用户名: 密码: 验证码:
过渡金属配合物催化乙烯齐聚的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
茂锆(Metallocene)催化剂的发现在金属有机化学、聚
    合物合成等方面开创了一个崭新的领域。Metallocene
    /MAO(甲基铝氧烷)催化体系的活性最高可达到100吨/g
    Zr·h。近年来,后过渡金属催化剂的发现是茂锆催化剂之
    后烯烃聚合的又一次革命,其最高催化活性可达330吨
    /mol Fe·h。齐聚和聚合反应之间有着密切的联系,所以,
    近年来关于Metallocene催化剂用于烯烃齐聚的论文也时
    有报道,但主要是研究茂金属与水解烷基铝催化烯烃齐
    聚,茚锆催化剂与乙基铝催化乙烯齐聚报道很少。后过渡
    金属催化剂与EAO催化乙烯齐聚制备低碳烯烃还未见文
    献报道。
     研究了以Et_2AlCl为助催化剂,主催化剂Ind_2Zr(OAr)_2
    中电子效应的变化对乙烯齐聚的影响。发现当OAr上的
    配体为给电子基团,如Ind_2Zr(OC_6H_4-p-Me)_2/Et_2AlCl催化
    体系,有利于乙烯齐聚反应。当反应温度超过110℃时,
    有部分产物为高聚物。因此选择合适的反应温度十分重
    要。考察了以Ind_2Zr(OC_6H_4-p-Me)_2为主催化剂,助催化
    剂(Et_2AlCl,Et_3Al_2Cl_3,EtAlCl_2,Et_3Al)对反应的影响,
    发现Et_2AlCl对乙烯齐聚具有更好的催化活性和选择性,
    而Et_3Al_2Cl_3和EtAlCl_2在较高的反应温度也没有高聚物
    生成。在最佳反应条件下,Ind_2Zr(OC_6H_4-p-Me)_2/Et_2AlCl
    催化体系的催化活性为1666g齐聚物/g Zr·h,C_(4-10)烯烃
    选择性为92.7%,C_(4-10)直链α-烯烃选择性为86.0%。
    
    
     大连理工大学博」:学位论文
     研究了后过渡金属铁、钻的二亚胺配合物与乙基铝氧
    烷(EAO)对乙烯齐聚的催化作用。考察了不同的铁二亚胺
    配 合 物(Fesalell,Fesalphen,FeCI;(PhCH二o-N-C。H;-
    N-CFIPh),FeCI。(PhCH-NCH。Cll。N-CHPh))对乙烯齐聚
    活性和选择性的影响。反应温度对乙烯齐聚有很大影响,
    同时AI”e 的比例、反应时间.对乙烯齐聚有一定的影响。
    当反应温度为200叮 时,催化剂FeCI入PhCH-o-N-C。H厂
    N一CHPll )日 催化活性为1.35X10’g齐聚物/XOI FO·11,C。;*
    烯烃的选择性为85.so/o,C人;。直链a-烯烃选择性为69.5%。
    在铁二亚胺催化剂中加入二苯基磷乙酸钠双齿配体使催化
    活性和低碳烯烃选择性有一定提高,但直链a-烯烃选择性
    下降。在研究铁二亚胺配合物催化剂的基础上又考察了钻
    二 亚 胺 配 合 物(COCI。(PhCH-O-N-C。H。-N-CHP12人
    COCI。(PllCH二CH。CHp二CHPh),COCI。(Ph人二O-N-C。H。-
    N-CPll*)与EAO对催化乙烯齐聚的影响。反应温度、AI/C。
    比和反应时间对催化活性和选择性都有较大的影响。当反
    应温度为200Y时,催化齐COCI。(Ph。C=O-N-C。H。-N一CPh。)/
    EAO的活性为 1.30xI0’g齐聚物/mol Co七,C。;。烯烃的选
    择‘hi{ f] 9 4.4%,C。;。直链 a-烯烃选择性为 8 7.2%。体积较
    大的配体有利于得到较高选择性的直链a、烯烃。
     考察了铁、钻和镍的单齿磷配合物与EAO 催化乙烯
    齐聚的性能,当反应温度为 2 0 0℃ 时,催化剂
    CoCI。(PPI。小/EAO* 活性为1.70xl0’齐聚物g/mol Co·h,
    C。;。烯烃的选择性为 91.l%,直链 C。;。a-烯烃选择性为
    70.7%.
The discovery of the metallocene MAO catalysts has
     broken a new ground in organometallics chemistry and
     polymer synthesis. The activity of zirconocene with MAO
     for polymerization reaches 1 00 tons of ethylene per gram of
     zirconium per hour. In recent years, the discovery of late
     transition metal catalysts led to new revolution on polymer
     domain after metallocene catalysts. The activity of iron
     complex with MAO for polymerization is as high as 330 tons
     of ethylene per mole of iron per hour. There is a close
     relationship between polymerization and oligomerization.
     We studied the oligomerization of ethylene catalyzed by
     indyl zirconium catalysts, including the effect of reaction
     temperature, aging temperature, main catalysts, cocatalysts
     and reaction time. Ethylene oliogomerization catalyzed by
     late transition metal catalysts has, also been researched.
    
     The effect of main catalysts on ethylene
     oligomerization has been studied. The catalytic activities of
     Ind2Zr(OAr)2/Et2AICF were moderate and they displayed
     high selectivities to low carbon linear x-olefins under
     optimal reaction conditions. The precatalyst with an electron
     donating group is better than that without electron donating
     group and indyl group is also better than cyclopentanyl
     group on ethylene oligonierization. When temperature
    
    
    beyond l 10"C there was part of polymer. So it is important to
    select suitabIe reaction temperature, at this temperature the
    catalysts should have higher activities and no po1ymer is
    formed. Under optimal reaction conditions the activity of
    Ind,Zr(OC,H.-p-Me),/Et,AICl was l 666 g/g Zr.h with
    selectivity of 92.7% for C.-,, olefins and 86.0% for C.-,,
    l ine ar a- o l e fi ns.
    The effect of cocata1ysts on ethylene oligomerization
    was also discussed. Et,AlCl is a better cocatalyst than
    Et,Al,Cl,, EtAlCl, and Et,Al, but with cocatalysts Et,Al,Cl,
    and EtAlCI, no polymer is formed even at the temperature of
    l 1 0'C.'
    The reaction conditions have great effect on the activity
    and selectivity of ethylene oIigomerization. When reaction
    temperature is 90"C and aging temperature is 80"C, we
    obtained the higher activity and highest selectivity of
    o l i g o m e r s.
    The catalytic properties of a series of Fe(II) diimine
    co mpl exe s (dii mine=N,N '-o -p heny l enebi s(sal icylideneamina-
    to), N,N 'ethylene-bis(sal icylideneaminato), N,N '-o-phen-
    yl enebi sbenzal, N,N '-ethyl enebi sbenzal) in combination
    with EAO (ethylaluminoxane) for ethylene o ligomerization
    have been investigated. Treatment of the iron(II) complexes
    with EAO in toluene generates active catalytic systems in
    silll that oligomerize ethylene to low-carbon olefins. The
    
    effects of reaction temperature, ratios of A1/Fe and reaction
    time on catalytic activity and product distribution have been
    studied. The activity of complex FeCl,(PhCH=o-NC,H.N
    =CIuIPh) with EAO at 200"C is 1 .3 5xl0' g oligomers/mo1 Fe'h.
    The seIectivity of C.-,, olefins is 85 .5% and selectivity of
    C^-,, lillear a-o1efins is 69.5%. When the P-O 1igand was
    added, the activity and the selectivity of C#-,, olefins of iron
    di imine complexes/EAO were increased for ethy1ene
    oligomerization, but the seIectivity of C#-,, Iinear a-oIefins
    was decreased. The catalytic properties of a series of Co(II)
    di imine complexes Co(N"N)Cl, {N"N = N,N'-o-pheny1ene-
    bisbenzaI; NAN = N,N'-ethylenebisbenzal; NrtN = N,N'-o-
    plleny1eneb is(di phenyl n1ethy1 ene)] in combinati on with EAO
    (ethylaluminoxa11e) as cocatalyst for ethylene oligomeriza-
    tion have been investigated. Treatment of the cobalt(II)
    diin1ine complexes with EAO in toluene generated active
    catalysts in silll tl1at are capabIe of oligomerizing ethylene
    to Iow-carbon oIefins. Changing reaction conditions, such as
    reaction temperat
引文
1 张明澄 石油化工 1991,20:779
    2 Al-Jarrallah A.M., Catal. Today, 1992, 14(1): 42
    3 Lappin G., Sauer J., "α-olefins applications handbook", Marcel Deklker,New York, 1989
    4 Kirk Othmer, "Encyclopedia of Chemical Technology",3rd, Wileyinterscience, 1981, 16:482
    5 Sherwood M., Chemistry and Industry, Dec. 994(1982)
    6 Skupinska J., Chem. Rev., 1991, 91:613
    7 Christoffers J., Bergman R. G., Inorg. Chim. Acta, 1998, 270:20
    8 Heijdea H., Hessen B., Orpen A. G., 1998, 120:1112
    9 Cavell R. G., Creed B., Gelmini L., Inorg. Chem., 1998, 37:757
    10 Beuken E. K., Smeets W. J. J., Feringa B. L., J. Chem. Soc., Chem. Commun., 223(1998)
    11 Killian C. M., Johnson L. K., Brookhart M., Organometallics, 1997, 16:2005
    12 Small B. L., Brookhart M., J. Am. Chem. Soc., 1998, 120:7143

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700