
    [36] Hermann Frommea, Thomas Küchlerb, Occurrence of phthalates and bisphenol A and Fin the environment[J]. Water Research, 2002, (36): 1429-1438.
    [37] Matteo Vitali, Maurizio Guidotti, Giannetto Macilenti, et al. Phthalate esters in freshwaters as markers of contamination sources—a site study in italy[J]. Environment International, 1997, 23(3): 337-347.
    [38] Wang X. T., Ma L. L., Sun Y. Z., et al. Phthalate Esters in Sediments from Guanting Reservoir and the Yongding River, Beijing, People’s Republic of China[J]. Bulletin of Environmental Contamination and Toxicology. 2006, (76): 799–806.
    [39]陆继龙,郝立波,王春珍,等.第二松花江中下游水体邻苯二甲酸酯分布特征[J].环境科学与技术, 2007, 30(12): 35-37.
    [41]刘文新,凌晰,陈江麟,等.黄海近岸表层沉积物中DDTs、PCBs与酞酸酯的地理分布[J].环境科学, 2008, 29(7): 1761-1767.
    [41] Wang Fan, Xia Xing hui, Sha Yu juan. Distribution of Phthalic Acid Esters in Wuhan section of the Yangtze River, China[J]. Journal of Hazardous Materials, 2008, (154): 317–324.
    [42] Sha Yu juan, Xia Xinghui, Yang Zhifeng, et al. Distribution of PAEs in the middle and lower eaches of the Yellow River, China[J]. Environ Monit Assess, 2007, (124): 277-287.
    [43] Liu Wen Xin, Chen Jiang Lin, Hu Jing, et al. Multi-residues of organic pollutants in surface sedimentsfrom littoral areas of the Yellow Sea, China[J]. Marine Pollution Bulletin, 2008, (56): 1091-1103.
    [44] Huang Po Chin, Tien Chien Jung, Sun Yih Min, et al. Occurrence of phthalates in sediment and biota: Relationship to aquatic factors and the biota-sediment accumulation factor[J]. Chemosphere 2008, (73): 539-544.
    [45] Yuan S.Y., Liu C., Liao C.S., et al. Occurrence and microbial degradation of phthalate esters in Taiwan river sediments[J]. Chemosphere, 2002, (49): 1295-1299.
    [46]蔡全英,莫测辉,朱夕珍,等.城市污泥与稻草堆肥中邻苯二甲酸酯(PAEs)的研究[J].应用生态学报, 2003, 14(11): 1993-1996.
    [47] Laturnus F, von Arnold K, Gr?n C. Organic Contaminants from Sewage Sludge Applied to Agricultural Soils[J]. Env Sci Pollut Res, 2007, (1): 53-60.
    [48]马娜,陈玲,熊飞.我国城市污泥的处置与利用[J].生态环境, 2003, 12(1): 92-95.
    [49]余杰,田宁宁,王凯军,等.中国城市污水处理厂污泥处理、处置问题探讨分析[J].环境工程学报, 2007, 1(1): 82-86.
    [50] Zheng, Z., He, P-J., Fu, Q., et al. Partition of six phthalic acid esters in soluble and solid residual fractions of wasterwater[J]. Environmental Technology, 2008, 29: 343-350.
    [51]莫测辉,蔡全英,吴启堂,等.我国城市污泥中邻苯二甲酸酯的研究[J].中国环境科学, 2001, 21(4): 362-366.
    [52]胡晓宇,张克荣,孙俊红,等.中国环境中邻苯二甲酸酯类化合物污染的研究[J].中国卫生检验杂志, 2003, 13(1): 9-14.
    [53] Xie Zhi Yong, Ebinghaus Ralf, Temme Christian, et al. Occurrence and Air-Sea Exchange of Phthalates in the Arctic[J]. Environ Sci Technol, 2007,(41): 4555-4560.
    [54] Zhang Dan, Liu Hui, Liang Ying, et al. Distribution of phthalate esters in the groundwater of Jianghan plain, Hubei, China[J]. Front. Earth Sci. China, 2009, 3(1): 73-79.
    [55]邵晓玲,马军,文刚.松花江流域某自来水厂中内分泌干扰物的调查[J].环境科学, 2008, 29(10): 2723-2728.
    [56]黄冠星,孙继朝,陈玺,等.佛山东部地下水酞酸酯分布特征及其成因探讨[J].中山大学学报(自然科学版), 2008, 47(6): 70-75.
    [57]邵晓玲,马军.松花江水中13种内分泌干扰物的初步调查[J].环境科学学报, 2008, 28(9): 1910-1915.
    [58] Zeng Feng, Cui Kun Yan, Xie Zhi Yong, et al. Occurrence of phthalate esters in water and sediment of urban lakes in a subtropical city, Guangzhou, South China[J]. Environment International, 2008, (34), 372-380.
    [59] Johnny Gasperi, Stéphane Garnaud, Vincent Rocher, et al. Priority pollutants in surface waters and settleable particles within a densely urbanised area: Case study of Paris (France)[J]. Science of the Total Environment 2009, (407): 2900-2908.
    [60] Marie-Jeanne Teil, Martine Blanchard, Cendrine Dargnat, et al. Occurrence of phthalate diesters in rivers of the Paris district (France)[J]. Hydrological Processes, 2007, (21): 2515-2525.
    [61] Willie J. G. M., Peijnenburg, Jaap Struijs. Occurrence of phthalate esters in the environment of the Netherlands[J]. Ecotoxicology and Environmental Safety, 2006, (63): 204-215.
    [62] Tan G. H.. Residue Levels of Phthalate Esters in Water and Sediment Samples from the Klang River Basin[J]. Bulletin of Environmental Contamination and Toxicology, 1995, (54): 171-176.
    [63] Hiroshi Asakura, Toshihiko Matsuto, Nobutoshi Tanaka. Behavior of endocrine-disrupting chemicals in leachate from MSW landfill sites in Japan[J]. Waste Management 2004, (24): 613-622.
    [64] Francisco JoséLópez-Jiménez, Soledad Rubio, Dolores Pérez-Bendito. Determination of phthalate esters in sewage by hemimicelles-based solid-phase extraction and liquid chromatography-mass spectrometry[J]. Analytica Chimica Acta, 2005, (551): 142-149.
    [65]郑晓英,周玉文,王俊安.城市污水处理厂中邻苯二甲酸酯的研究[J].给水排水, 2006, 32(3): 19-22.
    [66] Teil M.J., Blanchard M., Chevreuil M.. Atmospheric fate of phthalate esters in an urban area (Paris-France)[J]. Science of the Total Environment 2006, (354): 212-223.
    [67]王平,王文斌,吴翔.特定环境下大气颗粒物中酞酸酯的分析与研究[J].中国环境监测, 2005, 21(4): 7-9.
    [68]曾鸣,吕喆,解淑艳.夏季大气中酞酸酯类污染物分析及污染源探讨[J].安徽大学学报(自然科学版), 2006, 30(4): 88-90.
    [69]仝青,冯沈迎,阮玉英,等.呼和浩特市不同粒径空气颗粒物上酞酸酯的污染[J].环境科学学报, 1999, 19(2): 159-163.
    [70] Wang P., Wang S.L., Fan C.Q.. Atmospheric distribution of particulate- and gas-phase phthalic esters (PAEs) in a Metropolitan City, Nanjing, East China[J]. Chemosphere, 2008, (72): 1567-1572.
    [71]李海涛,黄岁.水环境中邻苯二甲酸酯的迁移转化研究[J].环境污染与防治, 2006, 28 (11): 853-858.
    [72]戴树桂.环境化学[M].北京:高等教育出版社, 1997.
    [73]陈波,林建国,陈清.水环境中的邻苯二甲酸酯类污染物及其环境行为研究[J].环境科学与管理, 2009, 34(2): 71-75.
    [74] Zhou Q.H., Wu Z.B., Cheng S.P.. Enzymatic activities in constructed wetlands and di-n-butyl phthalate (DBP) biodegradation[J]. Soil Biology & Biochemistry 2005, (37): 1454-1459.
    [75] Nalli S., Cooper D.G., Nicell J.A.. Biodegradation of plasticizers by Rhodococcus rhodochrous[J]. Biodegradation, 2002, (13): 343-352.
    [76] James Gartshore, David G. Cooper, Jim A. Nicell. Biodegradation of Plasticizers by Rhodotorula bubra[J]. Environmental Toxicology and Chemistry, 2003, 22(6): 1244-1251.
    [77] Zeng Feng, Cui Kunyan, Li Xiangdong, et al. Biodegradation kinetics of phthalate esters by Pseudomonas fluoresences FS1[J]. Process Biochemistry, 2004, (39): 1125-1129.
    [78] Wang Jianlong, Zhao Xuan, Wu Weizhong. Biodegradation of phthalic acid esters (PAEs) in soil bioaugmented with acclimated activated sludge[J]. Process Biochemistry, 2004, (39): 1837-1841.
    [79] Chang B.V., Yang C.M., Cheng C.H.. Biodegradation of phthalate esters by two bacteria strains[J]. Chemosphere, 2004, (55): 533-538.
    [80] Wang Jianlong, Liu Ping, Shi Hanchang, et al. Biodegradation of phthalic acid ester in soil by indigenous and introduced microorganisms[J]. Pergamon, 1997, 35(8): 1747-1754.
    [81]王宏镔,束文圣,蓝崇钰.重金属污染生态学研究现状与展望[J].生态学报, 2005, 25(3): 596-605.
    [82] Smith Stephen R.. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge[J]. Environment International, 2009, (35): 142-156.
    [83] David William O’Connell, Colin Birkinshaw, Thomas Francis O’Dwyer. Heavy metal adsorbents prepared from the modification of cellulose: A review[J]. Bioresource Technology, 2008, (99): 6709-6724.
    [84] Silvia M. Sella, Annibal D. Pereira Nettoa, Emmanoel Vieira da Silva Filho, et al. Short-term and spatial variation of selected metals in the atmosphere of Niterói City, Brazil[J]. Microchemical Journal, 2004, (78): 85-90.
    [85] Jose R. Peralta-Videa, Martha Laura Lopez, Mahesh Narayan, et al. The biochemistry of environmental heavy metal uptake by plants: Implications for the food chain[J]. The International Journal of Biochemistry & Cell Biology, 2009, (41): 1665-1677.
    [86] Rowbotham A.L., Levy L.S., Shuker L.K.. Chromium in the environment:an evaluation of exposure of the UK general population and possible adverse health effects[J]. Journal of Toxicology and Environmental Health B, 2000, (3): 145-178.
    [87] Friberg, L.I.. Rationale of biological monitoring of chemicals-with special reference to metals[J]. American Industrial Hygiene Association Journal, 1985, 46(11): 633-642.
    [88] Weiss, B., Landrigan, P.J.. The developing brain and the environment:an introduction[J]. Environmental Health Perspectives, 2000, (108): 373-374.
    [89] Theophanides, T., Anastassopoulou, J.. Copper and carcinogenesis,critical reviews[J]. Oncology Haematology, 2002, 42(1): 57-64.
    [90] Silvia M. Sella, Annibal D. Pereira Netto,Emmanoel Vieira da Silva Filho, et al. Short-term and spatial variation of selected metals in the atmosphere of Niterói City, Brazil[J]. Microchemical Journal, 2004, (78): 85-90.
    [91]曹斌,夏建新.城市重金属污染特征及其迁移转化浅析[J].中央民族大学学报(自然科学版), 2008, 17(3): 40-44.
    [92] Seinfeld, John H. Atmospheric chemistry and physics of air pollution[M]. New York: Wiley, 1986.
    [93]朱石嶙,冯茜丹,党志.大气颗粒物中重金属的污染特性及生物有效性研究进展[J].地球与环境, 2008, 36(1): 26-32.
    [94] Antonio J. Fernández, Miguel Ternero, Francisco J. Barragán, et al. An approach to characterization of sources of urban airborne particles through heavy metal speciation[J]. Chemosphere-Global Change Science, 2000, (2): 123-136.
    [95] Pacyna, J.M., Pacyna, E.G.. An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide[J]. Environmental Reviews, 2001, (9): 269-298.
    [96] Elisabeth G. Pacyna, Jozef M. Pacyna, Janina Fudala, et al. Current and future emissions of selected heavy metals to the atmosphere from anthropogenic sources in Europe[J]. Atmospheric Environment, 2007, (41): 8557-8566.
    [97] Wu Guangjian, Xu Baiqing, Yao Tandong, et al. Heavy metals in aerosol samples from the Eastern Pamirs collected 2004-2006[J]. Atmospheric Research, 2009, (93): 784-792.
    [98]余涛,程新彬,杨忠芳,等.辽宁省典型地区大气颗粒物重金属元素分布特征及对土地质量影响研究[J],地学前缘(中国地质大学(北京) ;北京大学), 2008, 15(5): 146-154.
    [99]杨忠平,卢文喜,龙玉桥.长春市城区重金属大气干湿沉降特征[J].环境科学研究, 2009, 22(1): 28-34.
    [100] Wu Y. F., Liu C. Q., Tu C. L.. Atmospheric Deposition of Metals in TSP of Guiyang, PR China[J]. Bulletin of Environmental Contamination and Toxicology, 2008, (80): 465-468.
    [101]刁维萍,倪吾钟,倪天华,等.水环境重金属污染的现状及其评价[J].广东微量元素科学, 2004, 11(3): 1-5.
    [102] Yellishetty Mohan, Ranjitha P.G., Lalit Kumarb D.. Metal concentrations and metal mobility in unsaturated mine wastes in mining areas of Goa, India[J]. Resources, Conservation and Recycling, 2009, (53): 379-385.
    [103] Lesmana Sisca O., Febriana Novie, Soetaredjo Felycia E., et al. Studies on potential applications of biomass for the separation of heavy metals from water and wastewater[J]. Biochemical Engineering Journal, 2009, (44): 19-41.
    [104] Esmail Al Sabahi, Abdul Rahim S., Wan Zuhairi W.Y., et al. Assessment of Groundwater and Surface Water Pollution at Mitm Area, Ibb City, Yemen[J]. American Journal of Applied Sciences, 2009, 6(4): 772-783.
    [105] Ochieng E. Z., Lalah J. O., Wandiga S. O.. Anthropogenic Sources of Heavy Metals in the Indian Ocean Coast of Kenya[J]. Bulletin of Environmental Contamination and Toxicology, 2009,83(4):600-607.
    [106] Eleni Pertsemli, Dimitra Voutsa. Distribution of heavy metals in Lakes Doirani and Kerkini, Northern Greece[J]. Journal of Hazardous Materials, 2007(148): 529-537.
    [107] Juan J. Vicente-Martorell, María D. Galindo-Ria?o, Manuel García-Vargas, et al. Bioavailability ofheavy metals monitoring water, sediments and fish species from a polluted estuary[J]. Journal of Hazardous Materials, 2009, (162): 823-836.
    [108] Meng Wei, Qin Yan wen, Zheng Binghui, et al. Heavy metal pollution in Tianjin Bohai Bay, China[J]. Journal of Environmental Sciences, 2008, 20(7): 814-819.
    [109] Ruey-an Doong, Shih-hui Lee, Chun-chee Lee, et al. Characterization and composition of heavy metals and persistent organic pollutants in water and estuarine sediments from Gao-ping River, Taiwan[J]. Marine Pollution Bulletin, 2008, (57): 846-857.
    [110] Niu Hongyi, Deng Wenjing, Wu Qunhe, et al. Potential toxic risk of heavy metals from sediment of the Pearl River in South China[J]. Journal of Environmental Sciences, 2009, (21): 1053-1058.
    [111]胡必彬.我国十大流域片水污染现状及主要特征[J].重庆环境科学, 2003, 25(6): 15-60.
    [112] Conor J. Buggy, John M. Tobin. Seasonal and spatial distribution of metals in surface sediment of an urban estuary[J]. Environmental Pollution, 2008, (155): 308-319.
    [113]王晓,韩宝平,冯启言,等.徐州市地表水体底泥重金属污染特征研究[J].中国环境监测, 2004, 20(6): 45-48.
    [114] Seralathan Kamala-Kannan, B. Prabhu Dass Batvari, Kui Jae Lee, et al. Assessment of heavy metals (Cd, Cr and Pb) in water, sediment and seaweed (Ulva lactuca) in the Pulicat Lake, South East India[J]. Chemosphere, 2008, (71): 1233-1240.
    [115] Yang Zhifeng, Wang Ying, Shen Zhenyao, et al. Distribution and speciation of heavy metals in sediments from the mainstream, tributaries, and lakes of the Yangtze River catchment of Wuhan, China[J]. Journal of Hazardous Materials, 2009, (166): 1186-1194.
    [116]陈怀满.土壤-植物系统中的重金属污染[M].北京:科学出版社, 1996.
    [117] Liu W X, Li H H, Li S R, et al. Heavy metal accumulation of edible vegetables cultivated in agricultural soil in the suburb of Zhengzhou city, People's Republic of China[J]. Bull Environ Contam Toxicol, 2006, 76 (1): 163-170.
    [118]中华人民共和国国家标准. GB15618-1995土壤环境质量标准[S].北京:中国标准出版社, 1995.
    [119] L. Rodríguez, E. Ruiz, J. Alonso-Azcárate, et al. Heavy metal distribution and chemical speciation in tailings and soils around a Pb–Zn mine in Spain[J]. Journal of Environmental Management, 2009, (90): 1106-1116.
    [120] Daniela Salvagio Manta, Massimo Angelone, Adriana Bellanca, et al. Heavy metals in urban soils: a case study from the city of Palermo (Sicily), Italy[J]. The Science of the Total Environment, 2002, (300): 229-243.
    [121] Jiries Anwar G., Alnasir Farh M., Beese Friedrich. Pesticide and heavymetals residue in wastewater, soil and plants in wastewater disposal site near Al-Lajoun valley, Karak/Jordan[J]. Water, Air, and Soil Pollution, 2002, (133): 97–107.
    [122] Chen Tong-Bin, Zheng Yuan-Ming, Lei Mei, et al. Assessment of heavy metal pollution in surface soils of urban parks in Beijing, China[J]. Chemosphere, 2005, (60): 542-551.
    [123] Hu Ke-Lin, Zhang Feng-Rong, Li Hong, et al. Spatial Patterns of Soil Heavy Metals in Urban-Rural Transition Zone of Beijing[J]. Pedosphere, 2006, 16(6): 690-698.
    [124] Li Peijun, WangXin, Allinsonb Graeme, et al. Risk assessment of heavy metals in soil previously irrigated with industrial wastewater in Shenyang, China[J]. Journal of Hazardous Materials, 2009, (161): 516-521.
    [125] Huang S.S., Liao Q.L., Hua M., et al. Survey of heavy metal pollution and assessment of agricultural soil in Yangzhong district, Jiangsu Province, China[J]. Chemosphere, 2007, (67): 2148-2155.
    [126] Nicholson F.A., Smith S.R., Alloway B.J., et al. An inventory of heavy metals inputs to agricultural soils in England and Wales[J]. The Science of the Total Environment, 2003, (311): 205-219.
    [127] Rippey Brian, Rose Neil, Yang Handong, et al. An assessment of toxicity in profundal lake sedimentdue to deposition of heavy metals and persistent organic pollutants from the atmosphere[J]. Environment International, 2008, (34): 345-356.
    [128] Helle Marcussen, Anders Dalsgaard, Peter E. Holm. Content, distribution and fate of 33 elements in sediments of rivers receiving wastewater in Hanoi, Vietnam[J]. Environmental Pollution, 2008, (155): 41-51.
    [129] N. Sridhara Chary, C.T. Kamala, D. Samuel Suman Raj. Assessing risk of heavy metals from consuming food grown on sewage irrigated soils and food chain transfer[J]. Ecotoxicology and Environmental Safety, 2008, (69): 513-524.
    [130] J. Pandey, Usha Pandey. Accumulation of heavy metals in dietary vegetables and cultivated soil horizon in organic farming system in relation to atmospheric deposition in a seasonally dry tropical region of India[J]. Environ Monit Assess, 2009, (148): 61-74.
    [131]谢华林,张萍,贺惠,等.大气颗粒物中重金属元素在不同粒径上的形态分布[J].环境工程, 2002, 20(6): 55-57.
    [132] Batonneau Y, Bremard C, Gengembre L, et al. Speciation of PM10 Sources of Airborne Nonferrous Metals within the 32km Zone of Lead/ Zinc smelters[J]. Environ Sci Technol, 2004, (38): 5281-5289.
    [133]胡星明,王丽平,毕建洪.城市大气重金属污染分析[J].安徽农业科学, 2008, 36(1): 302-303.
    [134] Samina Wasi, Ghulam Jeelani, Masood Ahmad. Biochemical characterization of a multiple heavy metal, pesticides and phenol resistant Pseudomonas fluorescens strain[J]. Chemosphere, 2008, (71): 1348-1355.
    [135] Ahmet Demirak, Fevzi Yilmaz, A. Levent Tuna, et al. Heavy metals in water, sediment and tissues of Leuciscus cephalus from a stream in southwestern Turkey[J]. Chemosphere, 2006, (63): 1451-1458.
    [136]徐永江,柳学周,马爱军.重金属对鱼类毒性效应及其分子机理的研究概况[J].海洋科学, 2004, 28(10): 67-70.
    [137]冯新斌,仇广乐,付学吾,等.环境汞污染[J].化学进展, 2009, 21(2/3): 436-457.
    [138] Tessier A., Campbell P. G. C., Bisson M.. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals[J]. Analytical Chemistry, 1979, 51(7): 844-851.
    [139] Li M.S., Luo Y.P., Su Z.Y.. Heavy metal concentrations in soils and plant accumulation in a restored manganese mineland in Guangxi, South China[J]. Environmental Pollution, 2007, (147): 168-175.
    [140] Arun K. Shankera, Carlos Cervantes, Herminia Loza-Tavera, et al. Chromium toxicity in plants[J]. Environment International, 2005, (31): 739-753.
    [141]陈怀满,郑春荣.复合污染与交互作用研究-农业环境保护中研究的热点与难点[J].农业环境保护, 2002, (4): 192.
    [142]周启星.复合污染生态学[M].北京:环境科学出版社, 1995.
    [143]何勇田,熊先哲.复合污染研究进展[J].环境科学, 1994, 15(6): 79-83. 144.郑振华,周培疆,吴振斌.复合污染研究的新进展[J].应用生态学报, 2001, 12(3): 469-473.
    [145]王慎强,陈怀满,司友斌.我国土壤环境保护研究的回顾与展望[J].土壤, 1999, (5): 255-260.
    [146]周东美,王慎强,陈怀满.土壤中有机污染物-重金属复合污染的交互作用[J].土壤与环境, 2000, 9(2): 143-145.
    [147]崔德杰,张玉龙.土壤重金属污染现状与修复技术研究进展[J].土壤通报, 2004, 35(3): 366-370.
    [148]顾继光,周启星,王新.土壤重金属污染的治理途径及其研究进展[J].应用基础与工程科学学报, 2003, 11(2): 143-151.
    [149]孙波,周生路,赵其国.基于空间变异分析的土壤重金属复合污染研究[J].农业环境科学学报, 2003, 22(2): 248-251.
    [150]李培军,刘宛,孙铁珩,等.我国污染土壤修复研究现状与展望[J].生态学杂志, 2006, 25(12): 1544-1548.
    [151] K?z?lkaya R, A?k?n T, Bayrakl? B, et al. Microbiological characteristics of soils contaminated with heavy metals[J]. Eur J Soil Biol, 2004, 40 (2): 95-102.
    [152] Heike B. Bradl. Adsorption of heavy metal ions on soils and soils constituents[J]. Journal of Colloid and Interface Science, 2004, (277): 1-18.
    [153]王果,谷勋刚,高树芳,等.三种有机肥水溶性分解产物对铜、镉吸附的影响[J].土壤学报, 36(2): 179-188.
    [154] Arias M., Pérez-Novo C., Osorio F., et al. Adsorption and desorption of copper and zinc in the surface layer of acid soils[J]. Journal of Colloid and Interface Science, 2005, (288): 21-29.
    [155] Zhang Wei, Wang Jin-jun, Zhang Zhong-ming, et al. Adsorption-Desorption Characteristics of Chlorimuron-Ethyl in Soils[J]. Agricultural Sciences in China, 2007, 6(11): 1359-1368.
    [156] Xu Duanping, Xu Zhonghou, Zhu Shuquan, et al. Adsorption behavior of herbicide butachlor on typical soils in China and humic acids from the soil samples[J]. Journal of Colloid and Interface Science, 2005, (285): 27-32.
    [157] Cea Mara, Seaman J.C., Jara Alejandra A., et al. Adsorption behavior of 2,4-dichlorophenol and pentachlorophenol in an allophanic soil[J]. Chemosphere, 2007, (67): 1354-1360.
    [158] Xu Renkou, Xiao Shuangcheng, Zhao Anzhen, et al. Effect of Cr(VI) anions on adsorption and desorption behavior of Cu(II) in the colloidal systems of two authentic variable charge soils[J]. Journal of Colloid and Interface Science, 2005, (284): 22-29.
    [159] Meng Zhao-Fu, Zhang Yi-Ping, Zhang Zeng-Qiang. Simultaneous adsorption of phenol and cadmium on amphoteric modified soil[J]. Journal of Hazardous Materials, 2008, (159): 492-498.
    [160]王慎强,周东美,王玉军,等.两种土壤中邻苯二胺对铜离子吸附)解吸平衡影响的研究[J].农业环境保护, 2002, 21(5): 421-423, 427.
    [161]荚德安,王玉军,周东美,等. 2,4-D对铜在乌栅土胶体和红壤胶体上吸附的影响[J].土壤, 2008, 40(6): 945-948.
    [162] Shen Guoqing, Lu Yitong, Hong Jingbo. Combined effect of heavy metals and polycyclic aromatic hydrocarbons on urease activity in soil[J]. Ecotoxicology and Environmental Safety, 2006, (63): 474-480.
    [163] Barbara Maliszewska-Kordybach, Bo?ena Smreczak. Habitat function of agricultural soils as affected by heavy metals and polycyclic aromatic hydrocarbons contamination[J]. Environment International, 2003, (28): 719-728.
    [164] Wang Yuan-peng, Shi Ji-yan, Lin Qi, et al. Heavy metal availability and impact on activity of soil microorganisms along a Cu/Zn contamination gradient[J]. Journal of Environmental Sciences, 2007, (19): 848-853.
    [165]沈国清,陆贻通,洪静波,等.菲和镉复合污染对土壤微生物的生态毒理效应[J].环境化学, 2005, 24(6): 662-665.
    [166]胡著邦,汪海珍,吴建军,等.镉与苄嘧磺隆除草剂单一污染和复合污染土壤的微生物生态效应[J].浙江大学学报(农业与生命科学版), 2005, 31(2): 151-156.
    [167]张慧,党志,姚丽贤,等.镉芘单一污染和复合污染对土壤微生物生态效应的影响[J].农业环境科学学报, 2007, 26(6): 2225-2230.
    [168] Ademola O. Olaniran, Adhika Balgobind, Balakrishna Pillay. Impacts of heavy metals on 1,2-dichloroethane biodegradation in co-contaminated soil[J]. Journal of Environmental Sciences, 2009, (21): 661-666.
    [169] Lin Chi-Wen, Cheng Ya-Wen, Tsai Shen-Long. Influences of metals on kinetics of methyl tert-butyl ether biodegradation by Ochrobactrum cytisi[J]. Chemosphere, 2007, (69): 1485-1491.
    [170] Hong Hyo-Bong, Nam In-Hyun, Kim Young-Mo, et al. Effect of heavy metals on the biodegradation of dibenzofuran in liquid medium[J]. Journal of Hazardous Materials, 2007, (140): 145-148.
    [171] Amor L., Kennes C., Veiga M.C.. Kinetics of inhibition in the biodegradation of monoaromatic hydrocarbons in presence of heavy metals[J].Bioresource Technology, 2001, 78: 181-185.
    [172]陈莉,章钢娅,胡锋. Cu、Zn对氰戊菊酯在土壤中降解的影响[J].江苏农业科学, 2006, (5): 173-176.
    [173]陈皓,陈玲,王虹,等. Ni2+对2-氯酚厌氧降解系统的影响[J].环境科学研究, 2006, 19(5): 126-131.
    [174]王艮梅,周立祥.水溶性有机物在土壤剖面中的分馏及对Cu迁移的作用[J].环境科学, 2006, 27(6): 1229-1234.
    [175] Giller K E, Witter E, McGrath S P. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review[J]. Soil Biol Biochem, 1998, 30 (10-11): 1389-1414.
    [176] Vig K, Megharaj M, Sethunathan N, et al. Bioavailability and toxicity of cadmium to microorganisms and their activities in soil: a review[J]. Adv Environ Res, 2003, 8 (1): 121-135.
    [177]周丽霞,丁明懋.土壤微生物学特性对土壤健康的指示作用[J].生物多样性, 2007, 15(2): 162-171.
    [178] Ghosh A.K., Bhattacharyya P., Pal R.. Effect of arsenic contamination on microbial biomass and its activities in rsenic contaminated soils of Gangetic West Bengal, India[J]. Environment International, 2004, (30): 491-499.
    [179] Bhattacharyya P, Mitra A, Chakrabarti K, et al. Effect of heavy metals on microbial biomass and activities in century old landfill soil[J]. Environ Monit Assess, 2008, (136): 299-306.
    [180] Wang Y, Li Q, Shi J, et al. Assessment of microbial activity and bacterial community composition in the rhizosphere of a copper accumulator and a non-accumulator[J]. Soil Biol Biochem, 2008, 40 (5): 1167-1177.
    [181] Kong W, Zhu Y, Fu B, et al. Effect of long-term application of chemical fertilizers on microbial biomass and functional diversity of a black soil[J]. Pedosphere, 2008, 18 (6): 801-808.
    [182] Tejada M, Gonzalez J L, Hernandez M T, et al. Application of different organic amendments in a gasoline contaminated soil: Effect on soil microbial properties[J]. Bioresource Technol, 2008, 99 (8): 2872-2880.
    [183] Vischetti C, Monaci E, Cardinali A, et al. The effect of initial concentration, co-application and repeated applications on pesticide degradation in a biobed mixture[J]. Chemosphere, 2008, 72 (11): 1739-1743.
    [184] Liao Min, Xie Xiao M.. Effect of heavy metals on substrate utilization pattern, biomass, and activity of microbial communities in a reclaimed mining wasteland of red soil area[J]. Ecotoxicology and Environmental Safety, 2007, (66): 217-223.
    [185] Chander K., Dyckmans J., Joergensen R. G., et al. Different sources of heavy metalsand their long-term effects on soil microbial properties[J]. Biology and Fertility of Soils, 2004, (34): 241-247.
    [186] Sukul P. Enzymatic activities and microbial biomass in soil as influenced by metalaxyl residues[J]. Soil Biol Biochem, 2006, 38 (2): 320-326.
    [187] Renella G, Mench M, van der Lelie D, et al. Hydrolase activity, microbial biomass and community structure in long-term Cd-contaminated soils[J]. Soil Biol Biochem, 2004, 36 (3): 443-451.
    [188] Liao M, Chen C L, Huang C Y. Effect of heavy metals on soil microbial activity and diversity in a reclaimed mining wasteland of red soil area[J]. J Environ Sci-China, 2005, 17 (5): 823-837.
    [189] Patra D D, Subrahmanyam K, Singh D V. Effect of Pb, Cd and Hg on N-mineralization and microbial biomass in soil[J]. Proceedings of the Indian National Science Academy Part B Biological sciences, 1991, 57 (2): 159-163.
    [190]陈强,孙红文,王兵,等.邻苯二甲酸二异辛酯(DEHP)对土壤中微生物和动物的影响[J].农业环境科学学报, 2004, 23 (6): 1156-1159.
    [191]王嘉,王仁卿,郭卫华,等.重金属对土壤微生物影响的研究进展[J].山东农业科学, 2006, (1): 101-105.
    [192] Fernandes Silvana Aparecida Pavan, Bettiol Wagner, Cerri Carlos Clementi. Effect of sewage sludge on microbial biomass, basal respiration, metabolic quotient and soil enzymatic activity[J]. Applied Soil Ecology, 2005, (30): 65-77.
    [193] Xu Xingkai, Inubushi Kazuyuki, Sakamoto Kazunori. Effect of vegetations and temperature on microbial biomass carbon and metabolic quotients of temperate volcanic forest soils[J]. Geoderma, 2006, (136): 310-319.
    [194] Zhang Yan, Zhang Hui-Wen, Su Zhen-Cheng, et al. Soil microbial characteristics under long-term heavy metal stress: a case study in zhangshi wastewater irrigation area, Shenyang[J]. Pedosphere, 2008, 18(1): 1-10.
    [195] Tobias Frische, Heinrich H?per. Soil microbial parameters and luminescent bacteria assays as indicators for in situ bioremediation of TNT-contaminated soils[J]. Chemosphere, 2003, (50): 415-427.
    [196] Louis V. Verchot, Teresa Borelli. Application of para-nitrophenol (pNP) enzyme assays in degraded tropical soils[J]. Soil Biology & Biochemistry, 2005, (37): 625-633.
    [197] Huang Shun-hong, Peng Bing, Yang Zhi-hui, et al. Chromium accumulation, microorganism population and enzyme activities in soils around chromium-containing slag heap of steel alloy factory[J]. Trans. Nonferrous Met. Soc. China, 2009, (19): 241-248.
    [198] Yang Ruyi, Tang Jianjun, Chen Xin, et al. Effects of coexisting plant species on soil microbes and soil enzymes in metal lead contaminated soils[J]. Applied Soil Ecology, 2007, (37): 240-246.
    [199] Yang Zhi-xin, Liu Shu-qin, Zheng Da-we, et al. Effects of cadium, zinc and lead on soil enzyme activities[J]. Journal of Environmental Sciences, 2006, 18(6): 1135-1141.
    [200]关松荫.土壤酶及其研究法[M].北京:农业出版社, 1983.
    [201] Hinojosa M B, Carreira J A, Rodríguez-Maroto J M, et al. Effects of pyrite sludge pollution on soil enzyme activities: Ecological dose–response model[J]. Sci Total Environ, 2008, 396: 89-99.
    [202] Kuperman R G, Carreiro M M. Soil heavy metal concentrations, microbial biomass and enzyme activities in a contaminated grassland ecosystem[J]. Soil Biol Biochem, 1997, 29 (2): 179-190.
    [203] Baran S, Bielińska J E, Oleszczuk P. Enzymatic activity in an airfield soil polluted with polycyclic aromatic hydrocarbons[J]. Geoderma, 2004, 118 (3-4): 221-232.
    [204] Alfredo Pérez de Mora, J. Julio Ortega-Calvo, Francisco Cabrera, et al. Changes in enzyme activities and microbial biomass after‘‘in situ’’remediation of a heavy metal-contaminated soil[J]. Applied Soil Ecology, 2005, (28): 125-137.
    [205] Steven D. Allison, Julie D. Jastrow. Activities of extracellular enzymes in physically isolated fractions of restored grassland soils[J]. Soil Biology & Biochemistry, 2006, (38): 3245-3256.
    [206] Karaca A, Naseby D C, Lynch J M. Effect of cadmium contamination with sewage sludge and phosphate fertiliser amendments on soil enzyme activities, microbial structure and available cadmium[J]. Biol Fertil Soils, 2002, 35 (6): 428-434.
    [207] Wang Y, Shi J, Wang H, et al. The influence of soil heavy metals pollution on soil microbial biomass, enzyme activity, and community composition near a copper smelter[J]. Ecotoxicol Environ Saf, 2007, 67 (1): 75-81.
    [208] Hinojosa M B, García-RuíR, Vi?egla B, et al. Microbiological rates and enzyme activities as indicators of functionality in soils affected by the Aznalcóllar toxic spill[J]. Soil Biol Biochem, 2004, 36 (10): 1637-1644.
    [209] Chaperon S, SauvéS. Toxicity interaction of metals (Ag, Cu, Hg, Zn) to urease and dehydrogenase activities in soils[J]. Soil Biol Biochem, 2007, 39 (9): 2329-2338.
    [210] Brohon B, Delolme C, Gourdon R. Complementarity of bioassays and microbial activity measurements for the evaluation of hydrocarbon-contaminated soils quality[J]. Soil Biol Biochem, 2001, 33 (7-8): 883-891.
    [211] Adília Oliveira, Maria Elisa Pampulha. Effects of Long-Term Heavy Metal Contamination on Soil Microbial Characteristics[J]. Journal of bioscience and bioengineering, 2006, 102(3): 157-161.
    [212] Sannino F., Gianfreda L. Pesticide influence on soil enzymatic activities[J]. Chemosphere, 2001, (45): 417-425.
    [213] Shen Guoqing, Lu Yitong, Zhou Qixing, et al. Interaction of polycyclic aromatic hydrocarbons and heavy metals on soil enzyme[J]. Chemosphere, 2005, (61): 1175-1182.
    [214]程凤侠,司友斌,刘小红.铜与草甘膦单一污染和复合污染对水稻土酶活性的影响[J].农业环境科学学报, 2009, 28(1): 84-88.
    [215] Huang Dan-Lian, Zeng Guang-Ming, Jiang Xiao-Yun, et al. Bioremediation of Pb-contaminated soil by incubating with Phanerochaete chrysosporium and straw[J]. Journal of Hazardous Materials B, 2006, (134): 268-276.
    [216] Notten M J M, Walraven N, Beets C J, et al. Investigating the origin of Pb pollution in a terrestrial soil–plant–snail food chain by means of Pb isotope ratios[J]. Appl Geochem, 2008, 23 (6): 1581-1593.
    [217] Terzano R, Spagnuolo M, Vekemans B, et al. Assessing the origin and fate of Cr, Ni, Cu, Zn, Pb, and V in industrial polluted soil by combined microspectroscopic techniques and bulk extraction methods[J]. Environ Sci Technol, 2007, 41 (19): 6762-6769.
    [218] Lin Z.X., Harsbo K., Ahlgren M.,et al. The source and fate of Pb in contaminated soils at the urban area of Falun in central Sweden[J]. The Science of the Total Environment, 1998, (209): 47-58.
    [219] Buatier M.D., Sobanska S., Elsass F. TEM–EDX investigation on Zn- and Pb-contaminated soils[J]. Appl. Geochem., 2001, (16): 1165-1177.
    [220]曹会聪,王金达,张学林.吉林省农田黑土中Cd、Pb、As含量的空间分布特征[J].环境科学, 2006, 27 (10): 2117-2122.
    [221]国伟林,王西奎.城市大气和塑料大棚空气中酞酸酯的分析[J].环境化学, 1997, 16(4): 382-386.
    [222]王士才,李宝霞.聚氯乙烯薄膜增塑剂迁移速率研究[J].聚氯乙烯, 1997, (5): 5-9.
    [223]安琼,靳伟,李勇,等.酞酸酯类增塑剂对土壤-作物系统的影响[J].土壤学报, 1999, 36(1): 118-126.
    [224]周开胜,吕超田,杨刚,等.水体中酞酸酯类环境激素污染及生物降解研究进展[J].环境科技, 2009, 22(4): 56-59.
    [225]冯喜媛,药明,王亚君. 2007年酸雨形势简析[J].吉林气象, 2009, 2: 27-29.
    [226] Chao W. L., Lin C. M., Shiung I. I., et al. Degradation of di-butyl-phthalate by soil bacteria[J]. Chemosphere, 2006, (63): 1377-1383.
    [227] Chang B.V., Wang T.H., Yuan S.Y.. Biodegradation of four phthalate esters in sludge[J]. Chemosphere, 2007, (69): 1116-1123.
    [228] Chang B.V., Liao C.S., Yuan S.Y.. Anaerobic degradation of diethyl phthalate, di-n-butyl phthalate, and di-(2-ethylhexyl) phthalate from river sediment in Taiwan[J]. Chemosphere, 2005, (58): 1601-1607.
    [229] Dai Jun, Becquer Thierry, Rouiller James Henri, et al. Influence of heavy metals on C and N mineralisation and microbial biomass in Zn-, Pb-, Cu-, and Cd-contaminated soils[J]. Applied Soil Ecology, 2004, (25): 99-109.
    [230] Khan Sardar, Cao Qing, Hesham Abd El-Latif, et al. Soil enzymatic activities and microbial community structure with different application rates of Cd and Pb[J]. Journal of Environmental Sciences, 2007, (19): 834-840.
    [231] Mika A. K?hk?nen, Pauliina Lankinen, Annele Hatakka. Hydrolytic and ligninolytic enzyme activities in the Pb contaminated soil inoculated with litter-decomposing fungi[J]. Chemosphere, 2008, (72): 708-714.
    [232] Chao W.L., Cheng C.Y.. Effect of introduced phthalate-degrading bacteria on the diversity of indigenous bacterial communities during di-(2-ethylhexyl) phthalate (DEHP) degradation in a soil microcosm[J]. Chemosphere, 2007, (67): 482-488.
    [233] Colin D. Cartwright, Ian P. Thompson, Richard G. Burns.. Degradation and impact of phthalate plasticizers on soil microbial communities[J]. Environmental Toxicology and Chemistry, 2000, 19(5): 1253-1261.
    [234] Valeria Labud, Carlos Garcia, Teresa Hernandez. Effect of hydrocarbon pollution on the microbial properties of a sandy and a clay soil[J]. Chemosphere, 2007, (66): 1863-1871.
    [235]杨刚,何寻阳,王克林,等.不同植被类型对土壤微生物量碳氮及土壤呼吸的影响[J].土壤通报, 2008, 39(1): 189-191.
    [236]侯宪文.铅-苄嘧磺隆/甲磺隆复合污染的土壤微生物生态效应的研究[D]: [博士学位论文].杭州:浙江大学环资与环境学院, 2007.
    [237] Wang Jianlong, LiuPing, QianYi. Microbial degradation of di-n-butyl phthalate[J]. Chemosphere, 31(9): 4051-4056.
    [238] Fang Herbert H.P., Liang Dawei, Zhang Tong. Aerobic degradation of diethyl phthalate by Sphingomonas sp[J]. Bioresource Technology, 2007, (98): 717-720.
    [239]杨锦忠,郝建平.复合污染系统中交互作用分类方法研究[J].中国生态农业学报, 2002, 10(4): 131-133.
    [240] Zeng Lu-Sheng, Liao Min, Chen Cheng-Li, et al. Effects of lead contamination on soil microbial activity and rice physiological indices in soil–Pb–rice (Oryza sativa L.) system[J]. Chemosphere, 2006, (65): 567-574.
    [241] Wu Weihong, Wang Haizhen, Xu Jianming, et al. Adsorption characteristic of bensulfuron- methyl at variable added Pb2+ concentrations on paddy soils[J]. Journal of Environmental Sciences, 2009, (21): 1129-1134.
    [242] Yang J.Y., Yang X.E., He Z.L. Effects of pH, organic acids, and inorganic ions on lead desorption from soils[J]. Environmental Pollution, 2006, (143): 9-15.
    [243]万忠梅,宋长春.土壤酶活性对生态环境的响应研究进展[J].土壤通报, 2009, 40(4): 951-956.
    [244] Zornoza R., Guerrero C., Mataix-Solera J., et al. Assessing air-drying and rewetting pre-treatment effect on some soil enzyme activities under Mediterranean conditions[J]. Soil Biology & Biochemistry, 2006, (38): 2125-2134.
    [245] Gianfreda Liliana, Rao Maria Antonietta, Piotrowska Anna, et al. Soil enzyme activities as affected by anthropogenic alterations: intensive agricultural practices and organic pollution[J]. Science of the Total Environment, 2005, (341): 265-279.
    [246]王菊兰,何文寿,何进智.宁夏引黄灌区温室土壤脲酶、过氧化氢酶活性与土壤肥力因素的关系[J].宁夏大学学报(自然科学版): 2007, 28(2): 162-165.
    [247] Gianfreda Liliana, Rao Maria A.. Potential of extra cellular enzymes in remediation of polluted soils: a review[J]. Enzyme and Microbial Technology, 2004, (35): 339-354.
    [248] M. Belén Hinojosa, JoséA. Carreira, Roberto García-Ruíz, et al. Soil moisture pre-treatment effects on enzyme activities as indicators of heavy metal-contaminated and reclaimed soils[J]. Soil Biology & Biochemistry, 2004, (36): 1559-1568.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700