用户名: 密码: 验证码:
改性ZrO_2基催化剂催化1,4-丁二醇选择性脱水制3-丁烯-1-醇
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
3-丁烯-1-醇(BTO)是一种附加值极高的不饱和醇类精细化学品,性质活泼,可参与多种反应,广泛应用于食用香精、农化产品、药物合成等领域,是合成杂环衍生物类新药物的重要中间体,其用量逐年增加。以固体氧化物为催化剂的1,4-丁二醇(BDO)气相选择性脱水合成BTO具有反应条件温和、环境友好、产物易分离等优点。然而,由于BDO分子中存在两个等效位置的羟基,其脱水反应在热力学上可向两个方向进行,一是分子内环化脱水生成四氢呋喃(THF),二是分子中的端羟基与相邻碳原子的β-H脱水得到BTO。如何通过催化剂织构、结构及表面性质等的调控,高选择性地合成目标产物BTO,抑制竞争副产物THF的生成,具有重要应用前景和理论价值。
     本论文在课题组前期研究的基础上,首先制备了多种单一组分氧化物催化剂,考察其催化BDO气相脱水性能,探讨催化剂表面性质对脱水反应活性和产物分布的影响。以此为基础,采用浸渍法制备了一系列表面改性的ZrO2基催化剂,通过对引入组分种类,含量以及焙烧温度的调控,制得一系列酸碱双功能催化剂,在酸碱活性中心的协同催化作用下,提高了目标产物BTO的收率。本工作采用多种表征手段,结合催化反应评价结果,较系统地研究了BDO选择性脱水合成BTO活性中心结构和酸碱协同催化机制。论文的主要研究结果如下:
     1、研究了多种单一组分氧化物(A12O3, MgO, CaO, ZrO2和SiO2催化BDO气相脱水性能。结果表明,催化剂表面酸碱性质对BDO脱水反应活性以及产物分布有重要的影响。表面以酸性位点为主的催化剂(如Al2O3)表现出高的BDO转化率,但BTO的选择性很低;而以碱性位点为主的催化剂上(如CaO, MgO),目标产物BTO的选择性较高,但催化活性较差。在考察的多种单一组分催化剂中,ZrO2同时具有酸性位点和碱性位点,表现出最优的催化BDO选择性脱水合成BTO性能。
     2、制备了碱土类金属氧化物(CaO, SrO, BaO)改性的ZrO2酸碱双功能催化剂,借助X射线衍射(XRD)、低温N2物理吸附、NH3和CO2程序升温脱附(NH3-TPD, CO2-TPD)等手段表征了催化剂的织构、结构以及表面酸碱性质,并考察了其催化BDO选择性脱水合成BTO的反应性能。碱土类金属氧化物的引入对ZrO2基催化剂表面的酸性位点和碱性位点有重要影响。Ca2+半径与Zr4+相近,可进入ZrO2晶格形成Ca-O-Zr结构,由于电荷分布不均衡而产生了新的酸性位点,在ZrO2表面引入大量碱性位点的同时保持了较高的酸密度,催化剂表现出高的催化活性和BTO选择性。在相同的制备条件下,半径较大的Sr2+和Ba2+难以进入ZrO2晶格,而是生成了相应的锆酸盐,导致ZrO2表面的酸密度降低,碱性位点数量也明显低于CaO改性ZrO2催化剂,催化活性和BTO选择性较低。
     3、在上述工作的基础上,制备了一系列CaO改性的ZrO2基催化剂,考察了CaO含量和焙烧温度对催化剂表面性质及脱水性能的影响。当CaO含量低于12.5%,Ca2+可取代部分Zr4+形成Ca-O-Zr结构,以高分散形态存在于样品中,使得催化剂的酸性位点数量较高,碱性位点数量较本体ZrO2大幅增加,表现出高的BDO转化率和BTO选择性。继续增加CaO含量,CaO发生聚集且生成相应的锆酸盐,酸性和碱性位点数量呈现下降趋势, BDO转化率和BTO选择性也随之下降。之后在催化活性中心结构的研究中,结合NH3和CO2为载气的中毒实验结果得出BDO选择性脱水生成BTO的催化活性中心为酸碱协同中心,该活性中心由两个酸性位点和一个碱性位点组成。其酸性位点和碱性位点分别活化BDO分子中的端羟基和β-H以脱水形成BTO。为进一步研究催化剂表面碱强度对催化性能的影响,将表面碱性较为温和的MgO引入到ZrO2表面,结果表明催化剂表面的弱碱性位点更加有利于酸碱活性中心的协同催化作用。
     4、基于对上述酸碱协同催化规律的认识,结合本实验室前期对SiO2-ZrO2复合氧化物的研究,制备了CaO改性的SiO2-ZrO2复合氧化物催化剂。复合氧化物中Zr-O-Si结构的形成大大提高了催化剂的表面酸性中心数量,进一步引入CaO在催化剂表面产生了大量的酸碱协同活性中心,不仅表现出了高的BDO转化率和BTO选择性,而且明显降低了BDO完全转化的反应温度。在反应温度为325℃时,BTO的收率最高为58%。
3-Buten-1-ol (BTO) is a valuable chemical that is widely used in food flavoring, agricultural products, and especially in the medical field due to its active character. In addition, served as a valuable intermediate for synthesizing heterocyclic drugs, the market demand for BTO has been increasing year by year. The method used for BTO synthesis from1,4-butanediol (BDO) selective dehydration offers some advantages that include mild reaction conditions, a simple experimental procedure, and environmental friendliness. However, this approach has two favorable thermodynamic pathways. One is the intramolecular cyclodehydration of BDO to give tetrahydrofuran (THF), which in this context is a byproduct, while the other is the dehydration of BDO involving the terminal hydroxyl group and a β-H atom on the adjacent carbon atom. To increase BTO yield by this reaction pathway, particular attention were paid to prepare appropriate catalysts. Thus, it is a challenging task to obtain a catalyst that favors producting BTO by dehydration of BDO via regulating and controlling the texture, the structure, and surface properties of the materials.
     On the basis of our previous studies, a varity of single-component oxide catalysts were prepared. The effects of catalysts surface properties on catalytic activity were investigated. Then, a series of modified ZrO2catalysts were prepared by the impregnation method and the acid-base properties of the catalysts can be controlled by the amount of introduction component and calcination temperature. Through the synergistic interaction of the acid and base sites, the yield of BTO can be increased effectively. Combined with the catalytic performances evaluation, the thorough study of the BDO dehydration to BTO was investigated to infer and clarify the catalytic mechanism. The main results are listed as follows:
     1. A variety of single-component oxide catalyst (Al2O3, MgO, CaO, ZrO2and SiO2) were investigated in BDO selective dehydration reaction. The results show that the acid-base property of the catalysts plays an important role in the catalytic activity and the product distribution. The catalysts as Al2O3, whose surface mainly consists of acid sites, show the high BDO conversion but the low BTO selectivity; while the catalysts (MgO, CaO), whose surface mainly consists of base sites, exhibit the high BTO selectivity but the low catalytic activity. Among the single-component oxide catalysts studies, the ZrO2catalysts have the best catalytic activity in BDO selective dehydration reaction due to their acid-base bifunctional properties on the surface.
     2. The acid-base bifunctional ZrO2catalysts modified by different alkaline earth metal (CaO, SrO, BaO) were prepared and characterized using N2physisorption, XRD, FT-IR spectra, NH3-TPD and CO2-TPD techniques to obtain the texture, the structure, and surface properties of the catalysts. On basis of characterizations, the catalytic activities of BDO selective dehydration to BTO over the acid-base bifunctional catalysts were studied in details. The result indicates that the alkaline earth metals make a great impact on the acid-base properties of ZrO2-based catalysts. The Ca2+ion can enter into the ZrO2crystal lattice to form Ca-O-Zr hetero-linkages easily. And the hetero-linkages in binary complex oxides lead to the uneven distribution of charges and generate new acid sites. That is to say, the introduction of appropriate CaO not only increases alkali density, but also keeps acidic sites on ZrO2surface. The synergistic effect of the acid-base sites shows the high catalytic activity and BTO selectivity. Under the same conditions, the Sr2+and Ba2+ions with the large radius is difficult to enter into the ZrO2crystal lattice, and then to form zirconate on ZrO2surface. The zirconate decreases the amounts of acid and base sites in comparison to unmodified ZrO2, and induces the low catalytic activity and BTO selectivity.
     3. Based on the above work, the effect of different CaO content and calcination temperature of CaO-ZrO2catalyst on the acid-base properties and catalytic performance were investigated. With CaO content lower than12.5%, Ca2+replace the Zr4+to form the Ca-O-Zr structure that not only increase alkali density dramaticlly, but also keep acidic sites on ZrO2surface, which exhibits the high catalytic activity and BTO selectivity. With the further increase in CaO content, the CaO begins to aggregate and generate CaZrO3, and then the total amount of acidic and basic sites decreases significantly. Thus, the BDO conversion and the BTO selectivity decrease obviously due to the decrease of acid-base active center. Combining the studies of the structure of active center and the poisoning experiments used NH3or CO2as cattier gases, it is concluded that the acid-base properties of the CaO-ZrO2catalysts have significant influence in the dehydration of BDO. Every active center forming BTO is composed of two acidic sites and one basic site. The acidic sites act as anchoring sites for OH group to activate BDO while the basic sites interacted with β-hydrogen to form BTO. In order to determine the relationship between the basic property of the catalyst and the catalytic dehydration performance, the mild basicity, MgO, is further introduced to ZrO2surface, and the result shows that the weakly basic sites is favorable to the acid-base synergetic catalytic activity.
     4. After we summarized the conclusions from the acid-base synergetic catalytic activity, a series of SiO2-ZrO2catalys modified by CaO were prepared in BDO selective dehydration reaction. The results show that the formation of Zr-O-Si hetero-linkages can increase the acidic sites greatly, and the further CaO addition promotes the formation of acid-base synergetic active centers. These catslysts not only exhibit the high BDO conversion and BTO selectivity, but also decrease the complete conversion temperature of BDO. When the reacted temperature is325℃, the highest yield of BTO attains to58%.
引文
[1]贺永艺,李奇飚,王永钊,赵永祥.不同形貌的Ce02催化1,4-丁二醇选择性脱水合成3-丁烯-1-醇[J].催化学报,2010,31(6),619-622.
    [2]赵永祥,贺永艺,李奇飚,王永钊,张鸿喜.一种由1,4-丁二醇合成3-丁烯-1-醇的方法[P].ZL 201010100156.9,2010.
    [3]DMITRY E. GREMYACHINSKIY, LORI L. SMITH, PAUL H. GROSS, VYACHESLAV V. SAMOSHIN. Facile Synthesis of Homoallylic Alcohols from Aldehyde Acetals in Water [J]. Green Chemistry,2002,4(4),317-318.
    [4]SHAOJIE LIU, ZHEN YAO, KUN CAO, BOGENG LI, SHIPING ZHU. Preparation of Polar Ethylene-Norbornene Copolymers by Metallocene Terpolymerization with Triisobutylaluminium-Protected But-3-en-l-ol [J]. Macromolecular Rapid Communications,2009,30,548-553.
    [5]REN CSUK, ANJA KERN. Synthesis of Spacered Cyclopropyl Nucleoside Analogues as Potential Antiviral Agents [J]. Tetrahedron,1999,55(28),8409-8422.
    [6]MARINA MAGNIN-LACHAUX, ZE TAN, BO LIANG, EI-ICHI NEGISHI. Efficient and Selective Synthesis of Siphonarienolone and Related Reduced Polypropionates via Zr-Catalyzed Asymmetric Carboalumination [J]. Organic Letters, 2004,6(9),1425-1427.
    [7]TAO MIN, BIXIN YI, PENG ZHANG, JUN LIU, CAN ZHANG, HUIPING ZHOU. Novel Furoxan NO-Donor Pemetrexed Derivatives [J]. Medicinal Chemistry Research,2009,18(7),495-510.
    [8]KAZUKO MATSUMOTO, YOSHIHIRO MORIYA, HIROYASU SUGIYAMA, MD. MUNKIR HOSSAIN, YONG-SHOU LIN. Dehydration Reaction of Hydroxyl Substituted Alkenes and Alkynes on the Ru2S2 Complex [J]. Journal of the American Chemical Society,2002,124(44),13106-13113.
    [9]BO LIANG, EI-ICHI NEGISHI. Highly Efficient Asymmetric Synthesis of Fluvirucinine Al, via Zr-Catalyzed Asymmetric Carboalumination of Alkenes (ZACA)-Lipase-Catalyzed Acetylation Tandem Process [J]. Organic Letters,2008, 10(2),193-195.
    [10]EI-ICHI NEGISHI, ZE TAN, BO LIANG, TIBOR NOVAK. An Efficient and General Route to Reduce Polypropionates via Zr-Catalyzed Asymmetric C-C Bond Formation [J]. Proceedings of the National Academy of Sciences USA,2004,101(16), 5782-5787.
    [11]RICHARD C. LAROCK, WAI YEE LEUNG, SANDRA STOLZ-DUNN. Synthesis of Aryl-Substituted Aldehydes and Ketones via Palladium-Catalyzed Coupling of Aryl halides and Non-Allylic Unsaturated Alcohols [J]. Tetrahedron Letters,1989, 30(48),6629-6632.
    [12]张静,范继业,程艳坤,黄永茂,高冬婷,陈(?).培美曲塞二钠的合成研究进展[J].河北化工,2009,32(5),5-6.
    [13]易必新,叶海,张鹏,张灿.培美曲塞二钠的合成[J].中国医药工业杂志,2006,37(12),798-800.
    [14]马彦琴.培美曲塞二钠的合成[D].天津,天津大学,2007.
    [15]贺永艺.氧化铈催化剂上1,4-丁二醇选择性脱水合成3-丁烯-1-醇.[D],太原,山西大学,2011.
    [16]NEAL O BRACE. The Uncatalyzed Thermal Addition of Formaldehyde to Olefins. Journal of the American Chemical Society.1955,77(17),4666-4668.
    [17]HERBERT MUELLER, OVERWIEN HERNANN, POMMER HORST. Production of Alk-3-en-1-ols [P]. US 3574773,1971.
    [18]SQUIRE. Synthesis of 3-Buten-1-ol,3,4-Bichlorobutan-1-ol and 3-Chlorotetrahydrofuran [P]. US 4288374,1981.
    [19]LLOYD W. TREVOY, WELDON G. BROWN. Mechanism of Lithium Aluminum Hydride Reactions [J]. Journal of the American Chemical Society,1949,71(5), 1675-1678.
    [20]JIRO TSUJI, ISAO SHIMIZU, ICHIRO MINAMI. Regioselective Synthesis of 1-Olefins by Palladium-Catalyzed Hydrogenolysis of Terminal Allylic Compounds with Ammonium Formate [J]. Chemistry Letters,1984,13(6),1017-1020.
    [21]NEAL STEPHEN FALLING. Process for the Production of Unsaturated Alcohols [P]. US 5406007,1995.
    [22]NEAL STEPHEN FALLING. Process for the Production of 3-Buten-1-ol [P]. US 20040171892 Al,2004.
    [23]CHARLES ALLAN MCCOMBS. Preparation of 3-Buten-1-ol from 3, 4-Epoxy-1-Butene [P]. EP 1049656 B1,1999.
    [24]CHARLES ALLAN MCCOMBS. A Preparation of 3-Buten-l-ol from 3, 4-Epoxy-1-Butene [P]. US 006103943,2000.
    [25]JI MAO LIN, HUI ZHANG, AI YOU HAO, QIN ZHENG YANG. Elimination Reaction of a, ω-Diols by Magnesium [P]. Chinese Chemical Letters,1998,9(8), 697-698.
    [26]SATOSHI SATO, RYOJI TAKAHASHI, TOSHIAKI SODESAWA, NOZOMI HONDA, HIDEYA SHIMIZU. Selective Dehydration of Diols to Allylic Alcohols Catalyzed by Ceria [J]. Catalysis Communications,2003,4(2),77-81.
    [27]SATOSHI SATO, RYOJI TAKAHASHI, TOSHIAKI SODESAWA, NAOKI YAMAMOTO. Dehydration of 1,4-Butanediol into 3-Buten-1-ol Catalyzed by Ceria [J]. Catalysis Communications,2004,5(8),397-400.
    [28]NAOKI YAMAMOTO, SATOSHI SATO, RYOJI TAKAHASHI, KANICHIRO INUI. Synthesis of Homoallyl Alcohol from 1,4-Butanediol over ZrO2 Catalyst [J]. Catalysis Communications,2005,6(7),480-484.
    [29]AI IGARASHI, SATOSHI SATO, RYOJI TAKAHASHI, TOSHIAKI SODESAWA, MIKA KOBUNE. Dehydration of 1,4-Butanediol over Lanthanide Oxides [J]. Catalysis Communications,2007,8(5),807-810.
    [30]SATOSHI SATO, RYOJI TAKAHASHI, MIKA KOBUNE, HIROTOMO INOUE, YUSUKE IZAWA, HIRONOBU OHNO, KAZUNARI TAKAHASHI. Dehydration of 1,4-Butanediol over Rare Earth Oxides [J]. Applied Catalysis A:General,2009, 356(1),64-71.
    [31]KATSUTOSHI ABE, YUSUKE OHISHI, TAKUTO OKADA, YASUHIRO YAMADA, SATOSHI SATO. Vapor-Phase Catalytic Dehydration of Terminal Diols [J]. Catalysis Today,2011,164(1),419-424.
    [32]RYOJI TAKAHASHI, IKUYA YAMADA, AIKO IWATA, NAOYA KURAHASHI, SATOSHI YOSHIDA, SATOSHI SATO. Synthesis of 3-Buten-1-ol from 1, 4-Butanediol over Indium Oxide [J]. Applied Catalysis A:General,2010,383(1-2), 134-140.
    [33]FUMIYA SATO, SATOSHI SATO. Dehydration of 1,5-Pentanediol over Bixbyite Sc2-xYbxO3 Catalysts [J]. Catalysis Communications,2012,27(0),129-133.
    [34]YUSUKE IZAWA, KAZUSHIGE TAKAHASHI, SATOSHI SATO, MIKA KOBUNE. Preparation of Unsaturated Alcohols by Dehydrative Reaction of Alcohols while Suppressing Byproducts [P]. JP 2009023928,2009.
    [35]YUSUKE IZAWA, KAZUSHIGE TAKAHASHI, SATOSHI SATO, HIROTOMO INOUE. Preparation of Unsaturated Alcohols from Alcohols [P]. JP 2009040768, 2009.
    [36]SATOSHI SATO, RYOJI TAKAHASHI. Catalyst for Producing Unsaturated Alcohol and Process for Producing Unsaturated Alcohol with the Same [P]. WO 2007083736, 2007.
    [37]陈矗,张晶晶,朱海斌,李奇飚,赵永祥.氧化铈形貌控制对1,4-丁二醇选择性脱水催化性能的研究[J].山西大学学报(自然科学版),2011,34(S1),107-111.
    [38]EIICHI NEGISHI, LARRY D. BOARDMAN, HIROYUKI SAWADA, VAHID BAGHERI, A. TIMOTHY STOLL, JAMES M. TOUR, CYNTHIA L RAND. Novel Cyclialkylation Reactions of (ω-Halo-1-Alkenyl) Metal Derivatives. Synthetic Scope and Mechanism [J]. Journal of the American Chemical Society,1988,110(16), 5383-5396.
    [39]卢小逸,吴文良,张启明,董道敏.一种催化加氢合成3-丁烯-1-醇的方法[J].中国新技术新产品,2011,(21),24.
    [40]TOHR YAMANAKA, TAKASHI IMAI. A Selective Monodehydration of C4.14-a, ω-Alkanediols with Stearic and/or Palmitic Acids [J]. Bulletin of the Chemical Society of Japan.1981,54(5),1585-1586.
    [41]DMITRY E. GREMYACHINSKIY, LORI L. SMITH, PAUL H. GROSS, VYACHESLAV V. SAMOSHIN. Facile Synthesis of Homoallylic Alcohols from Aldehyde Acetals in Water [J]. Green Chemistry,2002,4(4),317-318.
    [42]RYU ILHYONG, HIRAI AKIRA, SUZUKI HARUISA, SONODA NOBORU, MURAI SHINJI. One-Pot Conversions of (Silylmethyl) Cyclopropanes to Homoallylic Alcohols and 1,4-Diols Based on Haloborane-Induced Ring Opening [J]. The Journal of Organic Chemistry,1990,55(5),1409-1410.
    [43]NATHALIE CENAC, MARIA ZABLOCKA, I ALAIN GAU, JEAN-PIERRE MAJORAL, MICHAL PIETRUSIEWICZ. Zirconium-Promoted Ring Opening. A Useful New Methodology [J]. Organometallics,1994,13(12),5166-5168.
    [44]SATOSHI SATO, RYOJI TAKAHASHI, TOSHIAKI SODESAWA, NOZOMI HONDA. Dehydration of Diols Catalyzed by CeO2 [J]. Journal of Molecular Catalysis A:Chemical,2004,221(1-2),177-183.
    [45]NAOKI ICHIKAWA, SATOSHI SATO, RYOJI TAKAHASHI, TOSHIAKI SODESAWA, HARUNORI FUJITA, TAKASHI ATOGUCHI, AKINOBU SHIGA. Theoretical Investigation of 1,3-Butanediol Adsorption on an Oxygen-Defected CeO2(111) Surface [J]. Journal of Catalysis,2006,239(1),] 3-22.
    [46]NAOKI ICHIKAWA, SATOSHI SATO, RYOJI TAKAHASHI, TOSHIAKI SODESAWA. PIO Study on 1,3-Butanediol Dehydration over CeO2(111) Surface [J]. Journal of Molecular Catalysis A:Chemical,2005,231(1-2),181-189.
    [47]AI IGARASHI, NAOKI ICHIKAWA, SATOSHI SATO, RYOJI TAKAHASHI, TOSHIAKI SODESAWA. Dehydration of Butanediols over CeO2 Catalysts with Different Particle Sizes [J]. Applied Catalysis A:General,2006,300(1),50-57.
    [48]MIKA KOBUNE, SATOSHI SATO, RYOJI TAKAHASHI. Surface-Structure Sensitivity of CeO2 for Several Catalytic Reactions [J]. Journal of Molecular Catalysis A:Chemical,2008,279(1-2),10-19.
    [49]MASAKI SEGAWA, SATOSHI SATO, MIKA KOBUNE, TOSHIAKI SODESAWA, TAKASHI KOJIMA, SHIN NISHIYAMA, NOBUO ISHIZAWAB. Vapor-Phase Catalytic Reactions of Alcohols over Bixbyite Indium Oxide [J]. Journal of Molecular Catalysis A:Chemical,2009,310(1-2),166-173.
    [50]邢其毅.基础有机化学[M].北京,高等教育出版社,2004,204-205.
    [51]TOSHIHIDE BABA, YOSHIO ONO. Kinetic Studies in Liquid Phase Dehydration-cyclization of 1,4-Butanediol to Tetrahydrofuran with Heteropoly Acids [J]. Journal of Molecular Catalysis,1986,37(2-3),317-326.
    [52]IMRE BUCSI, ARPAD MOLNAR, MIHALY BARTOK. Transformation of 1,3-,1, 4-and 1,5-Diols over Perfluorinated Resinsulfonic Acids (Nafion-H) [J]. Tetrahedron,1995,51(11),3319-3326.
    [53]HAIXIA LI, HENGBO YIN, TINGSHUN JIANG, TONGJIE HU, JING WU, YUJI WAD A. Cyclodehydration of 1,4-Butanediol to Tetrahydrofuran Catalyzed by Supported Silicotungstic Acid [J]. Catalysis Communications,2006,7(10),778-782.
    [54]MAHMOUD AGHAZIARATI, MOHAMMAD KAZEMEINI, MOHAMMAD SOLTANIEH, SAEED SAHEBDELFAR. Evaluation of Zeolites in Production of Tetrahydrofuran from 1,4-Butanediol Performance Tests and Kinetic Investigations [J]. Industrial & Engineering Chemistry Research,2007,46(3),726-733.
    [55]LUDMILA LEITE, VLADISLAVS STONKUS, KRISTINE EDOLFA, LUBA ILIEVA, DONKA ANDREEVA, LUDMILA PLYASOVA, JANUSZ W.SOBCZAK, SORANA IONESCU, GABRIEL MUNTEANU. Active Phases of Supported Cobalt Catalysts for 2,3-Dihydrofuran Synthesis [J]. Journal of Molecular Catalysis A: Chemical,2004,215(1-2),95-101.
    [56]VLADISLAVS STONKUS, KRISTINE EDOLFA, LUDMILA LEITE, JANUSZ W.SOBCZAK, LUDMILA PLYASOVA, PETYA PETROVA. Palladium-promoted Co-SiO2 Catalysts for 1,4-Butanediol Cyclization [J]. Applied Catalysis A:General. 2009,362(1-2),147-154.
    [57]HIROTOMO INOUE, SATOSHI SATO, RYOJI TAKAHASHI, YUSUKE IZAWA, HIRONOBU OHNO, KAZUNARI TAKAHASHI. Dehydration of 1,4-Butanediol over Supported Rare Earth Oxide Catalysts [J]. Applied Catalysis A:General,2009, 352(1-2),66-73.
    [58]SATOSHI SATO, RYOJI TAKAHASHI, TOSHIAKI SODESAWA, AIIGARASHI, HIROTOMO INOUE. Catalytic Reaction of 1,3-Butanediol over Rare Earth Oxides [J]. Applied Catalysis A:General,2007,328(2),109-116.
    [59]NAOKI YAMAMOTO, SATOSHI SATO, RYOJI TAKAHASHI, KANICHIRO ENUI. Synthesis of 3-Buten-1-ol from 1,4-Butanediol over ZrO2 Catalyst [J]. Journal of Molecular Catalysis A:Chemical,2006,243(1),52-59.
    [60]李宁宁.基于MWW型沸石的双功能催化材料的设计合成和应用[D].上海,华东师范大学,2009.
    [61]尚凡朋.酸碱双功能多相催化剂的合成,表征及催化应用[D].长春,吉林大学,2012.
    [62]KOZO TANABE, WOLFGANG F. HOLDERICH. Industrial Application of Solid Acid-Base Catalysts [J]. Applied Catalysis A:General,1999,181(2),399-434.
    [63]YI WANG, LI DENG. Catalytic Asymmetric Synthesis. Asymmetric Acid-Base Bifunctional Catalysis with Organic Molecules [M]. New Jersry, John Wiley & Sons, Inc.,2010,59-94.
    [64]张文飞,梁金花,刘艳秋,孙守飞,任晓乾,姜岷.酸碱双功能MgOH/MCM-22催化剂上Knoevenagel缩合反应[J].催化学报,2013,34(3),559-566.
    [65]APURBA SINHAMAHAPATRA, PROVAS PAL, ABHIJIT TARAFDAR, HARI C.BAJAJ, ASIT BARAN PANDA. Mesoporous Borated Zirconia:A Solid Acid-Base Bifunctional Catalyst [J]. ChemCatChem,2013,5(1),331-338.
    [66]SARAH L.HRUBY, BRENT H SHANKS. Acid-base Cooperativity in Condensation Reactions with Functionalized Mesoporous Silica Catalysts [J]. Journal of Catalysis, 2009,263(1),181-188.
    [67]GEORGETA POSTOLE, BISWAJIT CHOWDHURY, BIKASH KARMAKAR, KUMARI PINKI, JULIE BANERJI, ALINE AUROUX. Knoevenagel Condensation Reaction over Acid-Base Bifunctional Nanocrystalline CexZr1-xO2 Solid Solutions [J]. Journal of Catalysis,2010,269(1),110-121.
    [68]F.X. LLABRES I XAMENA, F.G. CIRUJANO, A CORMA. An Unexpected Bifunctional Acid Base Catalysis in IRMOF-3 for Knoevenagel Condensation Reactions [J]. Microporous and Mesoporous Materials,2012,157(0),112-117.
    [69]JOHN D. BASS, ANDREW SOLOVYOV, ANDREW J. PASCALL, ALEXANDER KATZ. Acid-Base Bifunctional and Dielectric Outer-Sphere Effects in Heterogeneous Catalysis:A Comparative Investigation of Model Primary Amine Catalysts [J]. Journal of the American Chemical Society,2006,128(11),3737-3747.
    [70]钟琳,肖建良,李灿.多相双功能催化剂上的不对称直接Aldol反应[J].催化学报,2007,28(8),673-675.
    [71]李华,吕小兵.负载于孔道内部的手性酸碱催化不对称Aldol反应[J].催化学报,2009,30(7),587-589.
    [72]HUA LI, SHUTAO XU, XIAOBING LU, WEIPING ZHANG. Acid-base Cooperativity of Heterogeneous Catalyst Containing Acidic Framework and Sterically Hindered Base for Aldol Condensation [J]. Chinese Chemical Letters,2009,20(9), 1051-1054.
    [73]RYAN K. ZEIDAN, MARK E DAVIS. The Effect of Acid-base Pairing on Catalysis: An Efficient Acid-Base Functionalized Catalyst for Aldol Condensation [J]. Journal of Catalysis,2007,247(2),379-382.
    [74]M.J. CLIMENT, A. CORMA, V. FORNES, R. GUIL-LOPEZ, S IBORRA. Aldol Condensations on Solid Catalysts:A Cooperative Effect between Weak Acid and Base Sites [J]. Advanced Synthesis & Catalysis,2002,344(10),1090-1096.
    [75]S YANQIU HAO, JINGQI GUAN, SHUJIE WU, HENG LIU, BO LIU, QIUBIN KAN. Synthesis, Characterization and Catalytic Activity of Acid-Base Bifunctional Materials by Controlling Steric Hindrance [J]. Microporous and Mesoporous Materials,2010,128(1-3),120-125.
    [76]JOHN D. BASS, ANDREW SOLOVYOV, ANDREW J. PASCALL, ALEXANDER KATZ. Acid-Base Bifunctional and Dielectric Outer-Sphere Effects in Heterogeneous Catalysis:A Comparative Investigation of Model Primary Amine Catalysts [J]. Journal of the American Chemical Society,2006,128(11),3737-3747.
    [77]KEN MOTOKURA, NORIAKI FUJITA, KOHSUKE MORI, TOMOO MIZUGAKI, KOHKI EBITANI, KIYOTOMI KANEDA. An Acidic Layered Clay Is Combined with a Basic Layered Clay for One-Pot Sequential Reactions [J]. Journal of the American Chemical Society,2005,127(27),9674-9675.
    [78]千载虎,唐群,崔圣范,温陵生.催化剂酸碱性对异丙醇脱水活性的影[J].高等学校化学学报,1988,9(5),470-474.
    [79]于政锡,许磊,张新志,刘中民.固体氧化物催化剂酸碱性质对1,2-丙二醇转化反应的影响[J].催化学报,2010,31(4),441-446.
    [80]闫婕,余定华,孙鹏,黄和.碱土金属修饰NaY分子筛催化乳酸脱水制丙烯酸:碱性位对催化活性的影响[J].催化学报,2011,32(03),405-411.
    [81]ZHENGXI YU, LEI XU, YINGXU WEI, YINGLI WANG, YANLI HE, QINGHUA XIA, XINZHI ZHANG, ZHONGMIN LIU. A New Route for the Synthesis of Propylene Dxide from Bio-Glycerol Derivated Propylene Glycol [J]. Chemical Communications,2009,45(26),3934-3936.
    [82]蓝冬雪,林丹,赵会民,马丽,淳远.以脱脂棉为模板制备高比表面积Al2O3-MgO固体酸碱双功能材料[J].催化学报,2011,32(07),1214-1219.
    [83]DONGXUE LAN, LI MA, YUAN CHUN, CHEN WU, LINBING SUN, JIANHUA ZHU. Methylation of Cyclopentadiene on Solid Base Catalysts with Different Surface Acid-Base Properties [J]. Journal of Catalysis,2010,275(2),257-269.
    [84]MACARIO ANASTASIA, GIORDANO GIROLAMO, ONIDA BARBARA, COCINA DONATO, ANTONIO TAGARELLI, ANGELO MARIA GIUFFRE. Biodiesel Production Process by Homogeneous/Heterogeneous Catalytic System Using an Acid-Base Vatalyst [J]. Applied Catalysis A:General,2010,378(2), 160-168.
    [85]TOHRU SETOYAMA. Acid-base Bifunctional Catalysis:An Industrial Viewpoint [J]. Catalysis Today,2006,116(2),250-262.
    [86]AKIO MITSUTANI. Future Possibilities of Recently Commercialized Acid/Base-Catalyzed Chemical Processes [J]. Catalysis Today,2002,73(1-2), 57-63.
    [87]刘化章,李小年.Fe(1-x)O基氨合成催化剂高活性机理初探[J].催化学报,2005, 26(01),79-86.
    [88]陶泳,高滋.化学工业中的新酸碱催化过程[J].化学世界,2004,45(1),45-48.
    [89]M.J. CLIMENT, A. CORMA, H. GARCIA, R. GUIL-LOPEZ, S. IBORRA, V. FORNES. Acid-Base Bifunctional Catalysts for the Preparation of Fine Chemicals: Synthesis of Jasminaldehyde [J]. Journal of Catalysis,2001,197(2),385-393.
    [90]C. GARDNER SWAIN, JOHN F. BROWN. Concerted Displacement Reactions. VII. The Mechanism of Acid-Base Catalysis in Non-Aqueous Solvents1 [J]. Journal of the American Chemical Society,1952,74(10),2534-2537.
    [91]K.C. CHANG, ERNEST GRUNWALD, LAWRENCE R. ROBINSON. Bifunctional Proton Transfer and Acid-base Properties of 1,4,7,10-Tetraazacyclododecane (cyclen) [J]. Journal of the American Chemical Society,1977,99(11),3794-3796.
    [92]F.M. MENGER, H.K. RHEE, J.U. RHEE. Proton Exchange in Benzyl Alcohols. Acid, Base, Intramolecular, and Bifunctional Catalyses [J]. Journal of the American Chemical Society,1976,98(3),792-797.
    [93]H.M. NIEMEYER, O. GOSCINSKI, P. AHLBERG. Bifunctional and Monofunctional Catalysis in the CNDO/2 Approximation:Formamidine Acid-Base and Base Catalysed 1,3-Proton Transfers in Propene [J]. Tetrahedron,1975,31(15), 1699-1704.
    [94]YOSHITAKA HAMASHIMA, DAISUKE SAWADA, HIROYUKI NOG AMI, MOTOMU KANAI, MASAKATSU SHIBASAKI. Highly Enantioselective Cyanosilylation of Aldehydes Catalyzed by a Lewis Acid-Lewis Base Bifunctional Catalyst [J]. Tetrahedron,2001,57(5),805-814.
    [95]YONGCUN SHEN, XIAOMING FENG, YAN LI, GUOLIN ZHANG, YAOZHONG JIANG. A Mild and Efficient Cyanosilylation of Ketones Catalyzed by a Lewis Acid-Lewis Base Bifunctional Catalyst [J]. Tetrahedron,2003,59(30),5667-5675.
    [96JLIFENG ZHANG, YU YANG, YUNRONG XUE, XIANLEI FU, YING AN, GUOHUA GAO. Experimental and Theoretical Investigation of Reaction of Aniline with Dimethyl Carbonate Catalyzed by Acid-Base Bifunctional Ionic Liquids [J]. Catalysis Today,2010,158(3-4),279-285.
    [97]GUOGUI LIU, HUA ZHAO, YUBAO LAN, BIN WU, XIAOFEI HUANG, JIAN CHEN, JINGCHAO TAO, XINGWANG WANG. Asymmetric Cross Aldol Addition of Isatins with α, β-Unsaturated Ketones Catalyzed by a Bifunctional Br(?)nsted Acid-Br(?)nsted Base Organocatalyst [J]. Tetrahedron,2012,68(20),3843-3850.
    [98]J. SPAULDING, J.E. STEIN, J.E. MEANY. Kinetic Studies of Potential Bifunctional Acid-Base Vatalysts in Aqueous Solution. The Iodination of Acetone [J]. The Journal of Physical Chemistry,1977,81(14),1359-1362.
    [99]TADAHIRO MOTOMURA, KAZUHISA INOUE, KENJI KOBAYASHI, YASUHIRO AOYAMA. Transition-State Stabilization via Dynamic Molecular Recognition:a Concerted Acid-Base Bifunctional Catalysis in Ester Hydrolysis [J]. Tetrahedron Letters,1991,32(36),4757-4760.
    [100]韩维屏.催化化学导论[M].北京,科学出版社,2003,198-198.
    [101]吴越.催化化学[M].北京,科学出版社,1995,162-162.
    [102]李华.非均相酸碱催化剂协同催化Aldol反应[D].大连,大连理工大学,2009.
    [103]SANKARANARAYANAPILLAI SHYLESH, WERNER R. Thiel. Bifunctional Acid-Base Cooperativity in Heterogeneous Catalytic Reactions:Advances in Silica Supported Organic Functional Groups [J]. ChemCatChem,2011,3(2),278-287.
    [104]SEONG HUH, HUNGTING CHEN, JERZY W. WIENCH, MAREK PRUSKI, VICTOR S.Y. LIN. Cooperative Catalysis by General Acid and Base Bifunctionalized Mesoporous Silica Nanospheres [J]. Angewandte Chemie International Edition,2005,44(12),1826-1830.
    [105]RYAN K. ZEIDAN, SONJONG HWANG, MARK E. DAVIS. Multifunctional Heterogeneous Catalysts:SBA-15-Containing Primary Amines and Sulfonic Acids [J]. Angewandte Chemie International Edition,2006,45(38),6332-6335.
    [106]KRISHNA K. SHARMA, ROBERT P. BUCKLEY, TEWODROS ASEFA. Optimizing Acid-Base Bifunctional Mesoporous Catalysts for the Henry Reaction: Effects of the Surface Density and Site Isolation of Functional Groups [J]. Langmuir, 2008,24(24),14306-14320.
    [107]KRISHNA K. SHARMA, TEWODROS ASEFA. Efficient Bifunctional Nanocatalysts by Simple Postgrafting of Spatially Isolated Catalytic Groups on Mesoporous Materials [J]. Angewandte Chemie International Edition,2007,46(16), 2879-2882.
    [108]NICHOLAS A.BRUNELLI, KRISHNAN VENKATASUBBAIAH, CHRISTOPHER W. JONES. Cooperative Catalysis with Acid-Base Bifunctional Mesoporous Silica:Impact of Grafting and Co-Condensation Synthesis Methods on Material Structure and Catalytic Properties [J]. Chemistry of Materials,2012,24(13), 2433-2442.
    [109]FANPENG SHANG, JIANRUI SUN, SHUJIE WU, HENG LIU, JINGQI GUAN, QIUBIN KAN. Direct Synthesis of Acid-Base Bifunctionalized Hexagonal Mesoporous Silica and Its Catalytic Activity in Cascade Reactions [J]. Journal of Colloid and Interface Science,2011,355(1),190-197
    [110]FANPENG SHANG, JIANRUI SUN, SHUJIE WU, YING YANG, QIUBIN KAN, JINGQI GUAN. Direct Synthesis of Acid-Base Bifunctional Mesoporous MCM-41 Silica and Its Catalytic Reactivity in Deacetalization-Knoevenagel Reactions [J]. Microporous and Mesoporous Materials,2010,134(1-3),44-50.
    [111]WANLING SHEN, WUJUN XU, QIANG GAO, JUN XU, HAILU ZHANG, ANMIN ZHENG, YAO XU, FENG DENG. Intactness and Spatial Proximity of Acid-Base Groups in Bifunctional SBA-15 as Revealed by Solid-State NMR [J]. Chemical Physics Letters,2010,491(1-3),72-74.
    [112]田部浩三,御园生诚,小野嘉夫,服部英著,郑禄彬,王公蔚,张盈珍,应慕良,徐柏庆译.新固体酸和碱及其催化作用[M].北京,化学工业出版社,1992,23-139.
    [113]徐柏庆,梁娟,郑禄彬,山口力,田部浩三.Zr02催化剂上吸附甲酸的TPD和IR研究[J].物理化学学报,1991,7(6),712-715.
    [114]徐柏庆,陈兰忠,梁娟,赵素琴.Zr02催化剂上吸附CH3NO2的分解[J].分子催化,1992,6(6),454-461.
    [115]BOQIN XU, TSUTOMU YAMAGUCHI, KOZO TANABE. Acid-base Bifunctional Catalysis in the Decomposition of Alkylamines [J]. Applied Catalysis, 1991,75(1),75-86.
    [116]徐柏庆,山口力,田部浩三,粱娟,郑禄彬.Zr02酸碱性质的TPD表征Ⅰ 单组分吸附研究[J].物理化学学报,1994,10(02),107-110.
    [117]徐柏庆,山口力,田部浩三,梁娟,.郑禄彬.ZrO2酸碱性质的TPD表征Ⅱ.NH3和C02共吸附研究[J].物理化学学报,1994,10(02),114-120.
    [118]徐柏庆,山口力.ZrO2酸碱性质的TPD表征Ⅲ.苯酚和C02或NH3共吸附[J].物理化学学报,1995,11(04),337-341.
    [119]SATOSHI SATO, RYOJI TAKAHASHI, NAOKI YAMAMOTO, EIJI KANEKO, HIROTOMO INOUE. Vapor-Phase Dehydration of 1,5-Pentanediol into 4-Penten-l-ol [J]. Applied Catalysis A:General,2008,334(1-2),84-91.
    [120]V. SOLINAS, E. ROMBI, I. FERINO, M.G. CUTRUFELLO, G. COL6N, J.A. NAVIO. Preparation, Characterisation and Activity of CeO2-ZrO2 Catalysts for Alcohol Dehydration [J]. Journal of Molecular Catalysis A:Chemical,2003,204-205, 629-635.
    [121]K. TANABE, T. YAMAGUCHI. Acid-Base Bifunctional Catalysis by ZrO2 and Its Mixed Oxides [J]. Catalysis Today,1994,20(2),185-197.
    [1]GUANGWEN CHEN, SHULIAN LI, FENGJUN JIAO. Catalytic Dehydration of Bioethanol to Ethylene over TiO2/γ-Al2O3 Catalysts in Microchannel Reactors [J]. Catalysis Today,2007,125(2),111-119.
    [2]S.H. VAIDYA, V.M. BHANDARI, R.V. CHAUDHARI. Reaction Kinetics Studies on Catalytic Dehydration of 1,4-Butanediol Using Cation Exchange Resin [J]. Applied Catalysis A:Genera,2003,242(2),321-328.
    [3]ERIKO TSUKUDA, SATOSHI SATO, RYOJI TAKAHASHI, TOSHIAKI SODESAWA. Production of Acrolein from Glycerol over Silica-Supported Heteropoly Acids [J]. Catalysis Communications,2007,8(9),1349-1353.
    [4]LERTJIAMRATNA KRIT, PIYASAN PRASERTHDAMA, MASAHIKO ARAIB, JOONGJAI PANPRANOT. Modification of Acid Properties and Catalytic Properties of AIPO4 by Hydrothermal Pretreatment for Methanol Dehydration to Dimethyl Ether [J]. Applied Catalysis A:General,2010,378(1),119-123.
    [5]邢其毅.基础有机化学[M].北京,高等教育出版社,2004,204-205.
    [6]TOSHIHIDE BABA, YOSHIO ONO. Kinetic Studies in Liquid Phase Dehydration-cyclization of 1,4-Butanediol to Tetrahydrofuran with Heteropoly Acids [J]. Journal of Molecular Catalysis,1986,37 (2-3),317-326.
    [7]IMRE BUCSI, ARPAD MOLNAR, MIHALY BARTOK. Transformation of 1,3-,1, 4-and 1,5-Diols over Perfluorinated Resinsulfonic Acids (Nafion-H) [J]. Tetrahedron,1995,51(11),3319-3326.
    [8]HAIXIA LI, HENGBO YIN, TINGSHUN JIANG, TONGJE HU, JING WU, YUJI WADA. Cyclodehydration of 1,4-Butanediol to Tetrahydrofuran Catalyzed by Supported Silicotungstic Acid [J]. Catalysis Communications,2006,7(10),778-782.
    [9]MAHMOUD AGHAZIARATI, MOHAMMAD KAZEMEINI, MOHAMMAD SOLTANIEH, SAEED SAHEBDELFAR. Evaluation of Zeolites in Production of Tetrahydrofuran from 1,4-Butanediol Performance Tests and Kinetic Investigations [J]. Industrial & Engineering Chemistry Research,2007,46(3),726-733.
    [10]LUDMILA LEITE, VLADISLAVS STONKUS, KRISTINE EDOLFA, LUBA ILIEVA, DONKA ANDREEVA, LUDMILA PLYASOVA, JANUSZ W.SOBCZAK, SORANA IONESCU, GABRIEL MUNTEANU. Active Phases of Supported Cobalt Catalysts for 2,3-Dihydrofuran Synthesis [J]. Journal of Molecular Catalysis A: Chemical,2004,215(1-2),95-101.
    [11]VLADISLAVS STONKUS, KRISTINE EDOLFA, LUDMILA LEITE, JANUSZ W.SOBCZAK, LUDMILA PLYASOVA, PETYA PETROVA. Palladium-Promoted Co-SiO2 Catalysts for 1,4-Butanediol Cyclization [J]. Applied Catalysis A:General, 2009,362(1-2),147-154.
    [12]S.M. PATEL, U.V. CHUDASAMA, P.A. GANESHPURE. Metal (Ⅳ) Phosphates as Solid Acid Catalysts for Selective Cyclodehydration of 1, n-Diols [J]. Green Chemistry,2001,3(3),143-145.
    [13]SATOSHI SATO, RYOJI TAKAHASHI, TOSHIAKI SODESAWA, NAOKI YAMAMOTO. Dehydration of 1,4-Butanediol into 3-Buten-l-ol Catalyzed by Ceria [J]. Catalysis Communications,2004,5(8),397-400.
    [14]SATOSHI SATO, RYOJI TAKAHASHI, TOSHIAKI SODESAWA, NOZOMI HONDA, HIDEYA SHIMIZU. Selective Dehydration of Diols to Allylic Alcohols Catalyzed by Ceria [J]. Catalysis Communications,2003,4(2),77-81.
    [15]AI IGARASHI, SATOSHI SATO, RYOJI TAKAHASHI, TOSHIAKI SODESAWA, MIKA KOBUNE. Dehydration of 1,4-Butanediol over Lanthanide Oxides [J]. Catalysis Communications,2007,8(5),807-810.
    [16]NAOKI YAMAMOTO, SATOSHI SATO, RYOJI TAKAHASHI, KANICHIRO INUI. Synthesis of 3-Buten-1-ol from 1,4-Butanediol over Z1O2 Catalyst [J]. Journal of Molecular Catalysis A:Chemical,2006,243(1),52-59.
    [17]SATOSHI SATO, RYOJI TAKAHASHI, MIKA KOBUNE, HIROTOMO INOUE, YUSUKE IZAWA, HIRONOBU OHNO, KAZUNARI TAKAHASHI. Dehydration of 1,4-Butanediol over Rare Earth Oxides [J]. Applied Catalysis A:General,2009, 356(1),64-71.
    [18]HIROTOMO INOUE, SATOSHI SATO, RYOJI TAKAHASHI, YUSUKE IZAWA, HIRONOBU OHNO, KAZUNARI TAKAHASHI. Dehydration of 1,4-Butanediol over Supported Rare Earth Oxide Catalysts [J]. Applied Catalysis A:General,2009, 352(1-2),66-73.
    [19]郑洪岩,杨骏,朱玉雷.1,4-丁二醇常压气相脱氢制γ-丁内酯[J].应用化学,2004,(4),343-347.
    [20]陈学刚,沈伟,徐华龙,项一非.Cu/ZnO/Al2O3催化剂上1,4-丁二醇脱氢合成γ-丁内酯[J].催化学报,2000,21(3),259-263.
    [1]SATOSHI SATO, RYOJI TAKAHASHI, TOSHIAKI SODESAWA, NAOKI YAMAMOTO. Dehydration of 1,4-Butanediol into 3-Buten-1-ol Catalyzed by Ceria [J]. Catalysis Communications,2004,5(8),397-400.
    [2]NAOKI YAMAMOTO, SATOSHI SATO, RYOJI TAKAHASHI, KANICHIRO INUI. Synthesis of Homoallyl Alcohol from 1,4-Butanediol over ZrO2 Catalyst [J]. Catalysis Communications,2005,6(7),480-484.
    [3]NAOKI YAMAMOTO, SATOSHI SATO, RYOJI TAKAHASHI, KANICHIRO INUI. Synthesis of 3-Buten-1-ol from 1,4-Butanediol over ZrO2 Catalyst [J]. Journal of Molecular Catalysis A:Chemical,2006,243(1),52-59.
    [4]FRANCISCO J.URBANO, MARIA A. ARAMENDIA, ALBERTO MARINAS, JOSE M MARINAS. An Insight into the Meerwein-Ponndorf-Verley Reduction of α,β-Unsaturated Carbonyl Compounds:Tuning the Acid-Base Properties of Modified Zirconia Catalysts [J]. Journal of Catalysis,2009,268(1),79-88.
    [5]Z.T. FENG, W.S. POSTULA, C. ERKEY, C.V. PHILIP, A. AKGERMAN, R.G. ANTHONG. Selective Formation of Isobutane and Isobutene from Synthesis Gas over Zirconia Catalysts Prepared by a Modified Sol-Gel Method [J]. Journal of Catalysis,1994,148(1),84-90.
    [6]SHUIGAN LIU G, JUN MA, LIANXIU GUAN, JUNPING LI, WEI WEI, YUHAN SUN. Mesoporous CaO-ZrO2 Nano-Oxides:A Novel Solid Base with High Activity and Stability [J]. Microporous and Mesoporous Materials,2009,117(1-2),466-471.
    [7]田部浩三,御园生诚,小野嘉夫,服部英著,郑禄彬,王公蔚,张盈珍,应慕良,徐柏庆译.新固体酸和碱及其催化作用[M].北京,化学工业出版社,1992,118-122.
    [8]张因.顺酐液相加氢镍基催化剂载体与活性组分的协同作用研究[D].太原,山西大学,2011.
    [9]ZHIGANG WU, YONGXIANG ZHAO, DIANSHENG LIU. The Synthesis and Characterization of Mesoporous Silica-Zirconia Aerogels [J]. Microporous and Mesoporous Materials,2004,68(1-3),127-132.
    [10]张因,王永钊,赵永祥,高春光.SiO2与ZrO2-SiO2气凝胶表面酸性的研究[J].化学与生物工程,2008,25(03),23-25.
    [11]YIN ZHANG, LI PAN, CHUNGUANG GAO, YONGZHAO WANG, YONGXIANG ZHAO. Preparation of ZrO2-SiO2 Mixed Oxide by Combination of Sol-gel and Alcohol-Aqueous Heating Method and Its Application in Tetrahydrofuran Polymerization [J]. Journal ofSol-Gel Science and Technology,2010,56(1),27-32.
    [12]YIN ZHANG, LI PAN, CHUNGUANG GAO, YONGXIANG ZHAO. Synthesis of ZrO2-SiO2 Mixed Oxide by Alcohol-Aqueous Heating Method [J]. Journal of Sol-Gel Science and Technology,2011,58(2),572-579.
    [13]BOQING XU, SHIBIAO CHENG, XIN ZHANG, QIMING ZHU. B2O3/ZrO2 for Beckmann Rearrangement of Cyclohexanone Oxime:Optimizing of the Catalyst and Reaction Atmosphere [J]. Catalysis Today,2000,63(2-4),275-282.
    [14]武志刚.Si02和ZrO2-SiO2复合氧化物气凝胶的制备、表征及其应用[D].太原,山西大学,2004.
    [15]马宏勋.稳定四方相二氧化锆气凝胶的制备研究[D].太原,山西大学,2006.
    [16]JORGE D.A. BELLIDO, JOS E. DE SOUZA, JEAN-CLAUDE M'PEKO, ELISABETE M. ASSAF. Effect of Adding CaO to ZrO2 Support on Nickel Catalyst Activity in Dry Reforming of Methane [J]. Applied Catalysis A:General,2009, 358(2),215-223.
    [17]朱晴,梁丽萍,贾志奇,高春光,赵永祥.多钨酸盐修饰Zr02气凝胶催化四氢呋喃开环聚合[J].物理化学学报,2011,27(2),491-498.
    [18]尹衍升,陈守刚,刘英才.氧化锆陶瓷的掺杂稳定及生长动力学[M].北京,化学工业出版社,2004,8-9.
    [19]路新瀛,梁开明,顾守仁,方鸿生,郑燕康,刘鹏.氧化锆在电场下的相变[J].硅酸盐学报,1996,24(3),329-331.
    [20]王慧,刘水刚,张文郁,赵宁,魏伟,孙予罕.高稳定性CaO-ZrO2固体碱催化剂的表征和催化性能[J].化学学报,2006,64(24),2409-2413.
    [21]刘水刚,张学兰,李军平,赵宁,魏伟,孙予罕.高稳定性介孔CaO/ZrO2固体碱的结构及碱性研究[J].石油化工,2008,37(3),226-231.
    [22]朱月香,庄伟,江德恩,谢有畅.碱土金属化合物在氧化锆上的分散与碱性[J].催化学报,2000,21(1),52-54.
    [23]SATOSHI SATO, RYOJI TAKAHASHI, MIKA KOBUNE, HIROTOMO INOUE, YUSUKE IZAWA, HIRONOBU OHNO, KAZUNARI TAKAHASHI. Dehydration of 1,4-Butanediol over Rare Earth Oxides [J]. Applied Catalysis A:General,2009, 356(1),64-71.
    [1]朱月香,庄伟,江德恩,谢有畅.碱土金属化合物在氧化锆上的分散与碱性[J].催化学报,2000,21(1),52-54.
    [2]Z.T. FENG, W.S. POSTULA, C. ERKEY, C.V. PHILIP, A. AKGERMAN, R.G. ANTHONG. Selective Formation of Isobutane and Isobutene from Synthesis Gas over Zirconia Catalysts Prepared by a Modified Sol-Gel Method [J]. Journal of Catalysis,1994,148(1),84-90.
    [3]YINGWEI LI, DEHUA HE, ZHENXING CHENG, CAILI SU, JUNRONG LI, QIMING ZHU. Effect of Calcium Salts on Isosynthesis over ZrO2 Catalysts [J]. Journal of Molecular Catalysis A:Chemical,2001,175(1-2),267-275.
    [4]JORGE D.A. BELLIDO, JOS E. DE SOUZA, JEAN-CLAUDE M'PEKO, ELISABETE M. ASSAF. Effect of Adding CaO to ZrO2 Support on Nickel Catalyst Activity in Dry Reforming of Methane [J]. Applied Catalysis A:General,2009, 358(2),215-223.
    [5]TAKASHI YASU-EDA, SUSUMU KITAMURA, NA-OKI IKENAGA, TAKANORI MIYAKE, TOSHIMITSU SUZUKI. Selective Oxidation of Alcohols with Molecular Oxygen over Ru/CaO-ZrO2 Catalyst [J]. Journal of Molecular Catalysis A:Chemical,2010,323(1-2),7-15.
    [6]HUI WANG, MOUHUA WANG, WENYU ZHANG, NING ZHAO, WEI WEI, YUHAN SUN. Synthesis of Dimethyl Carbonate from Propylene Carbonate and Methanol Using CaO-ZrO2 Solid Solutions as Highly Stable Catalysts [J]. Catalysis Today,2006,115(1-4),107-110.
    [7]K. TANABE, T. YAMAGUCHI. Acid-Base Bifunctional Catalysis by ZrO2 and Its Mixed Oxides [J]. Catalysis Today,1994,20(2),185-197.
    [8]田部浩三,御园生诚,小野嘉夫,服部英著,郑禄彬,王公蔚,张盈珍,应慕良,徐柏庆译.新固体酸和碱及其催化作用[M].北京,化学工业出版社,1992,118-122.
    [9]朱晴,梁丽萍,贾志奇,高春光,赵永祥.多钨酸盐修饰Zr02气凝胶催化四氢呋喃开环聚合[J].物理化学学报,2011,27(2),491-498.
    [10]董国君,王越,李婷.氧化锆负载硝酸盐固体碱催化剂的制备与表征[J].应用化工,2008,37(3),310-326.
    [11]王慧,刘水刚,张文郁,赵宁,魏伟,孙予罕.高稳定性CaO-ZrO2固体碱催化剂的表征和催化性能[J].化学学报,2006,64(24),2409-2413.
    [12]NAOKI YAMAMOTO, SATOSHI SATO, RYOJI TAKAHASHI, KANICHIRO INUI. Synthesis of 3-Buten-1-ol from 1,4-Butanediol over ZrO2 Catalyst [J]. Journal of Molecular Catalysis A:Chemical,2006,243(1),52-59.
    [13]SATOSHI SATO, RYOJI TAKAHASHI, MIKA KOBUNE, HIROTOMO INOUE, YUSUKE IZAWA, HIRONOBU OHNO, KAZUNARI TAKAHASHI. Dehydration of 1,4-Butanediol over Rare Earth Oxides [J]. Applied Catalysis A:General,2009, 356(1),64-71.
    [1]田部浩三,御园生诚,小野嘉夫,服部英著,郑禄彬,王公蔚,张盈珍,应慕良,徐柏庆译.新固体酸和碱及其催化作用[M].北京,化学工业出版社,1992,347-348.
    [2]邢其毅.基础有机化学[M].北京,高等教育出版社,2004,391-391.
    [3]SATOSHI SATO, RYOJI TAKAHASHI, TOSHIAKI SODESAWA, NAOKI YAMAMOTO. Dehydration of 1,4-Butanediol into 3-Buten-1-ol Catalyzed by Ceria [J]. Catalysis Communications,2004,5(8),397-400.
    [4]李婷.固体碱催化剂MgO/ZrO2催化合成碳酸二异辛酯的研究[D].哈尔滨,哈尔滨工程大学,2009.
    [5]管洪波,梁健,朱月香,赵璧英,谢有畅.MgO-ZrO2共沉淀体系的结构表征及单层分散现象[J].物理化学学报,2005,21(09),1011-1016.
    [6]付新,刘水刚,李军平,赵宁,肖福魁,魏伟,孙予罕.高稳定性介孔MgO-ZrO2纳米复合物对C02吸附性能研究[J].精细化工,2008,25(11),1092-1096.
    [7]王珏,赵璧英,谢有畅.MgO/HZSM-5中MgO分散状态和催化性能的关系[J].物理化学学报,2001,17(11),966-971.
    [8]SHUIGANG LIU, XUELAN ZHANG, JUNPING LI, NING ZHAO, WEI WEI, YUHAN SUN. Preparation and Application of Stabilized Mesoporous MgO-ZrO2 Solid Base [J]. Catalysis Communications,2008,9(7),1527-1532.
    [9]刘水刚,黄世勇,魏伟,孙予罕.新型固体碱介孔MgO-ZrO2的制备及催化性能研究[J].现代化工,2007,27(09),35-37.
    [10]DE-EN JIANG, GUANGCHENG PAN, BIYING ZHAO, GUOPENG RAN, YOUCHANG XIE, ENZE MIN. Preparation of Zr02-Supported MgO with High Surface Area and Its Use in Mercaptan Oxidation of Jet Fuel [J]. Applied Catalysis A: General,2000,201(2),169-176.
    [11]董国君,李婷.MgO/ZrO2的制备表征及催化合成碳酸二异辛酯[J].精细化工, 2009,26(2),166-169.
    [12]李碧,闻霞,赵宁,王秀枝,魏伟,孙予罕,任泽厚,王志杰.高稳定性介孔MgO-ZrO2固体碱的制备及其高温CO2吸附性能[J].燃料化学学报,2010,38(04),473-477.
    [13]尹衍升,陈守刚,刘英才.氧化锆陶瓷的掺杂稳定及生长动力学[M].北京,化学工业出版社,2004,8-9.
    [14]尹衍升,李嘉.氧化锆陶瓷及其复合材料[M].北京,化学工业出版社,2004,21-22.
    [15]郭新闻,王祥生,沈剑平,孙路,宋春山.改性HZSM-5催化剂上4-甲基联苯与甲醇的甲基化反应性能[J].催化学报,2003,24(05),333-337.
    [16]HELENA TETERYCZ, ROMAN KLMKIEWICZ, MAREK LANIECKI. The Role of Lewis Acidic Centers in Stabilized Zirconium Dioxide [J]. Applied Catalysis A: General,2003,249(2),313-326.
    [17]白杰,刘盛林,谢素娟,徐龙伢,林励吾.Mg的添加对Mo/ZSM-5催化剂催化甲烷芳构化性能的影响[J].催化学报,2004,25(01),70-74.
    [18]宋庆英,毛东森,张斌.HZSM-5分子筛的改性对合成气直接制二甲醚反应的影响[J].天然气化工,2004,29(02),12-15.
    [19]毛东森,张斌,宋庆英,杨为民,陈庆龄.镁改性HZSM-5对Cu-ZnO-Al2O3/HZSM-5催化合成气直接制二甲醚反应的影响[J].催化学报,2005,26(05),365-370.
    [20]NAOKI YAMAMOTO, SATOSHI SATO, RYOJI TAKAHASHI, KANICHIRO INUI. Synthesis of 3-Buten-1-ol from 1,4-Butanediol over ZrO2 Catalyst [J]. Journal of Molecular Catalysis A:Chemical,2006,243(1),52-59.
    [21]SATOSHI SATO, RYOJI TAKAHASHI, MIKA KOBUNE, HIROTOMO INOUE, YUSUKE IZAWA, HIRONOBU OHNO, KAZUNARI TAKAHASHI. Dehydration of 1,4-Butanediol over Rare Earth Oxides [J]. Applied Catalysis A:General,2009, 356(1),64-71.
    [1]YIN ZHANG, LI PAN, CHUNGUANG GAO, YONGZHAO WANG, YONGXIANG ZHAO. Preparation of ZrO2-SiO2 Mixed Oxide by Combination of Sol-gel and Alcohol-Aqueous Heating Method and Its Application in Tetrahydrofuran Polymerization [J]. Journal of Sol-Gel Science and Technology,2010,56(1),27-32.
    [2]YIN ZHANG, LI PAN, CHUNGUANG GAO, YONGXIANG ZHAO. Synthesis of ZrO2-SiO2 Mixed Oxide by Alcohol-Aqueous Heating Method [J]. Journal of Sol-Gel Science and Technology,2011,58(2),572-579.
    [3]R. GOMEZ, T. LOPEZ, F. TZOMPANTZI, E. GARCIAFIGUEROA, D.W. ACOSTA, O. NOVARO. Zirconia/Silica Sol-Gel Catalysts:Effect of the Surface Heterogeneity on the Selectivity of 2-Propanol Decomposition [J]. Langmuir,1997, 13(5),970-973.
    [4]J.A. NAVIO, G. COL6N, M. MACIAS, P.J. SANCHEZ-SOTO, V. AUGUGLIARO, L. PALMISANO. ZrO2-SiO2 Mixed Oxides:Surface Aspects, Photophysical Properties and Photoreactivity for 4-Nitrophenol Oxidation in Aqueous Phase [J]. Journal of Molecular Catalysis A:Chemical,1996,109(3),239-248.
    [5]张因,王永钊,赵永祥,高春光.SiO2与ZrO2-SiO2气凝胶表面酸性的研究[J].化学与生物工程,2008,25(03),23-25.
    [6]T. LOPEZ, F. TZOMPANTZI, J. NAVARRETE, R. GOMEZ, J.L. BOLDU, E. MUNOZ, O. NOVARO. Free Radical Formation in ZrO2-SiO2 Sol-Gel Derived Catalysts [J]. Journal of Catalysis,1999,181(2),285-293.
    [7]QUAN ZHUANG, JACK M. MILLER. ZrO2/SiO2 Mixed Oxides as Catalysts for Alcohol Dehydration [J]. Applied Catalysis A:General,2001,209(1-2), L1-L6.
    [8]SAINERO L.M. GOMEZ, S. DAMYANOVA, J.L.G. FIERRO. Methanol Oxidation over ZrO2-SiO2 Supported Phosphomolybdic Acid [J]. Applied Catalysis A:General, 2001,208(1-2),63-75.
    [9]GUNUGUNURI K. REDDY, STEPHANE LORIDANT, ATSUSHI TAKAHASHI, PIERRE DELICHERE, BENJARAM M. REDDY. Reforming of Methane with Carbon Dioxide over Pt/ZrO2/SiO2 Catalysts-Effect of Zirconia to Silica Ratio [J]. Applied Catalysis A:General,2010,389(1-2),92-100.
    [10]XINGHUA ZHANG, TIEJUN WANG, LONGLONG MA, QI ZHANG, YUXIAO YU, QIYING LIU. Characterization and Catalytic Properties of Ni and NiCu Catalysts Supported on ZrO2-SiO2 for Guaiacol Hydrodeoxygenation [J]. Catalysis Communications,2013,33(0),15-19.
    [11]CHUNNI FAN, CHENGHUA XU, CHUANQI LIU, ZUNYU HUANG, JIANYING LIU, ZHIXIANG YE. Ketalization of Glycerol with Acetone to O-Heterocyclic Compounds over ZrO2-SiO2 Solid Acid Catalysts [J]. Heterocycles,2012,85(12), 2977-2986.
    [12]ANGEL-LOPEZ D. DEL, M.A. DOMINGUEZ-CRESPO, A.M. TORRES-HUERTA, A. FLORES-VELA, J. ANDRACA-ADAME, H. DORANTES-ROSALES. Analysis of Degradation Process during the Incorporation of ZrO2:SiO2 Ceramic Nanostructures into Polyurethane Coatings for the Corrosion Protection of Carbon Steel [J]. Journal of Materials Science,2013,48(3),1067-1084.
    [13]HELENA KAPER, KARIM BOUCHMELLA, P. HUBERT MUTIN, FREDERIC GOETTMANN. High-Surface-Area SiO2-ZrO2 Mixed Oxides as Catalysts for the Friedel-Crafts-Type Alkylation of Arenes with Alcohols and Tandem Cyclopropanation Reactions [J]. ChemCatChem,2012,4(11), S1811-S1813.
    [14]潘丽,张因,贾志奇,高春光,赵永祥.ZrO2-SiO2复合物表面酸性的调控及催化四氢呋喃聚合性能研究[J].分子催化,2011,25(2),130-137.
    [15]ZHIGANG WU, YONGXIANG ZHAO, DIANSHENG LIU. The Synthesis and Characterization of Mesoporous Silica-Zirconia Aerogels [J]. Microporous and Mesoporous Materials,2004,68(1-3),127-132.
    [16]张因.顺酐液相加氢镍基催化剂载体与活性组分的协同作用研究[D].太原,山西大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700