用户名: 密码: 验证码:
基于土壤水入渗补给的优先流定量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河北平原是我国最大的农业生产基地之一,属于严重缺水地区。水资源相当缺乏,地下水为主要水源。农业灌溉用水约占总淡水资源开发利用量的72%。目前地下水过度开采已造成了一系列的环境问题,如地下水位下降与降落漏斗扩大、咸淡水界面下移和地面沉降等。造成此问题的根源是缺乏对该地区地下水资源科学合理开采利用与管理,其中土壤水入渗补给地下水是其最核心的科学问题之一。然而目前对土壤入渗补给地下水的认识主要采用活塞均匀入渗理论,与田间实际情况存在很大差异。田间优先流现象普遍存在,是土壤水入渗补给的主要形式。
     本文从优先流定义本质出发,分析了不同时间与空间尺度下土壤水入渗补给中优先流激发机制及其定量研究。以中科院栾城试验场土壤水动态长期观测资料、人工示踪剂试验、田间染色试验、室内扰动与原状土柱对比实验以及数值模拟研究为基础,对优先流现象激发机制进行了研究,定量评价了土壤水入渗补给过程中优先流程度。本次研究取得如下主要成果:
     (1)优先流现象普遍存在。植物根系与蚯蚓孔洞等优先流通道发育,随深度变化呈指数衰减。优先流主要发生在降雨或灌溉过程中,优先流和基质流分别占整个十壤水入渗补给68.9%和31.1%。总体上,土壤水优先流程度随降雨量或灌溉量和土壤初始含水量增加而增加,但其增加幅度有限。
     (2)多区模型认为示踪剂浓度剖面分布是土壤孔隙结构特征对土壤水流作用的结果。栾城和衡水研究区地下水入渗补给量分别为124.3和13.7nmyr-1,而利用传统方法评价结果分别为103.3和0.0mmyr-1,提高了评价精度。对于无溶质峰值的示踪区,多区模型具有较好的适用性。栾城和衡水地区优先流入渗补给量分别为36.05和0.32mmyr-1,其优先流程度分别为28.7和2.3%。秸秆覆盖抑制降雨或灌溉水入渗补给地下水,降低了优先流程度。植被有利于土壤水入渗和优先流形成。优先流程度主要由十壤结构控制,而不是入渗补给总量。
     (3)田间染色试验结果表明:优先流具有三维空间变异性。染色百分比总体上随深度增加而减小,其范围为28.2~41.7%,平均值为34.1%。优先流以蚯蚓孔洞大孔隙为主,植物根孔隙不具备明显的优先流导水作用。亮蓝浓度剖面区域明显小于Br-浓度剖面,使通过亮蓝浓度剖面获得的入渗补给量偏小2.69-24.74%。增加入渗量有利于优先流激发,但对优先流程度增加幅度有限。提高土壤初始含水量能有效抑制优先流发育。
     (4)饱和导水率实验结果表明:原状土柱饱和导水率明显高于扰动土柱1-3个数量级。土壤大孔隙结构越发育,其饱和导水率相差越大。原状土柱优先流程平均值为87.6%。
     (5)室内十柱实验结果表明:原状土柱优先流现象明显,优先流程度为73.00~99.99%。总体上土柱出流速率随灌溉强度减小而减小。在整个土柱剖面范围内,扰动土柱剖面的染色百分比为10~20%;原状土柱剖面的平均染色百分比分别为40.37~74.90%,且优先流程度随染色百分比增加而增加。在灌溉条件下,随深度变化的染色面积百分比的变异系数可以指示原状土柱优先流发育程度,即变异系数越低,其优先流程度越高,但对扰动土柱不适用。
     (6)采用HYDURS-1D对栾城田间长序列土壤水动态试验进行数值模拟结果表明:总体上,入渗补给速率具有年际变化规律,在雨季达到最大,然后缓慢减小。年均入渗补给量为220mmyr-1,由优先流引起的入渗补给量为211mmyr-1,占96.3%。
     (7)室内原状土柱实验的数值模拟结果表明:原状土柱优先流程度很高,平均值为98.7%。优先流激发情况与降雨/灌溉和初始含水量等条件有关,导致不同条件下模型中土壤水力参数发生变化。因此,室内原状土柱的优先流反演模型参数仅能适用与灌溉条件相同或相近的田间,对于相差较大的田间条件则不适用。
     (8)研究成果对地下水资源评估、农业节水与地下水污染风险评价具有重要指导意义。该成果提高了对土壤水入渗补给机制的认识,从非均匀流角度修订了以传统示踪法为主的地下水入渗评价方法。采取秸秆覆盖与间歇性灌溉方式、减少单次灌溉量即增加灌溉量次数和增加十壤翻耕深度与频率均能抑制优先流发育,促进耕作层涵养水分能力,提高降雨或灌溉水利用效率,降低地下水污染风险。
The Hebei Plan is one of the largest bases for agriculture in China, which is suffered shortage of water resource. The groundwater is the mainly source for drinking, irrigation and industry. The percentage of water amount for irrigation accounts for72%of the total water resource. At present, over-exploitation caused a series of environmental problems, e.g., continued declining of the groundwater level, increasing of cones of depression, moving down of interface between fresh and saltine water, and superficial deposit, which were attributed to unreasonable management of groundwater. The soil water infiltration is vital for estimating the groundwater resources. However, the piston model was applied to estimate the groundwater recharge, which doesn't agree with the case of the field, because the preferential flow was common in the filed, the main way for soil water infiltration.
     This paper discussed the mechanism of preferential flow on the condition of different time and space scales. The percentage of preferential flow was also estimated when the irrigation and precipitation infiltrated into soil, and even the groundwater. In Luancheng site of Chinese Academy of Science, the soil water content and potential were monitored from2003, April to2013, April, and the Bromine and Tritium tracers'test, and Brilliant Blue dyeing test were conducted. The experimental soil columns and simulated method were also applied to study the preferential flow. The results showed that:
     1. The phenomenon of preferential flow was common in the filed. The preferential flow paths, e.g., the plant roots and earthworm holes develop, decreasing exponentially with the depth of soil profile. The preferential flow occurred during the irrigation and rainfall, and percentages of infiltrated water for preferential flow and matrix flow were54.5and45.5%, respectively. In generally, the percentages of preferential flow were larger for more amounts of irrigation or rainfall and higher soil water content, however, the increased extent was limited.
     2. The multi-region model considers that the distributions of the tracers'concentrations in the soil profile were attributed to the effect of soil structure on the soil water movement. The annual recharges of Luancheng and Hengshui sites were124.3and13.7mmyr-1for the multi-region model, respectively, however,103.3and0.0mmyr-1for the traditional method, which improved the precision of groundwater recharge, especially for the areas of much lower annual recharges without peaks of tracers'concentration in the soil profile. The annual recharges of preferential and matrix flows were36.05and0.32mmyr-1, respectively, and accounted for28.7and2.3%. The straw mulching restricted preferential flow, and increased the storage of soil water in the plant root zone. Plants improved the infiltration of irrigation and rainfall, increasing preferential flow. The extent of preferential flow was controlled by the soil structure rather than the total amount of infiltration.
     3. The results of dyeing test showed that the model of preferential flow varied in three dimensions. The percentages of dyeing area changed from28.2to41.7%, with the average value of34.1%, which decreased with depth in the soil profiles. The earthworm holes were the main preferential flow paths rather than the plant roots. The distributed area of Bromine was larger than Brilliant Blue, which resulted in less2.69to24.74%of infiltration for the Brilliant Blue concentration profile than the Bromine.
     4. The results of saturated experiment showed that the saturated hydraulic conductivities of undistributed soil columns were1to3orders of magnitude higher than the distributed. Better growth of macropores or fracture between soil aggregates results in larger difference of saturated hydraulic conductivities between undistributed and distributed. The average percentage of preferential flow for the undistributed soil column was87.6%.
     5. Contrastive experiment of undistributed and distributed soil columns showed that the preferential flow of the undistributed soil columns developed well, and the percentages of preferential flow were from73.00to99.99%. In total, the effluent velocity at the bottom of soil columns increased with higher intensity. The percentages of dyeing area in the whole soil profile were10to20%for the distributed, while40.37to74.90%for the undistributed. The extents of preferential flow of undistributed columns were increased with depth. The coefficients of variation for percentages of dyeing area with depth in the soil profile could indicate the extent of preferential flow, i.e., larger coefficients of variation for lower extents of preferential flow, which wasn't suitable for the distributed.
     6. The results of modeling for soil water and potential test in Luancheng site showed that the groundwater recharge was largest in the rainy seasons, and then decreased to the dry seasons. The annual recharge was220mmyr-1. The recharge of preferential flow was211mmyr-1, accounting for96.3%of the total recharge.
     7. The experiments of undistributed columns showed that the percentages of preferential flow were large, average value of98.7%. The soil hydraulic parameters of the dual-permeability model varied on the different condition at the upper boundary, owing to the stochastic characters of preferential flow. Therefore, the optimizational model could be applied in field with the same or similar irrigation pattern, but couldn't be suitable for the cases which were different from irrigation of the experiment.
     8. The results of this thesis could be useful for estimation of groundwater resource, management of agriculture water-saving, and risk evaluation of groundwater suffering contamination, which improved the understanding of soil water infiltration, and modified the traditional method basing on the piston flow model. Water-saving technique, e.g., straw mulch, intermittent irrigation pattern, less per-irrigation (i.e., increasing the number with the same total irrigation), increasing the plowing depth and frequency, could restrain the preferential flow, improve the ability of retaining soil water during the root zone and utilization efficiency of irrigation or rainfall, and cut down the risk of groundwater suffering contamination.
引文
[1]吴庆华.人类活动影响下土壤水动态演变及其高效利用[D].北京:中国地质科学院,2008.
    [2]费宇红,张兆吉,张凤娥等.气候变化和人类活动对华北平原水资源影响分析[J].地球学报,2007,28(7):567-571.
    [3]Jin M, Zhang R, Sun L, et al. Temporal and spatial soil water management:a case study in the Heilonggang region, PR China[J]. Agricultural Water Management,1999,42:173-187.
    [4]雷志栋,胡和平,杨诗秀.土壤水研究进展与评述[J].水科学进展,1999,10(3):311-318.
    [5]高峰,李建平,王黎黎等.十壤水运动理论研究综述[J].湖北农业科学,2009,48(4):982-986.
    [6]杨文治,马玉玺,韩仕峰等.黄土高原地区造林土壤水分生态分区研究[J].水土保持学报,1993,8(1):1-9.
    [7]李玉山.土壤水分状况与作物生长[J].土壤学报,1962,10(3):289-304.
    [8]邵明安,杨文治,李玉山.植物根系土壤水分的数值模型[J].土壤学报,1987,24(1):295-305.
    [9]张北赢,徐学选,李贵玉等.土壤水分基础理论及其应用研究进展[J].中国水土保持科学,2007,5(2):122-129.
    [10]庄季屏.四十年来的中国土壤水分研究[J].土壤学报,1989,26(3):241-248.
    [11]王全九,王文焰,邵明安.浑水入渗机制及模拟模型研究[J].农业工程学报,1999,15(1):135-138.
    [12]汪志荣,王文焰,干全九等.浑水波涌灌溉入渗机制及其Green-Ampt模型[J].水利学报,1998,10:44-48.
    [13]李毅,王全九,邵明安等Green-Ampt入渗模型及其应用[J].西北农林科技大学学报,2007,35(2):225-230.
    [14]王文焰,汪志荣,王全九等.黄十中Green-Ampt入渗模刑的改进与验证[J].水利学报,2003,5:30-34.
    [15]王全九,邵明安,汪志荣等Green-Ampt公式在层状土入渗模拟计算中的应用[J].十壤侵蚀与水土保持学报,1999,5(4):66-70.
    [16]赵伟霞,谢恒星,张振华等.恒定水头井入渗Green-Ampt模刑的改进与验证[J].水利学报,2010,41(4):464470.
    [17]郭向红,孙西欢,马娟娟等.不同入渗水头条件下的Green-Ampt模型[J].农业工程学报,2010,26(3):64-68.
    [18]马英,冯绍元,刘晓东等.考虑禁锢空气影响的层状土壤Green-Ampt入渗模型及试验验证[J].水利学报,2011,9:1034-1043.
    [19]秦耀东,任理,王济.土壤中大孔隙流研究进展与现状[J].水科学进展,2000,11(2):203-207.
    [20]卜囡,尚松浩,毛晓敏等.层状十入渗试验中指流发育的分形特征及入渗规律[J].水动力学研究与进展,2012,27(2):183-190.
    [21]郭会荣.优先流影响下的入渗补给过程及溶质运移实验与模拟[D].武汉:中国地质大学(武汉),2008.
    [22]李伟莉,金吕杰,王安志等.土壤大孔隙流研究进展[J].应用生态学报,2007,18(4):888-894.
    [23]冯杰,郝振纯.土壤大孔隙流研究中分形几何的应用进展[J].水文地质工程地质,2001,27(9):9-13.
    [24]吕刚,王洪禄,黄龙.辽西半干旱区森林土壤大孔隙特征研究[J].水土保持学报,2012,32(5):176-181.
    [25]石辉,王峰,李秧秧.黄土丘陵区人工油松林地土壤大孔隙定量研究[J].中国农业生态,2007,15(1):9-13.
    [26]孙龙,张洪江,程金花等.柑橘地土壤大孔隙与优先流的关系研究[J].水十保持通报,2012,32(6):75-79.
    [27]冯杰,郝振纯.CT扫描确定土壤大孔隙分布[J].水科学进展,2002,13(5):611-617.
    [28]Beven K, Germann P. Macropores and water flow in soils[J]. Water Resources Research,1982, 18(5):1311-1325.
    [29]程竹华,张佳宝.土壤中优势流现象的研究进展[J].土壤,1998,29(6):315-331.
    [30]Larsson M., Jarvis N., Torstensson G, et al. Quantifying the impact of preferential flow on solute transport to tile drains in a sandy field soil[J]. Journal of Hydrology,1999,215(1-4):116-134.
    [31]Maya B, Achim A, Pascal F, et al. Impact of preferential flow on radionuclidedistribution in soil[J]. Environ.Sci. Techol,2000,34(18):3895-3899.
    [32]Bundt M, Widmer F, Pesaro M, et al. Preferential flow paths:biological "hot spots" in soils [J]. Soil Biology and Biochemistry,2001,33(1):729-738.
    [33]Mooney S J, Nipattasuk W. Quantification of the effects of soil compaction on water flow using dye tracers and image analysis [J]. Soil Use and Management,2003,19(4):356-363.
    [34]Weiler M, Fluhler H. Inferring flow types from dye patterns in macroporous soils [J]. Geoderma, 2004,120(1-2):137-153.
    [35]Jarvis N, Etana a., Stagnitti F. Water repellency, near-saturated infiltration and preferential solute transport in a macroporous clay soil [J]. Geoderma,2008,143(3-4):223-230.
    [36]Wuest S B. Comparison of preferential flow paths to bulk soil in a weakly aggregated silt loam soil [J]. Vadose Zone Journal,2009,8(3):623.
    [37]Harpold A a., Lyon S W, Troch P a., et al. The hydrological effects of lateral preferential flow Paths in a glaciated watershed in the northeastern USA [J]. Vadose Zone Journal,2010,9(2):397.
    [38]Alaoui a., Caduff U, Gerke H H, et al. Preferential Flow Effects on Infiltration and Runoff in Grassland and Forest Soils [J]. Vadose Zone Journal,2011,10(1):367.
    [39]吴继强,张建丰,瑞高.大孔隙对土壤水分入渗特性影响的物理模拟试验[J].农业工程学报,2009,25(10):13-18.
    [40]冯杰,郝振纯,刘方贵.大孔隙对土壤水分特征曲线的影响[J].灌溉排水,2002,21(3):4-7.
    [41]余海龙,黄菊莹.砂田砾石覆盖对土壤大孔隙特征及其土壤水文过程的影响研究进展[J].水土保持研究,2012,19(4).
    [42]盛丰,方妍.土壤水非均匀流动的碘-淀粉染色示踪研究[J].土壤,2012,44(1):144-148.
    [43]陈风琴,石辉.岷江上游三种典型植被下土壤优势流现象的染色法研究[J].生态科学,2006,25(1):69-73.
    [44]张财宝,刘日兴,王文德等.三峡库区森林土壤优先流染色特征[J].水土保持学报,2012,26(2):80-84.
    [45]肖自幸,朱蔚利,牛健植等.鹫峰国家森林公园不同林分下土壤优先流现象研究[J].湖南农业科学,2011(17):118-121.
    [46]Forrer I, A P, R.Kasteel, et al. Quantifying dye tracers in soil profile by image processing [J]. European Journal of Soil Science,2000,51:313-322.
    [47]Flury M. Dyes as tracers for vadose zone hydrology [J]. Reviews of Geophysics,2003,41(1):1-37.
    [48]Hardie M a., Cotching W E, Doyle R B, et al. Effect of antecedent soil moisture on preferential flow in a texture-contrast soil [J]. Journal of Hydrology, Elsevier B.V.,2011,398(3-4):191-201.
    [49]Pinuela J, Alvarez a., Andina D, et al. Quantifying a soil pore distribution from 3D images: Multifractal spectrum through wavelet approach [J]. Geoderma, Elsevier B.V.,2010,155(3-4): 203-210.
    [50]Kramers G, Richards K G, Holden N M. Assessing the potential for the occurrence and character of preferential flow in three Irish grassland soils using image analysis [J]. Geoderma, Elsevier B.V., 2009,153(3-4):362-371.
    [51]Baer J U, Kent T F, Anderson S H. Image analysis and fractal geometry to characterize soil desiccation cracks [J]. Geoderma, Elsevier B.V.,2009,154(1-2):153-163.
    [52]Sander T, Gerke H H. Preferential flow patterns in paddy fields using a dye tracer [J]. Vadose Zone Journal,2007,6(1):105.
    [53]Koszinski S, Quisenberry V, Rogasik H, et al. Spatial variation of tracer distribution in a structured clay field soil [J]. Journal of Plant Nutrition and Soil Science,2006,169(1):25-37.
    [54]Schlather M, Huwe B. A risk index for characterising flow pattern in soils using dye tracer distributions [J]. Journal of contaminant hydrology,2005,79(1-2):25-44.
    [55]Kasteel R, Burkhardt M, Giesa S, et al. Characterization of field tracer transport using high-resolution images [J]. Vadose Zone Journal,2004,4:101-111.
    [56]王康,张仁铎,缴锡云.多孔介质中非均匀流动特性的染色示踪试验研究[J].水科学进展,2007,18(5):662-667.
    [57]王康,张仁铎,王富庆等.土壤水分运动空间变异性尺度效应的染色示踪入渗试验研究[J].水科学进展,2007,18(2):158-163.
    [58]区白清,贾良清,金海燕等.大孔隙和优先流及其对污染物在土壤中迁移行为的影响[J].十壤学报,1999,36(3):341-347.
    [59]谢华,王康,张仁铎等.土壤水入渗均匀特性的染色示踪试验研究[J].灌溉排水学报,2007,26(1):1-4.
    [60]荐圣淇,赵传燕,彭焕华等.利用染色示踪与图像处理术研究根系对十壤大孔隙的影响[J].兰州大学学报(自然科学),2011,47(5):62-66.
    [61]程竹华,张佳宝,徐绍辉.黄淮海平原三种土壤中优势流现象的试验研究[J].土壤学报,1999,36(2):154-161.
    [62]王焕之.稻田土壤水分优先流的发生_发展与模拟研究[D].杭州:浙江大学,2002.
    [63]Luo L, Lin H. Lacunarity and fractal analyses of soil macropores and preferential transport using micro-X-Ray computed tomography [J]. Vadose Zone Journal,2009,8(1):233.
    [64]Baveye P C, Laba M, Otten W, et al. Observer-dependent variability of the thresholding step in the quantitative analysis of soil images and X-ray microtomography data [J]. Geoderma, Elsevier B.V., 2010,157(1-2):51-63.
    [65]冯杰,郝振纯.CT在土壤大孔隙研究中的应用评述[J].灌溉排水,2000,19(3):71-76.
    [66]吴华山,陈效民,陈粲.利用CT扫描技术对太湖地区主要水稻土中大孔隙的研究[J].水土保持学报,2007,21(7):175-178.
    [67]Haarder E B, Looms M C, Jensen K H, et al. Visualizing unsaturated flow phenomena using high-resolution reflection ground penetrating radar [J]. Vadose Zone Journal,2011,10(1):84.
    [68]丰盛,张仁铎,刘会海.土壤优先流运动的活动流场模型模拟和敏感性分析[J].农业工程学报,2011,27(4):72-80.
    [69]郭会荣,靳梦贵,王云.基于室内土柱穿透实验的优先流定量评价[J].地质科技情报,2009,28(6):101-106.
    [70]张丽华,王成武.非饱和土壤优先流运动特性的染色示踪研究[J].节水灌溉,2010,34(5):35-37.
    [71]周明耀,余长洪,钱晓晴.基于孔隙分形维数的土壤大孔隙流水力特征参数研究[J].水科学进展,2006,17(4):466-470.
    [72]Benson D A, Wheatcraft S W, Meerschaert M M. The fractional-order governing equation of Levy motion [J]. Water Resources Research,2000,36(6):1413-1423.
    [73]盛丰,王康,张仁铎等.用分形特征参数定量描述土壤水流运动的非均匀程度[J].水利学报,2009,40(12):1432-1439.
    [74]李云开,杨培岭,任树梅等.土壤水分与溶质运移机制的分形理论研究进展[J].水科学进展,2005,16(6):892-899.
    [75]Rossa P J, J. K R. A Simple treatment of physical nonequilibrium water flow in soils [J]. Soil Science Society of America Journal,2000,64(6):1926-1930.
    [76]Kohne J M, Kohne S, Simunek J. A review of model applications for structured soils:a) Water flow and tracer transport [J]. Journal of contaminant hydrology, Elsevier B.V.,2009,104(1-4):4-35.
    [77]Leij F J, Toride N, Field M S, et al. Solute transport in dual-permeability porous media [J]. Water Resources Research,2012,48(4):1-13.
    [78]Arora B, Mohanty B P, McGuire J T. Uncertainty in dual permeability model parameters for structured soils [J]. Water Resources Research,2012,48(1):1-17.
    [79]Taylor P, Alaoui A, Germann P, et al. Dual-porosity and kinematic wave approaches to assess the degree of preferential flow in an unsaturated soil [J]. Hydrological Sciences Journal,2003,48(3): 37-41.
    [80]Dolezal F, Zumr D, Vacek J, et al. Dual permeability soil water dynamics and water uptake by roots in irrigated potato fields [J]. Frantisek, Dolezal,2007,62(5):552-556.
    [81]马东豪,王全九.土壤溶质迁移的两区模型与两流区模型对比分析[J].水利学报,2004,35(6):1-8.
    [82]朱磊,周清,杨金忠等.基于随机水流网络的土壤水非均匀运动数值模拟[J].水利学报,2010,41(3):310-318.
    [83]李少龙,杨金忠,蔡树英.非饱和渗流随机模型中水力要素的随机特性研究[J].岩土工程学报,2006,28(10):1273-1276.
    [84]王康,张仁铎,周祖昊等.多孔介质中非均匀流动模式示踪试验与弥散限制聚合分形模拟的应用[J].水利学报,2007,38(6):690-696.
    [85]Mathieu R, Bariac T. An isotopic study (2H and 18O) of water movements in clayey soils under a semiarid climate [J]. Water Resources Research,1996,32(4):779-789.
    [86]A.-R. S, Campbell A R. Study of evaporation and recharge in desert soil using environmental tracers, New Mexico, USA [J]. Environmental Geology,1997,29(3-4):147-151.
    [87]Sukhija B S, Reddy D V, Nagabhushanam P, et al. Recharge processes:piston flow vs preferential flow in semi-arid aquifers of India [J]. Hydrogeology Journal,2003,11(3):387-395.
    [88]McConville C, Kalin R M, Johnston H, et al. Evaluation of recharge in a small temperate catchment using natural and applied delta 180 profiles in the unsaturated zone [J]. Ground water,2001,39(4): 616-23.
    [89]Subramanian S K, Li Y, Cathles L M. Assessing preferential flow by simultaneously injecting nanoparticle and chemical tracers [J]. Water Resources Research,2013,49(1):29-42.
    [90]J(?)rgensen P R, Hoffmann M, Kistrup J P, et al. Preferential flow and pesticide transport in a clay-rich till:Field, laboratory, and modeling analysis [J]. Water Resources Research,2002,38(11): 28-1-28-15.
    [91]齐登红,靳孟贵,刘延锋.降水入渗补给过程中优先流的确定[J].地球科学-中国地质大学学报,2007,32(3):421-424.
    [92]靳孟贵,方连育.土壤水资源及其有效利用-以华北平原为例[M].武汉:中国地质大学山版社,2006:130.
    [93]吴庆华,王贵玲,蔺文静等.太行山山前平原地下水补给规律分析:以河北栾城为例[J].地质科技情报,2012,31(2):99-105.
    [94]吴庆华,张薇,蔺文静等.太行山前平原土壤水高效利用及精确灌溉制度研究[J].中国农村水利水电,2010,34(4):58-61.
    [95]张喜英.中国科学院栾城农业生态系统试验站农田节水研究、过去、现在和未来[J].中国生态农业学报,2011,19(5):987-996.
    [96]王淑芬,张喜英,裴冬.不同供水条件对冬小麦根系分布、产量及水分利用效率的影响[J].农业工程学报,2006,22(2):27-32.
    [97]王康.多孔介质非均匀流动显示示踪技术与模拟方法[M].湖北,武汉:科学出版社,2009:229.
    [98]盛丰,王康,张仁铎等.田间尺度下土壤水流非均匀运动特征的染色示踪研究[J].水利学报,2009,9350:101-108.
    [99]汪丙国.地下水补给评价方法研究[D].武汉:中国地质大学(武汉),2008.
    [100]邵明安,王全九,黄明斌.土壤物理学[M].北京:高等教育出版社,2006:320.
    [101]Olsen S R, Kemper W D. Movement of nutrients to plant roots[J]. Advances in Agronomy,1968, 20:91-151.
    [102]Vanderborght J, Vereecken H. Review of dispersivities for transport modeling in soils [J]. Vadose Zone Journal,2007,6(1):29.
    [103]吴庆华,张薇,蔺文静等.秸秆覆盖条件下土壤水动态演变规律研究[J].干旱地区农业研究,2009,27(4):76-82.
    [104]邱琳,吴华山,陈效民等.利用染色示踪和图像处理技术对土壤大孔隙进行定量研究[J].土壤,2007,39(4):621-626.
    [105]Morris C, Mooney S J, Young S D. Sorption and desorption characteristics of the dye tracer, Brilliant Blue FCF, in sandy and clay soils [J]. Geoderma,2008,146(3-4):434-438.
    [106]Alaoui A, Goetz B. Dye tracer and infiltration experiments to investigate macropore flow [J]. Geoderma,2008,144(1):279-286.
    [107]王康,张仁铎,周祖昊.土壤性质对入渗再分布影响的显色示踪试验研究[J].土壤通报,2012,43(3):577-582.
    [108]Morris C. A high-resolution system for the quantification of preferential flow in undisturbed soil using observations of tracers [J]. Geoderma,2004,118(1-2):133-143.
    [109]Ridge O, Wilson G V, Yeh G T. Using a multiregion model to study the effects of advective and diffusive mass transfer on local physical nonequilibrium and solute mobility in a structured soil[J]. Water Resources,1996,32(3):561-570.
    [110]Ridge O. A multiple-pore-region concept to modeling mass transfer in subsurface media [J]. Journal of Hydrology,1995,164(94):217-237.
    [111]Lappan R E, Hrymak A N, Pelton R. Dependence of in situ precipitate deposition on flow characteristics in multi-permeability porous media [J]-Chemical Enqineering Science,1997, 52(17):2963-2975.
    [112]Simunek J, Nick J J, Genuchten M T V, et al. Review and comparison of models for describing non-equilibrium and preferential flow and transport in the vadose zone [J]. Journal of Hydrology, 2003,272(1-4):14-35.
    [113]Simunek,J, Sejna M, Saito H, et al. The Hydrus-1D software package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media [M]. Department of Environmental Sciences University of California Riverside, in USA,2009:332.
    [114]Groundwater recharge:an overview of estimation'problems'and recent developments [M]. Geological Society, London, Special Publications,1998:(130):107-115.
    [115]Simunek et al. Parameter Estimation Analysis of the Evaporation Method for Determining Soil Hydraulic Properties [J]. Soil Science Society of America Journal,1995,62(4):894-905.
    [116]Wang B, Jin M, Wang W, et al. Estimating groundwater recharge in Hebei Plain, China under varying land use practices using tritium and bromide tracers[J]. Journal of Hydrology,2008,356: 209-222.
    [117]Lambot S, Javaux M, F.Hupet, et al. A global multilevel coordinate search procedure for estimating the unsaturated soil hydraulic properties [J]. Water Resources Research,2002,38(11):1-15.
    [118]Kelleners T J, Soppe R W O, Ayars J E, et al. Inverse analysis of upward water flow in a groundwater table lysimeter [J]. Vadose Zone Journal,2005,4(3):558-272.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700