用户名: 密码: 验证码:
花园土壤氟的形态分布特征及降低水溶态氟措施研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
饮茶是人类摄取氟的重要来源,适量的氟有利于预防龋病和骨组织的强化,但过量的氟会对人体造成不可逆转的伤害,如关节疼痛、活动受限、驼背、跛行等氟骨症。茶叶中的氟主要来源于土壤,目前针对我国土壤氟的含量和茶叶氟的累积分布规律已有大量研究,但有关茶园土壤氟的形态分布规律及其与茶叶氟含量相互关系的报道较少。而水溶态氟是茶树吸收氟的主要形态,是土壤-水-植物-动物氟环境的枢纽。因此,研究茶园土壤氟的分组及降低土壤水溶态氟的措施,对于调控茶叶氟含量,提高茶叶品质,保护人类健康具有重要意义。
     本文以湖北省14个茶园土壤样和对应的茶叶样品为对象,研究了茶叶的氟含量、土壤氟分组及其与土壤理化性质间的相互关系。另外,以湖北英山、大悟、竹山、赤壁和浙江杭州茶园土壤为研究对象,通过施加一定量的含钙化合物(CaCO3、CaO、Ca3(PO4)2、CaCl2和CaSO4)、固体吸附物质(人造沸石、硅藻土和活性炭)和生物材料(枇杷叶和竹叶)来调控土壤中水溶性氟含量。研究结果表明:
     湖北茶园老叶氟含量为321~2274 mg/kg,嫩叶氟含量为57~1806 mg/kg。同一茶园内老叶氟含量高于嫩叶,老叶氟积累明显。随着土壤深度的增加,总氟含量降低,而各形态氟含量变化不一。土壤氟含量均表现为:残渣态>>有机结合态>铁锰结合态>水溶态>交换态,残渣态氟是茶园土壤中氟的主要形态。全氟含量与总P呈显著正相关,水溶性氟含量与土壤PH、CEC和交换性Ca含量呈显著正相关。交换态氟含量与粘粒、CEC、游离Al和游离Fe都呈极显著正相关关系。铁锰结合态氟与pH、交换性Ca和全P呈极显著正相关,而与无定形Al和游离A1呈显著负相关。有机结合态与交换性Ca和全P呈极显著正相关。土壤有机质和无定形Fe对土壤中各形态氟的含量没有显著影响。
     英山、大悟和竹山茶园土壤中施加一定量的CaCl2或CaSO4均可降低土壤中水溶性氟含量,且施用CaCl2的效果均比CaSO4好,但施加CaCO3、CaO和Ca3(PO4)2则显著增加土壤中水溶性氟含量。英山和大悟茶园土壤中可施加1-2g/kg的CaCl2或CaSO4,竹山茶园土壤中可施加3-5g/kg的CaCl2或CaSO4。赤壁和杭州茶园土壤中施加一定量的CaCO3、CaO或Ca3(PO4)2均可降低土壤中水溶性氟含量,赤壁茶园土壤中可施加1.5-2 g/kg的CaCO3或CaO,也可施加3-4g/kg的Ca3(PO4)2。杭州茶园土壤中可施加4-5g/kg的CaCO3或CaO或Ca3(PO4)2。赤壁和杭州茶园土壤中施用CaCO3的效果均比CaO和Ca3(PO4)2好,而这些土壤中施加CaCl2和CaSO4则显著增加土壤中水溶性氟含量。活性炭、人造沸石、硅藻土、枇杷叶和竹叶加入英山、大悟、竹山、赤壁和杭州茶园土壤后,土壤水溶性氟含量增加,故不适宜施用。
Tea is an important source for people to intake fluoride, which, with a right amount, is helpful for avoiding dental caries and strengthening bone tissue, but, with an excessive amount, is harmful by causing irreversible damage, such as joint pain, limited mobility, humpbacked, lame and so on. Fluorine in tea maily comes from soil. There have been many reports about contents of fluorine in tea garden soils and the cumulative distribution of tea fluoride. But there have been few reports about the form distribution of fluorine in soil and the correlation between floride in tea and fluorine in soil. Fluorine adsorbed by tea plants is of the water-soluble fluorine, which is the hub of soil, water, plant and animal for fluorine circulation. Consequently, it has theoretical and practical significance to study the distribution of fluorine in soil and methodology of reducing soil water soluble fluorine content for improving the quality of tea, decreasing contents of fluoride in tea and ensuring health of human.
     Taking 14 tea leave samples and the 14 corresponding soils of tea gardens in Hubei province as research objects, this study researched the content of fluorine in tea, distribution of fluorine in soil and the relationship between the distribution of fluorine in soil and the physical-chemical properties of soils. Calcium-containing materials(CaCO3, CaO, Ca3(PO4)2, CaCl2, CaSO4), solid sorbent(active carbon, zeolite, diatomite) and biomass materials(loquat and bamboo leaves) were used to regulate water-soluble fluoride in tea garden soils collected from Yingshan, Dawu, Zhushan, Chibi of Hubei province and Hangzhou of Zhejiang province.
     The content of fluorine in Hubei tea leaves varied from 321 to 2274 mg/kg for old leaves and from 57 to 1806 mg/kg for young leaves. The content of fluorine in old leaves was higher than that in young leaves, which shows that the accumulation of fluorine in old leaves increased significantly. The total fluorine decreased with the increased soil depth, but the content of other forms of fluorine changed with the increase of soil depth. The content of fluorine in different layers of soils were all in the order of residual F (Res-F)>>rganic bound F (Or-F)>Fe(Mn) oxides bound F (Fe/Mn-F)>water soluble F (Ws-F)>extractable F (Ex-F), and the residual fluorine is the main form in tea garden soils. Total F (T-F) was positively correlated with total phosphorus at a statistically significant level. Ws-F was positively correlated with pH, CEC and exchangeable Ca content significantly. Ex-F was positively correlated with clay content, CEC, free Al and free Fe contents. Fe/Mn-F was positively correlated with pH, contents of exchangeable Ca and total phosphorus, but it was negatively correlated with contents of amorphous Al and free Al significantly. Or-F was positively correlated with contents of exchangeable Ca and total phosphorus. The different form of fluorine was not significantly correlated with organic matter and amorphous Fe.
     The results indicated that the content of water-soluble fluoride in soils of Yingshan, Dawu and Zhushan decreased after application of CaCl2 and CaSO4, and the effect of applying CaCl2 was better than that of CaSO4. However, the content of water-soluble fluoride in these three soils increased by applying CaCO3, CaO or Ca3(PO4)2. The appropriate amount was 1~2 g/kg of CaCl2 or CaSO4 in soils of Yingshan and Dawu, and 3~5 g/kg of CaCl2 or CaSO4 in the soil of Zhushan, respectively. The content of water-soluble fluoride in soils of Chibi and Hangzhou decreased by applying CaCO3, CaO or Ca3(PO4)2, and the appropriate amount for soil of Chibi was 1.5~2 g/kg of CaCO3 or CaO or 3-4 g/kg of Ca3(PO4)2, while for the soil of Hangzhou was 4-5 g/kg of CaCO3, CaO or Ca3(PO4)2. The effect of applying CaCO3 was better than that of CaO and Ca3(PO4)2 on the soils of Chibi and Hangzhou, however, the content of water-soluble fluoride in these two soils increased by applying CaCl2 or CaSO4. The content of water-soluble fluoride in soils of Yingshan, Dawu, Zhushan, Chibi and Hangzhou increased by applying activated carbon, zeolite, diatomite, loquat or bamboo leaves, so these can not be applicable.
引文
1. 白学信.砖茶高氟的原因调查.茶叶科学,2000,20(1):77-79
    2. 陈怀满.土壤中化学物质的行为与环境质量.北京:科学出版社,2002
    3.陈宗懋.茶·微量元素·人体健康.茶叶文摘,1990,4:1-10
    4. 陈庆沐,刘玉兰.氟的土壤地球化学和地方性氟中毒.环境科学,1979,2(6):39-53
    5. 陈卓.茶园土壤/茶叶体系中氟的环境地球化学特征及迁移规律.[硕士学位论文].吉林大学,2008
    6.陈瑞鸿,梁月荣,陆建良,等.茶树对氟富集作用的研究.茶叶,2002,28(4):187-190
    7.陈国阶,余大富.环境中的氟.北京:科学出版社,1990,64-83
    8.丁瑞兴,黄骁.茶园-土壤系统铝和氟的生物地球化学循环及其对土壤酸化的影响.土壤学报,1991,28(3):229-236
    9. 杜海荣,杨田甜,吕荣芳,等.氟污染对玉米幼苗生长及生理特性的影响.农业环境科学学报,2010,29(2):216-222
    10.高夫军,陆建良,梁月荣,等.茶叶降氟措施研究.信阳农业高等专科学校学报,2002,12(3):36-38
    11.高绪萍,王萍,王之让,等.苏南茶叶氟富集的波动特征.植物资源与环境,1997,6(4):40-44
    12.高观世,侯波,龚雪莲,等.不同影响因子对茶叶中氟浸出率影响的研究.西南农业学报,2009,22(1):177-181
    13.何振立,周启星,谢正苗.污染及有益元素的土壤化学平衡.北京:中国环境科学出版社,1998,315
    14.韩博,史言.高氟环境对奶牛生产和繁殖的影响.上海环境科学,2000,19(7):330
    15.黄文景,蒋贵发,黄明立,等.广西市售茶叶氟含量的调查.广西预防医学,2005,11(4):231-232
    16.焦有,宝德俊,尹川芬.氟的土壤地球化学.土壤通报,2000,31(6):251-254
    17.李康然.家禽氟中毒概述.广西畜牧兽医,1999,15(1):35-37
    18.鲁如坤.土壤农业化学分析方法.北京:中国农业科技出版社,2000,60-73
    19.李瑞华,宋有.鸡氟中毒.黑河科技,2002,1:14-15
    20.刘平.含氟沸水的吸附处理研究.[硕士学位论文].广西大学,2005
    21.李丽霞.茶树吸收富集氟的特性及初步调控研究.[硕士学位论文].四川农业大学,2008
    22.廖万有.茶生物圈中铝的生物学效应及研究展望.福建茶叶,1995,4:13-17
    23.黎南华.不同生态环境的茶叶氟含量浅析.福建茶叶,1994,2:21-23
    24.陆英,刘仲华.茶叶中氟的研究进展.吉首大学学报(自然科学版),2004,25(4):84-88
    25.李日邦,谭见安,王丽珍,等.我国不同地理条件下耕作土中的氟及其地方性氟中毒的关系.地理研究,1985,4(1):30-40
    26.刘杏,邵林广,张丽芳.生物絮凝剂的研究现状及发展趋势.孝感学院学报,2001,21(6):39-42
    27.陆景冈,赵小敏.茶园土壤发育度与土壤及茶叶含氟量的关系.茶叶科学,1992,12(1):33-38
    28.梁成华,陈新之,李焕珍,等.施用磷石膏对碱化土壤氟含量及其吸附特性的影响.环境科学学报,1999,19(1):109-112
    29.梁月荣,傅柳松,张凌云,等.不同茶类和产区茶叶氟含量研究.茶叶,2001,27(2):32-34
    30.刘建,闰英桃,刘艳萍,等.改性5分子筛吸附剂从含氟水中除氟研究.离子交换与吸附,2001,17(2):68-70
    31.刘超,吴方正,傅柳松,等.茶叶中的氟含量及测定方法研究.农业环境保护,1998,17(3):132-135
    32.黎成厚,万红友,师会勤,等.土壤水溶性氟含量及其影响因素.山地农业生物学报,2003,22(2):99-104
    33.刘蕴娴,王银叶,黎原小溪.硅藻土处理低浓度含氟地下水的实验研究.天津城市建设学院学报,2008,14(3):194-196
    34.陆丽君,宗良纲,罗敏,等.江苏典型茶园的茶叶氟含量及其影响因素.安徽农业科学,2006,34(10):2183-2185
    35.罗淑华,贾海云,章雄才,等.砖茶中氟的浸出规律研究.茶叶科学,2002,22(1):38-42
    36.李涛,胡明,姚明捐,等.宜昌茶叶的氟含量及氟浸出率的测定.广东微量元素科学,2008,15(9):38-42
    37.吕毅.氟与茶叶品质化学和微生物学的研究.[博士学位论文].浙江大学,2004
    38.马立锋.茶树对氟的吸收累积特性及降氟技术研究.[硕士学位论文].浙江大学,2004
    39.马立锋,阮建云,石元值,等.钙[Ca(NO3)2和CaO]对茶树氟吸收的影响.土壤通报,2005,36(1):85-87
    40.马立锋,石元值,阮建云,等.我国茶叶氟含量状况研究.茶叶科学,2002,21(6):537-539
    41.阮建云,马立锋,石元值,等.茶园土壤对F的吸附与解吸特性.茶叶科学,2001,21(2):161-165
    42.阮建云,杨亚军,马立锋.茶叶氟研究进展:累积特性、含量及安全性评价.茶叶科学,2007,27(1):1-7
    43.施兆鹏.茶叶加工学.北京:中国农业出版社,1997,1
    44.沙济琴,郑达贤.茶树黄棪对氟的生物积累特征.福建茶叶,1993,3:25-28
    45.沙济琴,郑达贤.福建茶树鲜叶含氟量的研究.茶叶科学,1994,14:37-42
    46.施嘉璠,杜晓,何春雷.降低黑茶氟含量的研究.四川农业大学学报,1991a,9(3):404-410
    47.施嘉璠,何春雷,杜晓.降低黑茶含氟量的研究Ⅱ:降氟的方法及效果.四川农业大学学报,1991b,9(3):411-416
    48.孙殿军,刘立志.我国饮茶型氟中毒研究的回顾与展望.中国地方病学杂志,2005,24(1):1-2
    49.唐茜,赵先明,杜晓,等.氟对茶树生长、叶片生理生化指标与茶叶品质的影响.植物营养与肥料学报,2011,17(1):186-194
    50.吴洵.茶生物圈中氟的研究现况及进展.茶叶文摘,1992,2:1-8
    51.王艳萍.陕西渭南地区土壤中的氟.土壤通报,1998,29(1):42-43
    52.王连方.茶叶氟研究综合报告.地方病通报,1999,14(4):105-108
    53.王连方.茶叶氟与饮茶过量氟中毒.地方病通报,2000,5(2):92-93
    54.王连方.DTF降茶氟剂降茶氟初步研究.中国地方病防治杂志,2003,18(1):17-19
    55.王连方,徐训风.日用茶浸出规律的初步探讨.新疆地方病杂志,1993,12(4):27-32
    56.王连方.DTF乳剂对茶叶氟固定效果初步研究.中国地方病防治杂志,2006,21(4):205-207
    57.万桂敏,张丽虹,白淑琴,等.麦饭石饮水降氟试验研究究.地方病通报,1989,1:114-116
    58.万桂敏,孙殿军,高丽,等.活化蛇纹石降砖茶水氟含量可行性研究.中国地方病学杂志,2003,22(1):16-18
    59.王五一,李永华.氟与健康的环境流行病学研究.土壤与环境,2002,11(4):383-387
    60.吴卫红,谢正苗,徐建明,等.不同土壤中氟赋存形态特征及其影响因素.环境科学,2002,23(2):104-108
    61.徐飞高,李丹.不同茶园土壤氟含量和茶叶冲泡过程中溶出氟的测定.环境科技,2009,22(3):26-29
    62.谢忠雷,邱立民,董德明,等.茶叶中氟含量及其影响因素.吉林大学自然科学学报,2001,2:81-84
    63.向勤锃.茶树生育过程中氟铝富集规律及基因型差异的研究.[硕士学位论文].湖南农业大学,2003
    64.徐为霞.福建土壤中的氟及其向作物的转移.[硕士学位论文].福建农林大学,2006
    65.谢忠雷,陈卓,孙文田,等.不同茶园茶叶氟含量及土壤氟的形态分布.吉林大学学报(地球科学版),2008,38(2):293-298
    66.谢举华,张玉华,曹建平,等.施用富氟磷肥与茶叶氟的关系.全国第三届地氟病学术交流会议论文资料,1989:78
    67.熊培生,黄文耀,李阳,等.除氟剂筛选及其与茶汤相互影响的研究.中国地方病学杂志,2005,24(2):152-154
    68.谢正苗,吴卫红,徐建民.环境中氟化物的迁移和转化及其生态效应.环境科学进展,1999,7(2):40-53
    69.冯雪,肖斌.陕西茶园茶叶氟含量及影响因素.西北农业学报,2011,20(1):109-113
    70.尹波.钙氟交互作用对茶园土壤氟的吸附能力和形态分布的影响.[硕士学位论文].吉林大学,2009,38-40
    71.于群英,慈恩,杨林章.皖北地区土壤中不同形态氟含量及其影响因素.应用生态学报,2007,28(6):1330-1340
    72.袁辉,刘敏,李校堃,等.生物质能对我国能源政策影响.高科技与产业化,2006,5:55-56
    73.杨阳.湖南茶叶氟含量研究.福建茶叶,2007,1:13-14
    74.中国环境监测总站.中国元素背景值.北京:中国环境科学出版社,1990:188-233
    75.张瑞涛,张曙光.氟化物对鱼类的毒性及致畸的研究.环境科学,1982,3(4):1-5
    76.张家贤.鄂西地区土壤中氟的分布状况研究.环境科学与技术,1993,4:28-31
    77.张小平.西藏土壤中氟的含量及其分布.环境科学,1998,19(1):66-68
    78.宗良纲,陆丽君,罗敏,等.茶园土壤酸化对氟的影响及茶叶氟安全限量的探讨.安全与环境学报,2006,6(1):100-103
    79.詹予忠,李玲玲,俞晓江,等.活化斜发沸石吸附除水中氟研究.中国矿业,2006,15(2):68-70
    80.周世厥,张冬英,潘繁.安徽省土壤中氟分布的研究.农村生态环境,1999,15(4):34-36
    81.赵振国.吸附作用应用原理.北京:化学工业出版社,2005
    82.张艳丽.改性硅藻土处理含氟废水的研究.唐山学院学报,2007,20(6):53-55
    83.赵雅萍,祈旭,徐斌.载La(Ⅲ)-和Fe(Ⅲ)-氨基磷酸型螫合树脂对氟吸附性能的比较.上海环境科学,2004,23(3):96-99
    84.张乃明.山西土壤氟含量分布及影响因素研究.土壤学报,2001,38(2):284-287
    85.郑达贤,沙济琴.福建茶区土壤中的氟.土壤通报,1994,25(5):230-233
    86.朱媛媛,蒋新元,胡迅.生物质材料在重金属沸水处理中的应用.环境保护科 学,2008,34(1):9-12
    87. 赵明,王文娇,蔡葵,等.崂山绿茶水溶性氟含量及其影响因素分析.山东农业科学,2008,9:64-66
    88. Bhatnagar C, Bhatnagar M, Regar B C, et al. Fluoride-induced histopathological changes in gill, kidey, and intestine of fresh water teleost, Labeo rohita. Fluoride, 2007,40(1):55-61
    89. Cook H A. Fluoride and tea. Lancet,1969,2(7615):329
    90. Chitra T, Reddy M M, Ramma Rao J V, et al. Levels of muscle and liver tissue enzymes in Channa punctatus Bloch exposed to NaF. Fluoride,1983,17(5):48-51
    91. Cao J, Bai X, Zhao Y, et al. Fluorosis induced by drinking brick tea. Fluoride,1995, 29(3):139-142
    92. Cao J, Bai X X, Zhao Y, et al. The relationship of fluorosis and brick tea drinking in Chinese Tibetans. Environ Health Persp,1996,104(12):1340-1343
    93. Cao J, Zhao Y, Liu J W. Processing procedures of brick tea and their influence on fluorine content. Food Chem Toxicol,2001,39:959-962
    94. Cao J, Zhao Y, Liu J W, et al. Brick tea fluoride as a main source of adult fluorosis. Food Chem Toxicol,2003,41:535-542
    95. Farsam H, Ahmadi N. Fluoride content of teas consumed in Iran. Food sci,1978,2: 21-22
    96. Fung K F, Zhang Z Q, Wong J W C, et al. Fluoride contents in tea and soil from tea plantations and the release of fluoride into tea liquor during infusion. Environ Pollut,1999,104:197-205
    97. Fung K F, Zhang Z Q, Wong J W C, et al. Aluminium and fluoride concentrations of three tea varieties growing at lantau island, Hong Kong. Environ Geochem Health.2003,25:219-232
    98. Fung K F, Wong M H. Application of different forms of calcium to tea soil to prevent aluminium and fluorine accumulation. J Sci Food Agr.2004,84: 1469-1477
    99. Gilpin L, Johnson A H. Fluoride in the agricultural soils of southeastern pennsyvania. Soil Sci Soc Am J,1980,44:255-258
    100. Kumar A, Susheela A K. Effects of chronic fluoride toxicity on the morphology of ductus epidiymis and the maturation of spermatozoa of rabbit. Int J Exp Pathol, 1995,76(1):1-11
    101. Kumar A, Tripathi N, Tripathi M. Fluoride-induced biochemical changes in fresh water catish. Fluoride,2007,40(1):37-41
    102. Ku Y, Chiou H M. The adsorption of fluoride ion from aqueous solution by activated alumni. Water Air Soil Poll,2002,133(4):349-360
    103. Lung S C C, Hsiao P K, Chiang K M. Fluoride concentrations in three types of commercially packed tea drinks in Taiwan. J Exp Anal Environ Epidem,2003,13: 66-73
    104. Loganathan P, Gray C W, Hedley M J, et al. Total and soluble fluorine concentrations in relation to properties of soils in New Zealand. Eur J Soil Sci, 2006,57:411-421
    105. Li. H R, Liu Q B, Wang W Y, et al. Fluoride in drinking water, brick tea infusion and human urine in two counties in Inner Mongolia, China. J Hazard Mater,2009, 167:892-895
    106. Li Y H, Wang S G, Zhang X F, et al. Adsorption of fluoride from water by aligned carbon nanotubes. Mater Res Bull,2003,38(3):469-476
    107. MacLean D C, Schneider R E. Effects of gaseous hydrogen fluoride on the yield of field-grown wheat. Environ Pollut,1981,24:39-44
    108. Murray F. Response of grapevines to fluoride under field conditions. J Am Soc Hortic Sci,1983,108:526-529
    109. Pack M R. Response of strawberry fruiting to hydrogen fluoride fumigation. J A Pollut Con Assoc,1972,22:714-717
    110. Ruan J Y, Wong M H. Accumulation of fluoride and aluminum related to different varieties of tea plant. Environ Geochem Health,2001,23:53-63
    111. Ruan J Y, Ma L F, Shi Y Z, et al. The impact of pH and calcium on the uptake of fluoride by tea plants. Ann Bot,2004,93:97-105
    112. Shu W S, Zhang Z Q, Lan C Y, et al. Fluoride and aluminium concentrations of tea plants and tea products from Sichuan Province, PR China. Chemosphere,2003,52: 1475-1482
    113. Thalenhorst W. Investigations on the influence of fluor containing air pollutants upon the susceptibility of spruce plants to the attack of the gall aphid Sacchiphantesabietis(L.). Z Pflanzenk Pflanzen,1974,81:111-121
    114. Weinstein L H. Fluoride and plant life. J Occup Med,1977,19:49-78
    115. Won W C, Kennenth Y C. The removal of fluoride from waters by adsorption. J Am Water Works Ass,1979,10:562-570
    116. Wong M H, Fung K F, Carr H P. Aluminium and fluoride contents of tea with emphasis on brick tea and their health implications. Toxicol Lett,2003,137: 111-120
    117. Xu R K, Wang Y Y, Zhao A Z, et al. Effect of low molecular weight organic acids on adsorption and desorption of fluoride on variable charge soils. Environ Geochem Health,2006,28:141-146
    118. Zhu L, Zhang H H, Xia B, et al. Total fluoride in Guangdong soil profiles, China: Spatial distribution and vertical variation. Environ Int,2007,33:302-308

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700