用户名: 密码: 验证码:
碎裂岩体用作高混凝土重力坝坝基的可能性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金沙江金安桥水电站坝基及两岸较低高程部位的玄武岩体裂隙面上普遍有绿泥石薄膜,这种玄武岩岩体称为裂面绿泥石化岩体。由于裂面绿泥石化的结构面分布密度大,按现行国家标准GB50287-99(水利水电工程地质勘察规范),对应的岩体结构为碎裂~镶嵌碎裂结构,对应的岩体质量为Ⅳ~Ⅲ_2级岩体,但原位条件下岩体镶嵌十分紧密,这类特殊岩体能否作为高混凝土重力坝坝基,理论意义和工程意义都较重大。论文以金安桥水电站裂面绿泥石化岩体能否用作坝基为主题,主要进行了如下内容的研究:
     (1) 通过现场调查与分析,查明了绿泥石化裂面的发育特征:主要发育在玄武岩柱状节理上;绿泥石对两侧的岩石有一定的粘结作用;裂面倾角陡,迹长短。
     (2) 结合现场调查与室内分析成果,认为坝址裂面绿泥石是玄武岩后期热液蚀变形成或热液中绿泥石沉淀于裂壁形成,在时代上基本与玄武岩同期。
     (3) 对于裂面绿泥石化岩体,按照国标GB50287-99各评价指标划分出的岩体结构类型表现了明显的不一致,可见金安桥水电站坝基裂面绿泥石化岩体是一种新的特殊碎裂岩体。论文认为该岩体尽管碎裂,但却是原位下的碎裂,完全不同于构造作用形成的破碎带、岩块间有错位的碎裂岩体,对这一类新的岩体,本论文将其定名为“原位镶嵌碎裂岩体”。该紧密的“原位镶嵌碎裂岩体”有一些特征:具有“似完整性”;岩体渗透性很弱,岩体波速、完整性、变形模量高。论文提出了该岩体的岩体结构分类方案。
     (4) 现场与室内试验表明,在原位或较小扰动条件下,裂面绿泥石化岩体的强度与变形参数量值均较高。室内玄武岩碎块高压试验成果(最大压力为750MPa)揭示了金安桥水电站原位镶嵌碎裂岩体变形模量基本量值在10GPa以上。
     (5) 根据“原位镶嵌碎裂岩体”的特点,在进行岩体质量分级时,确定了主要量化指标为Vp、Kv、f、C′,E、Lu等,论证了上述各指标间的较好的相关性,提出了岩体质量分级方案,进行了岩体力学参数评价。
     (6) 以力学参数、渗透性指标以及岩体质量级别为核心,进行了多种方式的建基面选择,突破了单纯依据风化分带选择建基面的限制,最终确定的建基面在河床中心ZK9位置距离基岩顶板距离为6.5m。
     (7) 采用有限元法计算了坝基最大沉降量为0.017~0.037m。考虑到在坝体开挖时要采取一些措施减少该类岩体的松弛量,基本不存在变形稳定性问题。
     (8) 论文通过三维实体模型切割来确定抗滑稳定性边界,然后采用滑面应力状态对坝基抗滑稳定性进行了验算,认为基本上不存在抗滑稳定性问题。
Basalts with chloritized joints were distributed in dam foundation and two banks of low altitude in Jin'anqiao hydroelectric station, and these special basalts were named basalts with chloritized joints. Basalts were cutting severely by dense chloritized joints. In the light of current code for water resources and hydropower engineering geological investigation(GB50287-99), types of rock mass structure should be inlaid cataclastic structure or cataclastic structure, and types of rock mass quality should be grade IV or grade IQ2, but in situ condition, basalts closely locked. Could these special rock masses been used as foundation of high concrete gravity dam? The study of basalts with chloritized joints had theoretical and engineering significance. So taking Jin'anQiao hydroelectric station on Jinsha River as an example, some problems closely related to the stability of rock mass surrounding dam foundation were analyzed in detail from the engineering geologic points of view. And the main contents of this dissertation were:(1) Through field investigation and analysis, found out developmental characteristics of basalts with chloritized joints: chlorites mainly developed in basalt columnar joints; chlorites having some cementing action for two sides basalts; chloritized joints with steep angle of dips; chloritized joints with short traces.(2)According to field and indoor investigations and tests, genetic mechanism of chloritized joints were analyzed in detail. The formation of chlorites in basalt joints had two modes: first mode was hydrothermal alteration after formation of basalts, second mode was that chlorites in thermal fluid had deposited on two walls of joints.(3)Using indexes of Code of GB50287-99 to appraise the rock mass structure types of the basalts with chloritized joints, results had distinct disagreements. So the basalts with chloritized joints of Jin'anqiao hydroelectric station dam foundation were new special cataclastic structure rock masses. These cataclastic structure rock masses were discreted in situ, and differentiated with fracture zone by tectonic process or displacement. In this dissertation, these new special structure rock masses were named inlaid cataclastic structure rock mass in situ. The inlaid cataclastic structure rock mass in situ had some characteristics: with quasi-integrality; low permeability, high rock mass wave velocity, high deformation modulus. Based on these characteristics, put forward the rock mass structure classification scheme of these new inlaid cataclastic rock mass in situ.(4)According to field and indoor investigations and tests, under the conditions of in situ or slight disturbance, basalts with chloritized joints had high intensive and deformation parameters. Results of indoor basalt fragments high-pressure test(maximum pressure:750MPa) proved that the inlaid cataclastic rock mass in situ of Jin'anqiao hydroelectric station dam foundation had high deformation modulus (more
引文
[1] 《中国水力发电工程》编审委员会。中国水力发电工程(水工卷).中国电力出版社,2000.
    [2] 《中国水力发电工程》编审委员会.中国水力发电工程(工程地质卷).中国电力出版社,2000.
    [3] 中华人民共和国国家标准.水利水电工程地质勘察规范(GB50287-99).
    [4] 王思敬,黄鼎成.工程地质世纪成就.地质出版社.2004.
    [5] 谷德振.地质构造与工程建设.科学通报.1963,(10):22~26.
    [6] 孙玉科,李建国。岩质边坡稳定的工程地质研究.地质科学.1965(7):36~43.
    [7] 谷德振.岩体工程地质力学基础.科学出版社,1979.
    [8] 孙广忠,岩体结构力学.科学出版社,1988.
    [9] 孙广忠.论“岩体结构控制论”.工程地质学报.1993年创刊号:14~18.
    [10] 郑德超.节理岩体结构的分形研究.包头钢铁学院学报.1998(17):9~12.
    [11] 徐卫亚,赵立永,梁永平.岩体结构识别的三角多项式函数模式图方法.工程地质学报.1999,7(2):181~186.
    [12] 徐卫亚,赵立永,梁永平.工程岩体结构类型定量划分问题研究.武汉水利电力大学学报.1999,32(2):8~11.
    [13] 曹劲,吴旭军.岩体结构概率模拟的原理与方法.勘察科学技术.1990(4):30~35.
    [14] 陈剑平,王清等.岩体结构统计均质区的划分.地质灾害与环境保护.1996,7(1):19~24.
    [15] 肖尚斌,张艳君等.蒲石河抽水蓄能电站地下厂房区岩体结构统计均质区划分.东北水力发电.1997(8):39~41.
    [16] 王清玉.应用弹性波法对岩体结构分类及有关问题解析.四川水力发电.1994(1):49~54.
    [17] 常旭,刘伊克等.基于波速与衰减成像的岩体结构分析.科学通报.2000,45(4):416~420.
    [18] 周小平,邓梦等.声发射凯塞效应结合岩体结构分析测量地应力的新进展.重庆建筑大学学报.2001,23(6):109~113.
    [19] 邓荣贵.地震物探在高速路堑边坡岩体结构研究中的应用.辽宁工程技术大学学报(自然科学版).2001,20(4):463~465.
    [20] 韩爱果,聂德新.岩体结构研究中结构面间距取值方法探讨.岩石力学与工程学报.2003,22(增2):2575~2577.
    [21] 吴志勇,聂德新.基于数码图像的岩体结构信息采集处理研究.岩石力学与工程学报.2003,22(增2):2568~2571.
    [22] 柴贺军,黄地龙.岩体结构三维可视化及其工程应用研究.岩土工程学报.2001,23(2):217~220.
    [23] 陈宏.岩体结构分析计算机系统的程序设计.有色金属(矿山部分).2002,54(3):28~31.
    [24] 傅荣华,李天斌等.确定岩体结构类型的专家系统方法.水文地质工程地质.1994(2):6~9.
    [25] 范留明,黄润秋.一种基于结构面密度的岩体结构均质区划分方法.岩石力学与工程学报.2003,22(7):1132~1136.
    [26] 徐能雄,何满潮.岩体结构三维构模技术及其可视化系统研制.岩土工程学报.2004,26(3):373~377.
    [27] 李智毅,王建峰等.草峪岭隧洞岩体结构特征及围岩稳定有限元分析.现代地质.1994,8(3):317~327.
    [28] 虞利军,李天斌等,地下厂房围岩稳定性的岩体结构分析.地质灾害与环境保护.1998,9(3):35~39.
    [29] 云卫东,田润暹.某电站岩体结构对引水隧洞围岩稳定性的影响.西部探矿工程.202,77(4):77~78.
    [30] 王述红,许研等.岩体结构面对大跨度隧道工程稳定性影响初步研究.化工矿物与加工.2002(7):24~26.
    [31] 孟召平,彭苏萍.沉积岩体结构类型及其对煤炭开采矿压分布的影响.岩石力学与工程学报.2004,23(9):1454~1459.
    [32] 宋战平,邓良胜等.岩体结构分析法及其在隧洞裂隙围岩稳定性分析中的应用研究.四川水力发电.2004,23(2):15~18.
    [33] 马博恒.露天采场边坡岩体结构的力学效应分析(上).冶金矿山设计与建设.1998,30(4):9~14.
    [34] 马博恒.露天采场边坡岩体结构的力学效应分析(下).冶金矿山设计与建设.1998,30(5):8~10.
    [35] 张菊明,王思敬.边坡岩体结构的三维失稳形式及稳定性分析研究.工程地质学报.1997,5(3):242~250.
    [36] 王在泉.岩石高边坡岩体结构特征及其工程控制研究.中国矿业大学学报.1997,26(3):79~83.
    [37] 申力.露天煤矿边坡工程岩体结构分析与计算机模拟研究.东北煤炭技术.1997(3):38~41.
    [38] 李长洪,蔡美峰等.大型露天矿山边坡岩体结构与破坏模式分析.中国矿业.2004,13(2):48~51.
    [39] 中华人民共和国国家标准.水利水电工程地质勘察规范(GB50287-99).
    [40] 中华人民共和国国家标准.岩土工程勘察规范(GB50021-2001).
    [41] 中华人民共和国国家标准.锚杆喷射混凝土支护技术规范(GBJ86-85),1985.
    [42] Terzaghi K. Introduction to tunnel geology in rock tunneling with steel supports. Proctor and white 1946.
    [43] Muller L., Bock H. and Muller K. Structural geology of rocks-rock mechanics in construction (in German). Berlin: Wilhelm Ernst & Sohn Verlag, 1970.
    [44] Goodman R E. Introduction to rock mechanics. New York: John wiley and sons, 1980.
    [45] Goodman R E. Introduction to rock mechanics(Second. Edition). New York: John wiley and sons, 1992.
    [46] Evert Hoek. Rock Engineering(Course notes), 1999.
    [47] Deere, D. U., 1964. Technical description of rock cores for engineering purposes. Rock Mech. Engng Geol. 1(1), 17~22.
    [48] Barton N. Analysis of rock mass quality and support practice in tunneling and a guide for estimating support requirements. Rock Mechanics, 1974, 6(4): 189~236
    [49] Williamson, D. A. Unified Rock Classification System. Bull. Assoc. Eng.Geol. 1984, 21(3): 345~354.
    [50] Arild Palmstrφm. Characterizing Rock Masses by the Rmi for Use in Practical Rock Engineering, part2: Some pratical applications of the Rock Mass index(Rmi). Tunnels and Deep Space. 1996, Vol(3): 287~303.
    [51] Hakan Stille, Arild Palmstrφm. Classification as a tool in rock engineering. Tunnelling and Underground Space Technology. 18(2003): 331~345.
    [52] Manuel Romana. DMR, a new geomechanics classification for use in dams foundations, adapted from RMR. Reprint for 4th international Symposium on Roller Compacted Concrete(RCC)Dams MADRID2003. P: 1~9.
    [53] 杨子文.岩体工程分级—岩石力学的理论与实践.水利电力出版社,1981.
    [54] 陈昌彦,王贵荣.各类岩体质量评价方法的相关性探讨.岩石力学与工程学报.2002,21(12):1894~1900.
    [55] 苏生瑞,周志东.溪落渡水电站坝基岩体质量综合分析.人民长江.1998,29(12):29~31.
    [56] 鲁先元,高鹏飞等.三峡坝基建基面岩体质量验收标准.岩石力学与工程学报.1996,15(增):599~604.
    [57] 工程岩体分级标准(GB50214-94).北京:中国计划出版社,1995.
    [58] 石长青,赵毅鹏,肖用海.岩体质量工程地质评价.辽宁工程技术大学学报(自然科学版).2001,20(4):530~532.
    [59] 中华人民共和国电力行业标准.混凝土重力坝设计规范(DL5108-1999).
    [60] 任自民,马代馨等.三峡工程坝基岩体工程研究.武汉:中国地质大学出版社,1998.
    [61] 彭启友,欧阳代俊.三峡工程大坝建基面弹性波检测方法.大坝与安全.2004(4):52~56.
    [62] 张建清.三峡工程建基面岩体弹性波检测技术.物探化探计算技术.2003,25(4):340~347.
    [63] 李张明.三峡工程建基面弹性波检测技术.中国三峡建设,1999(3),13-15.
    [64] 刘世煌.拉西瓦拱坝建基面优化.水力发电,1996(12).17-20.
    [65] 陈志坚,朱代洪,张雄文.围岩质量综合评判模型和大坝建基面优选模型的建立.河海大学学报,Vol 30 No4 2002.
    [66] 方大德.高坝坝基可利用岩体质量标准问题.水力发电.1997(12):16~18.
    [67] 卢建平,陆兆溱等.水电工程中弱风化岩体可利用性探讨.岩土力学.1996,17(1):41~47.
    [68] 黄杨一、王造银等.关于弱风化岩体利用的认识与实践.人民长江.1995,26(6):33~36.
    [69] 范国颂.百色水利枢纽大坝基础岩体变形试验研究.广西水利水电.2004(1):36~39.
    [70] 胡夏嵩、赵法锁等.西北某市引水工程右坝肩碎裂结构围岩成分与微结构特征.青海大学学报(自然科学版).2004,22(1):28~30.
    [71] 李锡均.碎裂岩体中高压灌浆能否形成有效防渗帷幕的研究.西部探矿工程.2004(94):17~18.
    [72] 李明,唐树名.主动锚和被动锚联合锚固碎裂结构岩体路堑边坡的模型试验分析.公路交通技术.2003(3):19~22.
    [73] 杨新安,黄宏伟,刘保卫.金川高应力碎裂岩体巷道变形与支护技术研究.湘潭矿业学院学报.2000,15(3):12~16.
    [74] 吴德海,曾祥勇,等.单锚锚杆加固碎裂结构岩体模型试验研究.地下空间.2003,23(2):158~161.
    [75] Homas Dalmalm, Thomas Janson. Large-scale Field Investigation of Grounting in Hard Jointed Rock. Grouting and Ground Treatment. 2003 Grouting: 1628~1639.
    [76] 黄润秋,王士天,张倬元等.中国西南地壳浅表层动力学过程及其工程环境效应研究.四川大学出版社,2001.
    [77] 杨献忠,杨祝良,陶奎元等.含油玄武岩中绿泥石的形成温度.矿物学报.2002,22(4):365~370.
    [78] 李仲春.李仲春论文集.水利水电出版社,2001.
    [79] 黄润秋,王士天,张倬元等.中国西南地壳浅层动力学过程及其工程环境效应研究.四川大学出版社,2001.
    [80] 邓起东,张裕明,许桂林等.中国构造应力场特征及其与板块运动的关系.地震地质.1979,1(1).
    [81] 乔学军,王琪,杜瑞林.川滇地区活动地块现今地壳形变特征.地球物理学报.2004,47(5):805~511.
    [82] Merritt A. H. and Baecher G. B. Site characterization in rock engineering. 22nd U. S. Symp. on Rock Mechanics. 1981, 49-66.
    [83] Arild Palmstrom. RMi-a rock mass characterization system for rock engineering purposes[PH. D. Dissertation]. University of OSLO, 1995.
    [84] 张倬元,王士天,王兰生.工程地质分析原理(第二版).地质出版社,1994.
    [85] John Kemeny, Randy Post. Estimating three-dimensional rock discontinuity orientation from digital images of fracture traces. Computers & Geosciences, 2003(29): 65-77
    [86] Bulut F. and Tudes S. Determination of discontinuity traces on inaccessible rock slopes using electronic tacheometer: an example from the Ikizdere(Rize) region, Turkey. Engineering Geology, 1996(4): 229-233
    [87] P. H. S. W. Kulatilake, J. Chen & J. Teng, et al. Discontinuity geometry characterization in a tunnel close to the proposed permanent shiplock area of Three Gorges dam site in China. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1996(3): 255-277
    [88] Roland Pusch. Practical visualization of rock structure. Engineering Geology, 1998(49): 231-236
    [89] 巨广宏.黄河拉西瓦水电站深切河谷花岗岩体风化卸荷的工程地质研究.成都理工大学硕 士学位论文,2002
    [90] 李勇.金沙江向家坝水电站岩体结构、岩体力学参数三维模型及图形展示研究.成都理工大学硕士学位论文,2003
    [91] 连建发,慎乃齐,张杰坤.分形理论在岩体质量评价中的应用研究,岩石力学与工程学报,2001(增):1695-1698
    [92] Arild Palmstrom. Characterizing rock masses by the RMi for use in practical rock engineering. Part 1: The development of the Rock Mass index(RMi). Tunneling and Underground Space Technology, 1996(2): 175-188
    [93] 肖树芳,杨淑碧.岩体力学.地质出版社,1987
    [93] M. N. Bagde, A. K. Raina, A. K. Chakraborty, etal. Rock masscharacterization by fractal dimension. Engineering Geology, 2002(63): 141-155
    [94] 王锦国,周志芳,杨建等.溪洛渡水电站坝基岩体工程质量的可拓评价.勘察科学技术,2001(6):25-29
    [95] 章杨松,罗国煜,李晓昭等.岩体质量分级的风险分析方法.工程地质学报,2002(3):331-336
    [96] 雷晓燕.岩土工程数值计算.中国铁道出版社,1999
    [97] 徐志英.岩石力学(第三版).中国水利水电出版社,1993
    [98] B. Singh, R. K. Goel. Rock mass classification—a practical approach in civil engineering. Elsevier, 1999
    [99] A. Ozsan, M. Akin. Engineering geological assessment of the proposed Urus Dam, Turkey. Engineering Geology, 2002(66): 271-281
    [100] Zekai Sen, Bahaaeldin H. Sadagah. Modified rock mass classification system by continuous raring. Engineering Geology, 2003(63): 269-280
    [101] Evert Hoek. Practical rock engineering, www.rocscience.com,2000
    [102] R. K. Goel, J. L. Jethwa, A. G. Palthankar. Indian experience with Q and RMR systems. Tunnelling and underground space technology, 1995(1): 97-109
    [103] L. P. Sarma, N. Ravikumar. Q-factor by spectral ratio technique for strata evaluations. Engineering Geology, 2002(57): 123-132
    [104] S. Y. Choi, H. D. Park. Comparison among different criteria of RMR and Q-system for rock mass classification for tunnel in Korea. Tunnelling and underground space technology, 2002(17): 391-401
    [105] 陶连金,张倬元,姜德义.复杂工程岩体稳定性评价.成都科技大学出版社,1998
    [106] 蔡美峰主编.岩石力学与工程.科学出版社,2002
    [107] E. Hoek and E. T. Brown. Underground excavations in rock. The Institution of Mining and Metallurgy, 1980
    [108] 徐锡伟,闻学泽,郑荣章等.川滇地区活动块体最新构造变动样式及其动力来源.中国科学(D辑).2003,33(增刊):151~162.
    [109] 吕弋培,廖华,苏琴等.川滇菱形块体边界的现今地壳形变.中国地震.2002,18(1):(28~37).
    [110] 崔效锋,谢富仁.利用震源机制解对中国西南及邻区进行应力分区的初步研究.地震学报.1999,21(5):513~522.
    [111] 吴建平,明跃红,王椿镛.云南地区中小地震震源机制及构造应力场研究.地震学报.2004,26(5):457~465.
    [112] 周志东,苏生瑞.玄武岩中石英绿帘石型层内错动带成因初探.四川水力发电.1999,18(1):75~77.
    [113] 王毅,杨建宏.玄武岩的岩体结构与力学性状研究.岩石力学与工程学报.2002,21(9):1307~1310
    [114] 李天福,马鸿文,白志民.汉诺坝玄武岩的地球化学特征及成因模式.岩石矿物学杂志.1999,18(3):217~228.
    [115] 沈军辉,王兰生,李天斌等.川西南玄武岩的岩体结构特征.成都理工学院学报.2002,29(6):680~685.
    [116] 韩宝福,王式.赤峰地区新生代玄武岩的基本特征及成因.北京大学学报(自然科学版).1998,34(1):88~96.
    [117] 潘燕宁,周凤英,陈小明等.埋藏成岩过程中绿泥石化学成分的演化.矿物学报.2001,21(2):174~178.
    [118] 郑作平,陈繁荣,于学元.八卦庙金矿床的绿泥石特征及成岩成矿意义.矿物学报.1997,17(1):100~106.
    [119] 黄国明,黄润秋.某坝址玄武岩岩体强度和变形特性.长江科学院院报.1998,15(6):19~22
    [120] 何满潮,薛廷河,彭延飞.工程岩体力学参数确定方法的研究.岩石力学与工程学报.2001,20(2):225~229.
    [121] 李同录,罗世毅,何剑等.节理岩体力学参数的选取与应用.岩石力学与工程学报.2004,23(13):2182~2186.
    [122] 刘丰收,侯清波,李松海.小浪底工程岩体力学参数研究.水文地质工程地质.2004,(增刊)34~37.
    [123] 伍佑伦,许梦国.根据工程岩体分级选择岩体力学参数的探讨.武汉科技大学学报(自然科学版).2002,25(1):22~27.
    [124] Sheng-hong Chen, Yong-ming Li, Wei-ming Wang, and Isam Shahrour. Analysis of Gravity Dam on a Complicated Rock Foundation Using an Adaptive Block Element Method. J ournalof Geotechnicaland Geoenvironmental Engineering. 2004, 130(7), 759~763.
    [125] Jian Liua, Xia-Ting Feng, Xiu-Li Ding, Jie Zhang, Deng-Ming Yue. Stability assessment of the Three-Gorges Dam foundation, China, using physical and numerical modeling—Part Ⅰ: physical model tests. International Journal of Rock Mechanics & Mining Sciences. 40(2003) 609-631.
    [126] Jian Liua, Xia-Ting Feng, Xiu-Li Ding. Stabilityassessment of the Three-Gorges Dam foundation, China, using physical and numerical modeling—Part Ⅱ: numerical modeling. International Journal of Rock Mechanics & Mining Sciences. 40(2003) 633-652
    [127] H. Cetin, M. Laman, A. Ertunc. Settlement and slaking problems in the world's fourth largest rock-fill dam, the Ataturk Dam in Turkey. Engineering Geology. 56(2000) 225-242
    [128] D.F.科茨著,雷化南等修订.岩石力学原理(修订版).冶金工业出版社,1993.
    [129] 《锚杆喷射混凝土支护技术规范》(GB50086-2001).中国计划出版社,2001
    [130] Chongbin Zhao, T. P. Xu, and S. Valliappan. "Seismic response of concrete gravity dams including water-dam-sediment-foundation interaction". Computer & Structure. Vol. 54, No. 4, 1995, P705-715.
    [131] Malika Azmi. Patrick Paultre. "Three-dimensional analysis of concrete dams including contractionjointnon-linearilty". Engineering Structure. 24(2002), P757-771.
    [132] 王思敬.坝基岩体工程地质力学分析.北京:科学出版社,1990.5.
    [133] 张倬元,聂德新,刘家铎等.金沙江向家坝水电站重大工程地质问题研究之二 坝址岩石及软弱夹层研究.成都科技大学出版社,1993.
    [134] P. H. S. W. Kulatilake, T. H. Wu, "Relation between discontinuity size and trace length, Proceedings of the 27th U. S. Symposium on rock mechanics", Littleton, Colorado, 1986, p130-133
    [135] 张咸恭,王思敬,张倬元等.中国工程地质学.科学出版社,2000.
    [136] 本文集编委会.中国水利水电技术发展与成就——潘家铮院士从事科学技术工作47周年纪念文集.中国电力出版社,1997.
    [137] 岩土工程手册编写委员会.岩土工程手册.中国建筑工业出版社,1994.
    [138] 工程地质手册编写委员会.工程地质手册.中国建筑工业出版社,1992.
    [139] Mir, R. A.; Taylor, C. A. "An investigation into the base sliding response of rigid concrete gravity dams to dynamic loading". International Journal of Rock Mechanics and Mining Sciences & Geomechanics. Vol. 33, Issue: 6, 1996. 9.
    [140] 《数学手册》编写组.数学手册.高等教育出版社,1979
    [141] 杨文茂,李全英.空间解析几何.武汉大学出版社,1997
    [142] Evert Hock, etc. "Rock Engineering". A. A. Balkema publishers, 1995.
    [143] 《英汉地质词典》编辑组.英汉地质词典.北京:地质出版社,1993.12.
    [144] William A. Fraser. Engineering Geology Considerations For Specifying dam foundation objectives. Division of safety of dams California department of water resources. 2001
    [145] Sanjeev Sharme, Tarun Raghuvanshi, Atul Sahai. An engineering geological appraisal of the Lakhwar dam, Garhwal Himalaya India. Engineering Geology 53(1999) 381-398
    [146] Proulx, Jean; Paultre, Patvick. Experimental and numerical investigation of dam-reservoir-foundation interaction for a large gravity dam. Journal of Civil Engineering vol24 No1 1997 90-105
    [147] Bienlawski Z. T. Engineering Rock Mass Classification. Intercience publication, Viley, New York, 1993.
    [148] 聂德新,韩爱果,巨广宏.岩体风化的综合分带研究.工程地质学报,2002,10(1),20-25.
    [149] 聂德新,赵其华,彭社琴.古风化岩工程地质特性研究.成都科技大学出版社,1993.
    [150] 聂德新.岩体的场位特征及其工程应用.工程地质学报,2000,8(1),68-72.
    [151] 聂德新,符文熹.天然围压下软弱层带的工程特性及当前工程中存在的问题分析.工程地质学报,1999,7(4),298-302.
    [152] 韩爱果,聂德新.某电站地下厂房围岩质量综合分级.地质灾害与环境保护,2002,6(2),75-79.
    [153] Nie DeXin, et al. The application of primary wave velocity in the assessment of rock mass strength parameters. Engineering and Environmental Geophysics for the 21st Century. Proc of

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700