用户名: 密码: 验证码:
新型镍、钴配合物体系催化的丙烯二聚反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
考虑到烯烃聚合与齐聚的共性和区别,注意到一系列亚胺型后过渡金属配合物对烯烃聚合反应的优异性能,本论文旨在利用此类配合物对烯烃分子的高活化性能和配体性质的易调性,结合已有的对过渡金属催化丙烯二聚反应的认识,探索一系列以N,O和O,O配位的镍、钴配合物在丙烯二聚反应中的应用,研究了各种因素,尤其是配体的性质及有机膦配体的种类对体系催化性能的影响:
     首先开发了系列以N,O配位的水杨醛亚胺镍膦配合物及与其骨架相似的β-酮亚胺镍膦配合物为主催化剂的丙烯二聚催化体系;通过调节亚胺配体的性质与膦配体的种类、烷基铝助剂及反应条件,能有效地提高反应活性和调节催化选择性。根据该体系中可能的活性中心形成机理,我们以二(水杨醛亚胺)镍配合物和二(β-酮亚胺)镍、钴配合物为催化剂前体,在烷基铝和/或有机膦配体作用下原位得到具丙烯二聚活性的镍物种,避免了水杨醛亚胺镍膦配合物多步合成和分离步骤,并为催化体系提供了更多可供调节的手段。二(水杨醛亚胺)镍体系和二(β-酮亚胺)镍体系在一定条件下都能获得极高的二聚活性(~250000 h~(-1))和较好的2,3-二甲基丁烯选择性(~65%)。
     研究了系列类salen镍、钴配合物对丙烯单体的活化性能,观察到了此类配合物与两齿配体配位的镍、钴配合物的不同的性能:类salen镍、钴配合物需要在较苛刻的条件下才能形成具丙烯二聚活性的镍物种。同时发现配体的立体位阻和电子效应都对体系的二聚活性有很大的影响。在具有大立体位阻效应或强吸电子效应的镍配合物体系中,通过改变膦配体的种类和反应温度能得到很高的催化活性和一定的选择性。两种空间位阻较小的结构类似的N_2O_2型和N_4型镍配合物在烷基铝作用下就能有效催化丙烯二聚反应,位阻极大的N_4型镍配合物很难获得高催化活性。
     合成了系列新型的poly-salen型镍、钴配合物,并探索了其在丙烯二聚反应中的催化性能。发现poly-salen在烷基铝作用下具有一定的二聚活性,添加有机膦配体能极大地促进体系的反应活性(~220000 h~(-1))。在相同的反应条件下,
    
    摘要
    po如一salen体系显示出比相应的salen体系高得多的催化性能。由于体系的催化
    性能与po加一salen镍配合物在反应介质中溶解度的密切关系,催化剂的循环性能
    不好。
     首次考察了基于0,0配位的二(水杨醛)镍配合物在丙烯二聚反应中的应
    用。发现二(水杨醛)镍在烷基铝作用下就能原位催化丙烯二聚反应,带有大体积
    取代基或强吸电性基团的水杨醛配体有利于提高反应活性。通过调节配体的结
    构、嶙配体种类和反应条件,能获得极高的二聚活性(262o0oh’’)和较高的2,3-
    二甲基丁烯选择性(>65%)。分析了二(水杨醛)镍配合物在烷基铝和/或有机嶙配
    体作用下的UV-VIs谱图,观察到镍物种的明显变化过程,在此基础上提出了
    可能的活性镍物种的形成机理。
     研究了几种N,P双齿鳌合的镍、钻配合物的丙烯齐聚反应性能。镍配合物
    表现出比钻配合物更高的二聚活性。合成了系列基于2一(二苯基磷)苯甲醛与
    2一(二苯基磷)苯胺配体的N,P,0三齿鳌合的镍配合物,并考察了其在丙烯二聚反
    应中的应用。通过调节水杨醛部分取代基的性质和烷基铝的种类,体系能获得
    高的丙烯二聚活性。
     利用茂错催化剂在烯烃聚合反应中的优异性能,考察了环戊二烯及荀镍配
    合物在丙烯二聚反应中的应用。其中二荀基镍配合物在烷基铝作用下就能催化
    丙烯二聚反应,通过有机麟配体可以较大程度地调节体系的二聚活性和选择性。
     通过论文的工作,开发了系列新型的镍系、钻系丙烯二聚催化体系。在一
    定的条件下,大部分体系都能获得极高的二聚活性(2oo00oh’’)和较高2,3,二甲
    基丁烯的选择性(65%)。
     通过实验我们发现,以N,O和0,O配位的系列镍钻配合物在烷基铝和/
    或有机麟配体作用下能成功地催化丙烯二聚反应。这是典型的金属有机化合物
    络合催化过程,通过对调节配体性质、烷基铝、有机麟配体及反应条件等因素
    的系统考察,观察到这类配体在丙烯二聚反应中的一些共同规律:适当增加配
    体的立体效应或配体的吸电子效应,有利于增加反应活性;添加有机磷配体有
    利于提高二聚反应性能,立体位阻大和碱性较强的磷配体有利于生成2,3一二甲
    基丁烯;适当降低反应温度能显著提高体系的反应活性和选择性。
A series of late transtion complexes based on specified-structure imine ligands have been a novel family of catalysts for olefin polyerization since 1995 owing to their dramatically high and unique catalytic performance. On the basis of extremely high reactivity of such late transtion catalysts in the activition of olefin as well as the essential relationship between polymerization and oligomeriztion, we would explore the catalytic behaivor of a series of nickel and cobalt complexes coordinated with N,O and O,O multi-dentate chelating on the dimerization of propylene. Moreover, the effect of various factors on the catalytic process, particularly the nature of ligands in nickel and cobalt precursors and the type of phosphine ligands, would be carefully investigated in our paper.
    Primarily, the catalytic systems based on neutral nickel salicylaldiminato complexes and neutral nickel (β-ketoiminato) complexes for the dimerization of propoylene were described. The catalytic activity and selectivity of the former system might be strongly improved by varying the nature of salicylaldiminato ligands, the type of phosphine ligands and aluminum co-catalysts as well as the reaction conditions. According to well-known process to produce the active nickel intermediates, both bis(salicylaldiminate) nickel complexes and bis(β-ketoiminato) nickel complexes were treated with aluminun activitor and/or phosphine ligands in order to in situ form the active nickel species for propylene oligomerization, which would avoid to suffer of the multi-step synthesis of the neutral nickel precatalysts and make it easier to modulate the catalytic system. Extremely high productivity up
    
    
    
    to 250000 h-1 as well as a good regioselectivity to 2,3-DMB in dimers (-65 %) were achieved in either the bis(salicylaldiminate) nickel system or the bis(p-ketoiminato) nickel system under proper reaction conditions.
    The application of a series of salen-like nickel and cobalt complexes in the activation of propylene was also studied in the present paper. It was found that the salen nickel and cobalt catalysts exibihted different catalytic behavior as compared with the nickel catalysts based on bidentate N,O coordination, and significant productivity in the dimerization of propylene was obtained for the salen-like systems only in the presence of large excess of phosphine ligands. It was also found that the catalytic productivity was closely depended on both steric and electronic characteristics of salen ligands. High activity and certain selectivity of desired product could be detected through changing the nature of phosphine ligands and reaction temperatures in the case of salen-like systems characterized by bulky substituents and electron-withdrawing groups. Activity was confirmed for propylene dimerization with serval N2O2 type and N4 type nickel precursors when treated with Al co-catalysts, and low productivity was detected even in the presence of large excess of phosphine ligands in a 1\4 type nickel system, which characterized by extremely hindrance around the nickel center.
    A series of novel poly-salen nickel and cobalt complex was prepared and the catalytic performance in the dimerization of propylene was investigated. Significant of productivity was ascertained with treatment of aluminum promoters, and the catalytic activity was remarkably increased when phosphine lignads was added. The poly-salen system exihibited much higher productivity than the corresponding salen one under identical reaction conditions. However, it seemed difficult to recycle the poly-salen nickel catalyst owing to its restrict relationship between the activity and solubility in the reaction mediums, at least under the adopted conditions.
    For the first time, the catalytic behavior of bis(salicylaldehyde) nickel catalysts was studied in the dimerization of propylene. The active nickel species for the activation of proplyene was in situ generated when treated with alkyl aluminum. The
    
    productivity might be enhanced as H atom on the phenolic ring substituted with bulky
引文
1. Matsuo T. Agric. Biol. Chem. 1976, 40, 247.
    2. Kasamatsu K.; Fujita Y. J. Pesticide. Sci. 1986, 11,421
    3. Sato H.; Fujisawa K.; Tojima H.; Yasui S. DE 2,910,493.
    4. Kranz E.; Jautelat M.; Eue L.; Schmit R. R. DE 3,323,935.
    5.陈永福;朱志荣 上海化工 1999,24,25.
    6. Matsuo T. Agric. Biol. Chem. 1990, 40, 247.
    7. Nomura K.; Suzukamo G.; Yamamoto M.; Itagaki M.住友化学 1998,Ⅰ, 99
    8. Benedek W. J.; Mauleon J. L.; Hydrocarbon Process 1980, 59, 143.
    9. Chauvin Y.; Oliver-Bourigou H. Chemtech. 1995, 9, 26.
    10. Marchionna M.; Girolamo M. D.; Patrini R. Catal. Today 2001, 65, 397.
    11. Boenneman Angew. Chem. Int. Ed. Engl. 1970, 9, 736.
    12. Muthukumaru P. S.; Ravindranathan M.; Sivaram S. Chem. Rev. 1986, 86, 353.
    13. Skupinska J. Chem. Rev. 1991, 91,613.
    14. Wilke G. Angew. Chem. Int. Ed. Engl. 1988, 27, 185.
    15. Keim W. Angew. Chem. Int. Ed. Engl. 1990, 29, 235.
    16. Wilke G.; Bogdanovic B. Hardt P.; Heimbach O.; Krong W.; Tanaka K.; Steinrucke D.; Walter D.; Aimmerman Angew. Chem. Int. Ed. Engl. 1966, 5, 151.
    17. N. V. Petrushandskaya; V. Sh Feldblym USSR Patent 1971, 290,764; Chem. Abstr. 1971, 74,1490893.
    18. V. Sh Feldblym, N. V. Petrushandskaya, A. I.Kurapova, E. A. Mushina, B, Akrentsel, N. A. Borisova USSR Patent 1979, 686,753; Chem. Abstr. 1980, 92, 41304.
    19. Bogdanovic B.; Henc B., Karmann H.-G.; Nussel H.-G.; Walter D.; Wilke G. Ind. Eng. Chem. 1970, 62, 34.
    20. Bogdanovic B.; Spliethoff B.; Wilker G. Angew. Chem. Int. Ed. Engl. 1980, 19, 622.
    21. G. Wilke British Patent 1965, 1,146,190; Chem.Abstr. 1966, 64, 9928.
    22. Balbolov. E; Mitkova M.; Krutev K. J. Organomet. Chem. 1998, 352, 247.
    
    
    23. Brown J. M.; Hughes G. D. Inorg. Chim. Acta. 1996, 252, 229
    24. Ewers J. Angew. Chem. Int. Ed. 1966, 5, 584.
    25. Keim W. Angew. Chem. Int. Ed. 1990, 29, 235.
    26. Keim W. J. Mol. Catal. 1989, 52, 19.
    27. Keim W.; Behr A.; Kraus G. J. Organometall. Chem. 1983, 251,377.
    28. Foulds E A.; Bennet A. M. A.; Thornton D. A.; Brown S. J.; Clutterbuck L. M.; Hinton C.; Humphreys G. B.; Masters A. F. Polyhedron 1992, 11, 1285.
    29. Gao Z.; Liu Z.; Wang H.; Zhou K. Gaodeng Xue Xiao Huaxue Xuebao 1985, 6, 1127; Chem Abstact 1986, 104, 207783.
    30. Keim W.; Hoffmann B.; Lodewich R.; Peuckert M.; Schimtt G; Fleischauer J.; Meier U. J. Mol. Catal. 1979, 6, 79.
    31. Freudenberg U,; Keim W. Chem.-Ing.-Tech. 1988, 60, 1058.
    32. Chin A. A.; Hill C.; Wong S. S. F. US 1995, 5,434,327, to Mobil Oil Corp; Chem. Abstr. 1995, 123, 179047d.
    33. Peucker M.; Keim W.; Storp S.; Weber R. S. J. Mol. Catal. 1983, 20, 115.
    34. Jones J. R.; Symes T. J. J. Chem. Soc., (C) 1971, 1124.
    35. Cotton F. A.; Frenz B. A.; Hunter D. L. J. Am. Chem. Soc. 1974, 96, 4820.
    36. Yamamoto T.; Kohara T.; Yamamoto A. Bull. Chem. Soc. Jpn, 1981, 54, 2010
    37. Yamamoto T.; Kohara T.; Yamamoto A. Bull. Chem. Soc. Jpn. 1982, 55, 325.
    38. Fan L.; Krzywichi A.; Somogyvari A.; Ziegler T. Inorg. Chem. 1994, 33, 5287.
    39. Henrici-Olive G.; Olive S. Trans. Met. Chem. 1976, 1, 109.
    40. Cavell K. J.; Master A. F. J. Chem. Res. 1983, 72
    41. Fan L.; Krzywichi A; Somogyvari A.; Ziegler T. Inorg. Chem. 1996, 35, 4003.
    42. Khusnutdinu; Zhdanov S. I.; Tolstikov G. A.; J. Organometall. Chem. 1989, 367, 205.
    43. Schmidt F. K.; Ratovskii G. V.; Dmitrieva T. V.; Ivleva I. N.; Borodko Yu. G. J. Organometall. Chem. 1983, 256, 309.
    44.高占先;蒋景阳;王国志 石油化工 1986,15,464
    45.周科衍;高占先;蒋景阳 大连工学院学报 1985,24,1.
    46.张凯;吕俊民 应用化学 1990,7,66.
    47. Benvenuti F.; Carlini C.; Marchetti F.; Marchionna M.; Patrini R., Galletti A. M. R.;
    
    Sbrana G. J. Organometall. Chem. 2001, 622, 286
    48. Keim W.; Vogt M.; Wasserscheid P.; Drieβen-Holscher B. J. Mol. Catal. A: Chem. 1999, 139, 171.
    49. Benvenuti F.; Carlini C.; Marchionna M.; Galletti A. M. R.; Sbrana G. Appl. Catal.A: Gen. 2002, 178, 9.
    50. Cornils B.; Herrmann W. A. In Aqueous-Phase Organometallic Catalysis Concepts and Application, WILEL-VCH, 1998.
    51. Bertoux B.; Monflier E.; Castaner Y.; Mortreux A J. Mol. Cata. A: Chem. 1999, 143, 11-39
    52. Horvath I.; Rabai J. Science 1994, 266, 72.
    53.钱延龙,陈新滋 金属有机化学 化工出版社,1997.
    54. Kent A. G.; Lawrenson M. J.; Macalpine D. K.; US Patent 1988 4,835,328.
    55. Cavell K. J.; Masters A. F. Aust. J. Chem. 1986, 39, 1129.
    56. Bennet A. M. A.; Niven M. L.; Thornton J. Mol. Catal. 1994, 87, 117.
    57. Brown S. J.; Clutterbuck L. M.; Masters A. F.; Sachinides J. J.; Tregloan P. A. Appl. Catal. 1989, 48,1.
    58. Brown S. J.; Masters A. F. J. Organometall. Chem. 1989, 367, 371
    59. Brown S. J.; Masters A. F.; Vender M. Polyhedron 1988, 7, 2009
    60. Abeywickrema R.; Bennett M. A.; Cavell K. J.; Kony M.; Masters A. F.; Webb A. G. J. Chem. Soc., Dalton Trans. 1993, 59.
    61. Benvenuti F.; Carlini C.; Marchionna M.; Patrini R., Galletti A. M. R.; Sbrana G. Appl. Catal. A: Gen. 2000, 199, 123.
    62. Benvenuti F.; Carlini C.; Marchionna M.; Patrini R., Galletti A. M. R.; Sbrana G. Appl. Catal. A: Gen. 2000, 204, 7.
    63. Carlini C.; Marchionna M.; Patrini R., Galletti A. M. R.; Sbrana G. Appl. Catal.A: Gen. 2001, 207, 387.
    64. Benneuti F.; Carlini C.; Marchionna M.; Patrini R., Galletti A. M. R.; Sbrana G. Polym. Adv. Technol. 1999,10, 554.
    65. Carlini C.; Marchionna M,; Galletti A. M. R.; Sbrana G. Appl. Catal. A: Gen. 2001, 210, 173.
    
    
    66. Carlini C.; Marchionna M.; Galletti A. M. R.; Sbrana G. Appl. Catal. A: Gen. 2001, 169, 19.
    67. Carlini C.; Marchionna M.; Patrini R.; Galletti A. M. R.; Sbrana G. Appl. Catal. A: Gen. 2001, 216, 1.
    68. Carlini C.; Marchionna M.; Galletti A. M. R.; Sbrana G. Appl. Catal. A: Gen. 2001, 206, 1.
    69. Carlini C.; Marchionna M.; Galletti A. M. R.; Sbrana G. J. Mol. Catal, A: Chem. 2001, 79, 88.
    70. Hann R. D.; Dekker J. J. Catal. 1974, 35, 202.
    71. Hann R. D.; Dekker J. J. Catal. 1974, 35, 202.
    72. Hann R. D.; Dekker J. J. Catal. 1976, 44, 15.
    73. Chauvin Y.; German Offen 1971, 2,032,140; Chem. Abstr. 1976, 74,87306.
    74. Yo J. S. Patent 1977, 4,010,216; Chem.Abstr. 1977, 86, 189166.
    75. Eberhardt G. G.; Griffin W. Po. J. Catal. 1970, 16, 245.
    76. Schmidt F. K.; Mironova L.V.; Tkach V. S.; Kalabina A.V. Kinet. Katal. 1975, 16, 70.
    77. Kawata N.; Mizoroki T.; Ozakim A. J. Mol. Catal. 1974, 35, 202.
    78. Kawata N.; Mizoroki T.; Ozaki A. Japanese Patent 75,135,001; Chem.Abstr. 1976, 84,135075.
    79. Kasamoto K.; Imanaka T.; S.Teranishi, Nippon Kagaku Zasshi 1968, 89, 639.
    80. Lepetit C.; Kermarec M.; Oliver D. J. Mol. Catal. 1989, 51, 95.
    81. Ederhardt G. G.; Griffin W. P. J. Catal. 1970, 16, 245.
    82. Hata G.; Miyake A. Chem. Int. 1967, 921.
    83. Uchino M. M.; Comptes Rendus, Acad. Sci., Paris, Ser. C. 1967, 256, 103.
    84. Gilles L. Fr. 1968, 1,549,202.
    85.吴雄 中国科学院大连化学物理研究所硕士论文,1981年12月.
    86.方志刚 中国科学院大连化学物理研究所硕士论文,1986年8月.
    87.宋永瑞;吴雄;李同信 催化学报 1988,9,64.
    88.宋永瑞;李同信;娄文阁 催化学报 1988,9,103.
    89. Crociani L.; Refosco F.; Tisato K; Gatto H.; Corain B. Inorg. Chim. Act. 1996, 249, 131.
    90.李子均;王振岳;毛淑贞;余道容;董明珏;宋永瑞 石油化工 1983,12,424.
    91.李同信;宋永瑞;刘兴无 化学学报 1988,46,1027.
    
    
    91.李同信;宋永瑞;刘兴无 化学学报 1988,46,1027.
    92.李同信;宋永瑞;娄文阁;林秀英 催化学报 1990,11,429.
    93.陈永福;朱志荣;周伟;吴绯 精细化工 2000,17,541.
    94. Tolman C. A. Chem. Rev. 1977, 77, 313.
    95. Cannell L.G.; Majoon E.F. US Patent 1965, 3,335,510.
    96. Takahashi M.; Fujii Y.; Yamaguchi M.; Japanese Patent 1976, 7,627,644; Chem Abstr. 1977, 86, 89148.
    97. K Taylor. A.; Hewertson W.; Leonard J.A. British Patent 1966, 1,131,146; Chem.Abstr. 1969, 70, 37139.
    98. Smith E.T. British Patent 1967, 1,140,821; Chem. Abstr. 1969, 70, 96143.
    99. Mori H., Nagaoka I.; Hirayanagi S.; Kihinoki A. Japanese Patent 1972, 7,249,563; Chem. Abstr. 1973, 78, 110508.
    100. Sato H., H.Tojima, and Yasui S.,German Often 1979, 2,835,365; Chem.Absrt. 1979, 90, 168036.
    101. Yoshiura and Arakawa T. Japanese Patent 1975, 7,537,163; Chem.Abstr. 1976, 85,5176.
    102. Sato H.; Noguchi T.; Yasui S. US Patent 1979, 4,115,946.
    103. Sato H.; Uchida K.; Tojima US Patent 1991, 4,992,610.
    104. Sato H.; K. Fujisawa, H. Tojima; S. Yasui US Patent 1981, 4,284,818.
    105. Sato H.; Noguti T. Bull. Chem. Soc. Jpn. 1993, 66, 3079.
    106. Sato H.; Ohsu M.; Kumagai Y. J Synth. Org. Chem. Jpn. 1990, 48, 806.
    107. Nomura K.; Ishino M.; Hazama M.; Suzukamo G. J. Mol. Catal A: Chem. 1997, 126, L93.
    108. Sato H.; Ikimi K.; Tojima H.; Takahashi M. US Patent 1987, 4,709,112.
    109. Itagaki M.; Suzukamo G.; Nomura K. Bull. Chem. Soc. Jpn. 1998, 71, 79.
    110. Sato H.; Tojima H.; Ikimi K. J Mol. Catal. A: Chem. 1999, 144, 285.
    111. Sato H.; Noguti T.; Yasui S. Bull. Chem. Soc. Jpn. 1993, 66, 3069.
    112. Nomura K.; Itagaki M.; Ishino M.; Yamamoto M.; Suzukamo G. Chem. Lett. 1997, 47, 47.
    113. Nomura K.; Minamide C.; Nagase M.; Itagaki M.; Suzukamo G. J. Mol. Catal. A: Chem. 1999, 137, 1.
    
    
    114. Braca G.; Galletti A. M. R.; Girolamo M. D.; Sbrana G.; Silla R.; Ferrarini P. J. Mol. Catal. A: Chem. 1995, 96, 203.
    115. Keim W.; Hoffman B.; Lodewich R.; Peuckert M.; Schnauer G.; Meier U. J. Mol. Catal. 1979, 6, 79.
    116. Peuckert M.; Keim W. Organometallics 1983, 2, 594.
    117. Keim W. Chem.-Ing.-Tech. 1984, 56, 850.
    118. Freitas E. R.; Gum C. R. Chem. Eng. Prog. 1979, 75, 73.
    119. Kissin Y. V. J. Poly. Sci., A: Polym. Chem. 1989, 27, 605.
    120. Kissin Y. V.; Beach D. J. Polym. Sci., A: Poly. Chem. 1989, 27, 147.
    121. Nesterov G. A.; G. Fink; Zakharov V. A.; Fenzl W. J. Mol. Catal. 1991, 69, 129.
    122. Neaterov G. A.; Fink G.; Zakharov V. A. Makromal. Chem., Rapid Commun. 1989, 10, 669.
    123. Mitkova M.; Tomov A.; Kurtev K. J. Mol. Catal. A: Chem. 1996, 110, 25.
    124. Kurtev K.; Tomov A. J. Mol. Catal. 1994, 88, 141.
    125. Tomov A.; Kurtev K. J. Mol. Catal. 1995, 103, 95
    126. Keim W. New J. Chem. 1987, 11, 531.
    127. W. Keim, A. Behr, B. Limbacker, C. Kruger, Angew. Chem. Int. Ed Engl., 1983, 22, 503.
    128. W. Keim, F. H. Kowaldt, R. Goddard, C. Kruger, Angew. Chem. Int. Ed. Engl. 1978, 17, 466.
    129. Vogt D. In Applied Homogeneous Catalysts with Organometallics Compounds; Cornils B.; Herrmann W. A. (Eds.); VCH: Weinheim. 1996; p 245.
    130. Crociani L.; Refosco F.; Tisato F.; Gatto S.; Corain B. Inorg. Chim. Act. 1996, 249, 131.
    131. Schrock R. R.; Sancho J.; McLain S. Pure Appl. Chem. 1980, 52, 729.
    132. Schrock R. R.; Mclain S. J.; Sancho J. J. Am. Chem. Soc. 1979, 101, 5451.
    133. Mclain S. J.; Sancho J.; Schrock R. R. J. Am. Chem. Soc. 1980, 102, 5610.
    134. Datta S.; Fischer M. B.; Wreford S. S. J. Organometall. Chem. 1980, 188 353.
    135. Janiak C.; Lange K. C. H.; Marquardt P. J. Mol. Catal. A: Chem. 2002, 180, 43.
    136.钱明星;周斌;何仁;王梅;黄勇;王辉 高等学校化学学报 2001,22,1771.
    137.沈玉梅;何仁 催化学报 1995,16,245.
    138.王梅;沈玉梅;何仁 分子催化 1999,13,282.
    
    
    139.钱明星;王梅;何仁 应用催化 2000,17,96.
    140.钱明星;王辉;何仁 分子催化 2000,14,29.
    141. Eshuis J. J. W.; Tang Y. Y.; Meetsma A.; Teaben J. H. Organometallics 1992, 11,362.
    142. Looveren L. K. V.; Vos E. D.; Vercuysse K. A.; Geysen D. F.; Janssen B. Catal. Lett. 1998, 56, 53.
    143. Janiak C.; Lange K. C. H.; Marquardt P. J. Mol. Catal. A: Chem. 2002, 180, 43.
    144. Benner G.S.; Menapoa H.R.; Maly N.A.. German Often 1973, 2,306,435; Chem.Abstr.
    145. Menapace H. R.; Maly N. A.; Wany J. L.; Wideman L. G. Prepr., Div. Pet, Chem., Am. Chem. Soc. 1974, 19, 150.
    146. Brown M.; Menapace H. R.; Maly N. A. US Patent 1975, 3,897,512; Chem.Abstr. 1975, 83, 147105.
    147. Yoo J. S.; Koncos R. US Patent 1972, 2,641,188; Chem. Abstr. 1972, 76,99064.
    148.周科衍;吴棱 应用化学 1987, 4, 17.
    149. Keim W.; Chen Z. X.; Shen Z. Q. Catal. Lett. 1991, 10, 233.
    150. Keim W.; Melton W.; Z. Chen; Z. Hong; Shen Z. J. Catal. 1992, 137, 423.
    151. Brassata I.; Keima W.; Killata S. J. Mol. Catal. A: Chem. 2000, 157, 41.
    152. Bogdanovic B. Adv. Organomet. Chem. 1979, 17, 105.
    153. Onsager O. T.; Wang H.; Blindheim U. Helv. Chim. Acta. 1969, 52, 215
    154. Onsager O.T.; Wang H.: Blindheim U. Helv. Chim. Acta. 1969, 52, 187
    155. Brown S. J.; Clutterbuck L. M.; Masters A. F. Appl. Catal. 1989, 48, 1
    156. Choe S.-B.; Kanai H.; Klabunde K. J. J. Am. Chem. Soc. 1989, 111, 1875.
    157. Mitkova M.; Kurtev K.; Ganev S. Taube R. J. Mol. Catal.: A 1995, 96, 111.
    158. Ziegler K.; Holzkamp E.; Martin H.; Breil H. Angew. Chem. 1995, 67, 541.
    159. Natta G. Angew. Chem. 1956, 68, 393.
    160. Kaminsky W.; Steiger R. Polyhedron. 1988, 7, 2375
    161. Kaminsky W. Macromol. Chem. Phy. 1996, 197, 3907
    162. Brintzinger H. H.; Fisher D.; Mullhaupt R.; Rieger B.; Waymouth R. Angew. Chem. Int. Ed. Engl. 1995, 34, 1143.
    163. John K.L.; Killian C. M.; Brookhart M. J. Am. Chem. Soc. 1995, 117, 6414
    
    
    164. Kallian C. M.; Tempel D. J.; Johnson L. K.; Brookhart M. J. Am,Chem, Soc 1996, 118, 11664
    165. Johnson L.K.; Mecking S.; Brookhart M. J. Am, Chem, Soc 1996, 118, 267
    166. Mecking S.; Johnson L.K.; Wang L.; Brookhart M. J. Am. Chem. Soc. 1998, 120, 888
    167. Pellecchia C.; Zambelli A. Macromomol. Chem. Rapid Commun. 1996, 17, 333
    168. Mclain S.J.; Feldman J. Marcromolecules 1998, 31, 6705.
    169. Svejda S.A.; Brookhart M. J. Am. Chem. Soc. 1996, 118, 11664
    170. Rachita M. J.; Huff R. L.; Bennett J. L.; Brookhart M. J. Polym. Sci. A: Polym. Chem., 2000, 38, 4627
    171. Killian;C.M.;Johnson,L.K.; Brookhart, M. Organometallics 1997, 16, 2005
    172. Brookhart, M. J. Am. Chem. Soc. 1998, 120, 7143;
    173. Gibson,V. C. J. Chem. Commun. 1998, 849.
    174. Svejda S. A.; Brookhart M. Organometallics, 1999, 18, 65.
    175. Qian M.; Wang M.; Zhou B.; He R. Appl. Catal. A: Gen. 2000, 209, 11.
    176. Qian M,; Wang M.; He R. J. Mol. Catal A: Chem. 2000, 160, 243.
    177. Brookhart M.; Small B.L.; Bennett A. M. A. J. Am. Chem. Soc. 1998, 120, 7143.
    178. Britovsek G. J. P.; Gibson V. C.; Kimberley B. S. Chem. Commun. 1998, 849.
    179. Small B. L.; Brookhart M. Macromolecules 1999, 32, 2120.
    180. Britovsek G. J.; Gibson V C. J. Eur. J. Inorg. Chem. 2001, 431.
    181. Nomura K; Warit S Macromolecules 1999, 32, 4732.
    182. Brookhart M.; Small B. L. WO 98/30612.
    183. Rogers J. S.; Bazan G. C.; Sperry C. K. J. Am. Chem. Soc. 1997, 119, 9305.
    184.张玉良;钱明星;何仁 应用化学 2001,18,360.
    185. Wang C.; Youkin T.R.; Grubbs R. H. Organometallics, 1998, 17, 3149.
    186. Youkin T. R.; Grubbs R. H. Science 2000, 287, 460.
    187. Jacobson E. N. Science 2000, 287, 437.
    188. Mecking S. Angew. Chem. Int. Edt. 2002, 41,545.
    189. Carlini C.; Isola M.; Liuzzo V.; Galletti A. M. R.; Sbrana C. Appl. Catal. A: Gen. 2002, 231,307.
    
    
    190. Meneghetti S. P.; Luttz P. J.; Kress J. Organometallics 1999, 18, 2734.
    191. Britovsek G. J. P.; Gibson V. C.; Wass D. F. Angew. Chem. Int. Ed. 1999, 38, 428.
    192. Ittel S. D.; Johnson L. K.; Brookhart M. Chem. Rev. 2000, 100, 1169.
    193. Gibson V. C.; Spitzmesser S. K. Chem. Rev. 2003, 103, 283.
    194.陈金晖;阎卫东;李杨;胡友良 化学通报 2000,(4),1.
    195.陈瑞芳;钱长涛;李杨;邹丰楼 有机化学 2000,20,712.
    196.义建军;赵伟;许学翔;陈伟;景振华 石油化工 2000,29,455.
    197. Imanishi Y.; Naga N. Prog. Polym. Sci. 2001, 26, 1147.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700