用户名: 密码: 验证码:
中国北方地区季节性积雪中黑碳的观测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
黑碳气溶胶作为大气中首要的吸收性气溶胶成分,沉降到冰雪表面后,能够显著吸收太阳辐射,减小积雪反照率,加速冰雪融化,减小地表反照率,在大气和地表能量的收支乃至全球气候变化中所起的重要作用,使其成为造成全球变暖的一个潜在因子。
     本论文介绍了2010年和2012年冬季的两次野外观测实验的采样点和积雪分布状况,分析了积雪中等效黑碳含量及其分布;利用HYSPLIT-4后向轨迹模式分析了采样点在11月~2月的逐日后向轨迹,并对轨迹进行聚类分析,得到了各个采样点主要的污染物传输路径。
     2010年冬季的野外观测试验共获得46个采样点的积雪样品,其中祁连山地区和内蒙古草原地区季节性积雪中主要的吸收性杂质为沙尘,东北地区主要的吸收性杂质为黑碳。在内蒙古草原地区,表层积雪中等效黑碳含量大多在200~700ngg-1之间,表层以下积雪中平均等效黑碳含量在150~900ng g-’之间;在东北北部的森林地区,积雪中等效黑碳含量低于200ngg-1,最北端采样点积雪中的平均等效黑碳含量仅为30ngg-1,与西伯利亚北极沿岸积雪中的黑碳含量相当;在东北南部的工业区,表层积雪中等效黑碳含量在400-1000ngg-1,受到局地工业和人类活动排放污染物的影响;祁连山地区积雪稀少,积雪中存在大量沙尘,表层积雪中等效黑碳含量在100-750ngg-1之间。东北区域的采样点20-40的表层积雪中等效黑碳含量随纬度的增加而显著降低,这一趋势表明,我国东北地区排放的黑碳气溶胶大部分在我国境内被湿沉降清除,只有很小部分可能被向北输送到北极,对于北极地区积雪中黑碳的贡献有限。
     2010年野外观测试验采样点中,内蒙古草原地区的污染物传输路径可分为北路、西北路和西路三条路径,随着经度增加,西路路径所占比例逐渐减少,西北路径所占比例增加;东北北部地区主要的传输路径来自西侧的西西伯利亚平原,来自北侧的局地污染物输送会对积雪中黑碳含量有较大影响:东北南部地区主要的传输路径来自于中西伯利亚高原北部和西部,来自南侧的输送路径虽然所占比例不大,但所经过地区排放的大量污染物会对积雪中黑碳含量有很大贡献。
     2012年野外观测试验在新疆北部的32个采样点进行了采样,积雪中主要的吸收性杂质为黑碳;天山地区受到周边城市冬季人类活动和工业排放的影响,积雪中等效黑碳含量主要在30~200ngg-1之间,天山一号冰川附近采样点积雪中等效黑碳含量(20~30ngg-1)能够代表天山区域积雪中黑碳的背景值;阿尔泰地区积雪中等效黑碳含量主要在20-200ngg-1之间,其中最北部采样点积雪中的等效黑碳含量仅为20ngg-1,同加拿大极区、阿拉斯加极区以及Svalbard等地积雪中黑碳含量相当;丘陵地区积雪中等效黑碳含量大多低于100ngg-1。新疆北部积雪中的黑碳含量与海拔高度呈负相关的关系,海拔高度越高,积雪中黑碳含量越低;海拔高度可能是影响积雪中黑碳含量的一个因素。
     新疆北部的采样点中,天山地区和丘陵地区主要的污染物传输路径为西南路径;阿尔泰地区的后向轨迹比较分散,西南路径和西方路径所占比例相当;在丘陵地区和阿尔泰地区,局地轨迹所占比例很大(50%以上),表明局地排放的污染物会对积雪中等效黑碳含量存在很大的贡献。
Black carbon (BC) particles are the most absorptive aerosol in the atmosphere. When BC particles deposit into snow and ice, they can significantly absorb solar radiation and reduce the albedo of snow and ice, and consequently accelerate the melt of snow and ice and reduce the surface albedo. BC particles have important impacts on the energy budget in the global climate system, making BC as a potential factor contributing to the global warming.
     Two field campaigns have been carried out across northern China covering46sites during the winter of2010and40sites during the winter of2012. The equivalent BC content in the seasonal snow and its spatial distribution are investigated. The daily back trajectories of each site are simulated with the HYSPLIT-4model from November to February. The main transport paths of pollution are analyzed at each site with cluster analysis of the back trajectories.
     Snow samples were collected at46sites in2010. The main absorbing impurity in the seasonal snow was dust at Qilian Mountains and Inner Mongolia and was black carbon at Northeast China. Across Inner Mongolia, the equivalent BC contents (mass fractions) were mostly between200and700ng g-1in the surface snow and were between150to900ng g-1under the surface layer. The equivalent BC contents in snow across the northern forest part of the Northeast China are less than200ng g-1, with a value of30ng g-1at the most northern site which was comparable to those of the Siberian Arctic. Across the south Northeast China, the equivalent BC contents in snow were influenced by the local pollution from industry and human activities, with the values from400to1000ng g-1in the surface snow. The snow at Qilian Mountains was patchy and thin with equivalent BC contents between100-750ng g-1, dominated by large amount of dust. The equivalent BC content in the surface snow at sites20~40decreased as the latitudes increasing, which showed that most BC aerosols emitted from Northeast China were deposited by precipitation within China and little can be transported to Arctic.
     In the2010field campaign, the pollution could be transported to the sites across the Inner Mongolia though three paths, i.e. north, northwest and west. The influences of west paths decreased but northwest paths increased as the longitudes of sites increase. The main path of sites across northern Northeast China was from West Siberian Plain, and the local pollution from north had large influence on the BC content in snow. Across southern Northeast China, the pollution was mainly from Central Siberian Plateau and the pollution from the south could have significant impacts on BC content even with a less percentage.
     Snow samples were collected at32sites in northern Xinjiang during the winter of2012. The main absorbing impurity in seasonal snow was BC. The equivalent BC contents across Tianshan Mountains ranged from30to200ng g-1, with influence from the local human activities and industry emission. The equivalent BC content in snow of20ng g-1at site near Tianshan No.1Glacier can be regarded as the background value across Tianshan Mountains. Across the Altai Mountains in the north, equivalent BC contents in snow ranged from20to200ng g-1, with the lowest value of20ng g-1at the most site which was comparable to those of Canadian Arctic, Alaskan Arctic and Svalbard. The equivalent BC contents were mostly less than100ng g-1across the hilly areas between the two mountain ranges. The BC content of seasonal snow in northern Xinjiang showed a negative correlation with the altitudes of the sites and decreased as the altitudes increase, indicating that the altitudes of sites may be one factor influencing the BC mass fractions.
     The main transport path of pollution across Tianshan Mountains and hilly areas was from the southwest. Across Altai Mountains, the transport paths from the southwest and west were roughly equivalent. The local back trajectories had large percentage; mostly more than50%across hilly areas and Altai Mountains, indicating that the pollution from local emission could have significant impacts on the BC content of seasonal snow in those regions.
引文
Ackerman, A. S., O. B. Toon, D. E. Stevens, et al. (2000), Reduction of tropical cloudiness by soot, Science,288 (5468),1042-1047, doi:10.1126/science.288.5468.1042.
    Alexander D.T.L., P. A. Crozier, and J. R. Anderson (2008), Brown carbon spheres in East Asian outflow and their optical properties, Science,321,833-836.
    Aoki, T., K. Kuchiki, L. Niwano, et al. (2011), Physically based snow albedo model for calculating broadband albedos and the solar heating profile in snowpack for general circulation models, J. Geophys. Res.,116(D11):D11114.
    Bond, T. C., C. Zarzycki, M. G. Flanner, et al. (2011), Quantifying immediate radiative forcing by black carbon and organic matter with the Specific Forcing Pulse, Atmos. Chem. Phys.,11 (4), 1505-1525, doi:10.5194/acp-11-1505-2011.
    Bond, T. C., D. G. Streets, K. F. Yarber, et al. (2004), A technology-based global inventory of black and organic carbon emissions from combustion, J. Geophys. Res.,109 (D14),203, doi: 10.1029/2003 JD003697.
    Bond, T. C., S. J. Doherty, D. W. Fahey, et al. (2013), Bounding the role of black carbon in the climate system:A scientific assessment, J. Geophys. Res., doi:10.1002/jgrd.50171.
    Cadle, S. H., and J. M. Dasch (1988), Wintertime concentrations and sinks of atmospheric particulate carbon at a rural location in northern Michigan, Atmos. Environ.,22(7),1373-1381.
    Chen, W. T, Y. H. Lee, P. J. Adams, et al. (2010), Will black carbon mitigation dampen aerosol indirect forcing?, Geophys. Res. Lett.,37, L09801, doi:10.1029/2010GL042886.
    Chung, S. H., and J. H. Seinfeld (2005), Climate response of direct radiative forcing of anthropogenic black carbon, J. Geophys. Res.,110 (D11),102, doi:10.1029/2004JD005441.
    Chung, C. E., V. Ramanathan, and J. T. Kiehl (2002), Effects of the south Asian absorbing haze on the northeast monsoon and surface-air heat exchange, J. Climate,15 (17),2462-2476.
    Chylek, P., V. Srivastava, L. Cahenzli, et al. (1987), Aerosol and graphitic carbon content of snow, J. Geophys. Res.,92 (D8),9801-9809, doi:10.1029/JD092iD08p0980.
    Chylek, P., L. Kou, B. Johnson, et al. (1999), Black carbon concentrations in precipitation and near surface air in and near Halifax, Nova Scotia, Atmos. Environ.,33,2269-2277.
    Clarke, A. D., and K. J. Noone (1985), Soot in the Arctic snowpack-A cause for perturbations in radiative transfer, Atmos. Environ.,19 (12),2045-2053, doi:10.1016/0004-6981(85)90113-1.
    Conway, H., A. Gades, and C. F. Raymond (1996), Albedo of dirty snow during conditions of melt, Water Resour. Res.,32 (6),1713-1718.
    Dasch, J. M., and S. H. Cadle (1989), Atmospheric carbon particles in the Detroit urban area: Wintertime sources and sinks, Aerosol Sci. Technol.,10,236-248.
    Doherty, S. J., S. G. Warren, T. C. Grenfell, et al. (2010), Light-absorbing impurities in Arctic snow, Atmos. Chem. Phys.,10(23),11647-11680, doi:10.5194/acp-10-11647-2010.
    Feingold, G., H. L. Jiang, and J. Y. Harrington (2005), On smoke suppression of clouds in Amazonia, Geophys. Res. Lett.,32 (2),804, doi:10.1029/2004GL021369.
    Flanner, M. G., C. S. Zender, J. T. Randerson, et al. (2007), Present-day climate forcing and response from black carbon in snow, J. Geophys. Res.,112 (D11),202, doi: 10.1029/2006JD008003.
    Flanner, M. G., C. S. Zender, P. G. Hess, et al. (2009), Springtime warming and reduced snow cover from carbonaceous particles, Atmos. Chem. Phys.,9 (7),2481-2497, doi: 10.5194/acp-9-2481-2009.
    Forsstrom, S., J. Strom, C. A. Pedersen, et al. (2009), Elemental carbon distribution in Svalbard snow, J. Geophys. Res.,114 (D19),112, doi:10.1029/2008JD011480.
    Forster, P., V. Ramaswamy, P. Artaxo, et al. (2007), Changes in atmospheric constituents and in radiative forcing, in Climate Change 2007:The Physical Science Basis. Contribution of Working Group Ⅰ to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change edited by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, and H. L. Miller, Cambridge University Press, New York, NY.
    Fung, K. (1990), Particulate carbon speciation by MnO2 oxidation, Aerosol Sci. Technol.,12, 122-127.
    Ghan, S. J., X. Liu, R. C. Easter, et al. (2012), Toward a minimal representation of aerosols in climate models:Comparative decomposition of aerosol direct, semidirect, and indirect radiative forcing, J. Climate,25 (19),6461-6476, doi:10.1175/JCLI-D-11-00650.1.
    Grenfell, T. C., B. Light, and L. Sturm (2002), Spatial distribution and radiative effects of soot in the snow and sea ice during the SHEBA experiment, J. Geophys. Res.,2002,107(C10):8032.
    Grenfell, T. C., D. K. Perovich, and J. A. Ogren (1981), Spectral albedos of an alpine snowpack, Cold Reg. Sci. Technol.,4,121-127.
    Groblicki, P. J., G. T. Wolff, and R. J. Countess (1981), Visibility-reducing species in the Denver "brown cloud"-- Ⅰ. Relationships between extinction and chemical composition, Atmos. Environ.,15 (12),2473-2484.
    Hansen, J., and L. Nazarenko (2004), Soot climate forcing via snow and ice albedos, P. Natl. Acad. Sci. USA,101 (2),423-428, doi:10.1073/pnas.2237157100.
    Hansen, J., M. Sato, and R. Ruedy (1997), Radiative forcing and climate response, J. Geophys. Res.,102 (D6),6831-6864.
    Hansen, J. E., M. Sato, R. Ruedy, et al. (2000), Global warming in the twenty-first century:An alternative scenario, P. Natl. Acad. Sci. USA,97 (18),9875-9880.
    Hansen, J., M. Sato, R. Ruedy, et al. (2005), Efficacy of climate forcings, J. Geophys. Res.,110 (D18), D18104, doi:10.1029/2005JD005776.
    Hansen J. E, S. Makiko (2001), Trends of measured climate forcing agents. P. Natl. Acad. Sci. USA,98(26):14778-14783.
    Hill, A. A., and S. Dobbie (2008), The impact of aerosols on non-precipitating marine stratocumulus. Ⅱ:The semi-direct effect, Quart J. Roy. Meteor. Soc.,134 (634),1155-1165, doi: 10.1002/qj.277.
    Horvath H. (1993), Atmospheric light absorption:a review. Atmos. Environ.,27A,3,293-317, doi: 10.1016/0960-1686(93)90104-7.
    IPCC (2007), Climate Change 2007:The Physical Science Basis. Contribution of Working Group Ⅰ to the Fourth Assessment, Report of the Intergovernmental Panel on Climate Change,996 pp., Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA.
    Isaksen, I. S. A., C. Granier, G. Myhre, et al. (2009), Atmospheric composition change: Climate-Chemistry interactions, Atmos. Environ.,43 (33),5138-5192, doi:10.1016/j.atmosenv.2009.08.003.
    Jacobson, M. Z. (2001), Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature,409,695-697.
    Jacobson, M. Z. (2004), Climate response of fossil fuel and biofuel soot, accounting for soot's feedback to snow and sea ice albedo and emissivity, J. Geophys. Res.,109 (D21), D21201, doi:10.1029/2004 JD004945.
    Johnson, B. T., K. P. Shine, and P. M. Forster (2004), The semi-direct aerosol effect:Impact of absorbing aerosols on marine stratocumulus, Quart J. Roy. Meteor. Soc.,130 (599),1407-1422, doi:10.1256/qj.03.61.
    Jones, A., J. M. Haywood, and O. Boucher (2007), Aerosol forcing, climate response and climate sensitivity in the Hadley Centre climate model, J. Geophys. Res.,112 (D20),211, doi:10.1029/2007JD008688.
    Koch, D., M. Schulz, S. Kinne, et al. (2009a), Evaluation of black carbon estimations in global aerosol models, Atmos. Chem. Phys.,9 (22),9001-9026, doi:10.5194/acp-9-9001-2009.
    Koch, D., S. Menon, A. Del Genio, et al. (2009b), Distinguishing aerosol impacts on climate over the past century, J. Climate,22 (10),2659-2677, doi:10.1175/2008jcli2573.1.
    Koch, D., Y. Balkanski, S. E. Bauer, et al. (2011), Soot microphysical effects on liquid clouds, a multi-model investigation, Atmos. Chem. Phys.,11 (3),1051-1064, doi: 10.5194/acp-11-1051-2011.
    Kristjansson, J. E. (2002), Studies of the aerosol indirect effect from sulfate and black carbon aerosols, J. Geophys. Res.,107 (D15),4246, doi:10.1029/2001 JD000887.
    Lau, K. M., M. K. Kim, and K. M. Kim (2006), Asian summer monsoon anomalies induced by aerosol direct forcing:The role of the Tibetan Plateau, Climate Dyn.,26 (7-8),855-864, doi: 10.1007/s00382-006-0114-z.
    McFarquhar, G. M., and H. L. Wang (2006), Effects of aerosols on trade wind cumuli over the Indian Ocean:Model simulations, Quart J. Roy. Meteor. Soc.,132 (616),821-843, doi: 10.1256/qj.04.179.
    Medalia, A. I., and F. A. Heckman (1969), Morphology of aggregates--Ⅱ. Size and shape factors of carbon black aggregates from electron microscopy, Carbon,7,569-582.
    Menon, S., and A. D. Genio (2007), Evaluating the impacts of carbonaceous aerosols on clouds and climate, in Human-Induced Climate Change:An Interdisciplinary Assessment edited by M. E. Schlesinger, H. Kheshgi, J. B. Smith, F. C. D. L. Chesnaye, J. M. Reilly, T. Wilson and C. Kolstad,34-48 pp., Cambridge University Press.
    Ming, J., C. D. Xiao, H. Cachier, et al. (2009), Black Carbon (BC) in the snow of glaciers in west China and its potential effects on albedos, Atmos. Res.,92:114-123.
    Myhre, G., T. F. Berglen, M. Johnsrud, et al. (2009), Modelled radiative forcing of the direct aerosol effect with multi-observation evaluation, Atmos. Chem. Phys.,9,1365-1392, doi: 10.5194/acp-9-1365-2009.
    Perovich, D. K., T. C. Grenfell, B. Light, et al. (2009), Transpolar observations of the morphological properties of Arctic sea ice. Geophys. Res.,2009,114(C1):C00A04.
    Qian, Y., I. Gustafson, L. Y. R. Leung, et al. (2009), Effects of soot-induced snow albedo change on snowpack and hydrological cycle in western united states based on weather research and forecasting chemistry and regional climate simulations, J. Geophys. Res.,114 (D03), D03108, doi:10.1029/2008JD011039.
    Qian, Y., M. G. Flanner, L. R. Leung, et al. (2011), Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate, Atmos. Chem. Phys.,11,1929-1948, doi:10.5194/acp-11-1929-2011.
    Ramanathan V. (2010), Interactive comment on "Quantifying immediate radiative forcing by black carbon and organic matter with the Specific Forcing Pulse" by T.C. Bond, et al. Atmospheric Chemistry and Physics Discussions,10, C6227-C6241.
    Ramanathan, V., and G. Carmichael (2008), Global and regional climate changes due to black carbon, Nature Geosci.,1 (4),221-227, doi:10.1038/ngeo156.
    Ramanathan, V., and Y. Y. Xu (2010), The Copenhagen Accord for limiting global warming: Criteria, constraints, and available avenues, P. Natl. Acad. Sci. USA,107 (18),8055-8062, doi:10.1073/pnas.1002293107.
    Randles, C. A., and V. Ramaswamy (2008), Absorbing aerosols over Asia:A Geophysical Fluid Dynamics Laboratory general circulation model sensitivity study of model response to aerosol optical depth and aerosol absorption, J. Geophys. Res.,113 (D21),203, doi:10.1029/2008JD010140.
    Reddy, M. S., and O. Boucher (2007), Climate impact of black carbon emitted from energy consumption in the world's regions, Geophys. Res. Lett.,34, L11802, doi: 10.1029/2006GL028904.
    Rosen, H., A. D. A. Hansen, L. Gundel, et al. (1978), Identification of the optically absorbing component in urban aerosols, Appl. Opt.,17 (24),3859-3861.
    Sato, M., J. Hansen, D. Koch, et al. (2003), Global atmospheric black carbon inferred from AERONET, P. Natl. Acad. Sci. USA,100 (11),6319-6324, doi:10.1073/pnas.0731897100.
    Schwarz, J. P., R. S. Gao, D. W. Fahey, et al. (2006), Single-particle measurements of midlatitude black carbon and light-scattering aerosols from the boundary layer to the lower stratosphere, J. Geophys. Res., 111(D16),207, doi:10.1029/2006JD007076.
    Sergent, C., C. Leroux, E. Pougatch, et al. (1998), Hemispherical directional reflectance measurements of natural snow:Comparison with adding-doubling modeling, Ann. Glaciol. Soc.,26,59-63.
    Sergent, C., E. Pougatch, and M. Sudul (1993), Experimental investigation of optical snow properties, Ann. Glaciol.,17,281-287.
    Slowik, J. G., K. Stainken, P. Davidovits, et al. (2004), Particle morphology and density characterization by combined mobility and aerodynamic diameter measurements. Part 2: Application to combustion-generated soot aerosols as a function of fuel equivalence ratio, Aerosol Sci. Technol.,38,1206-1222.
    Smith, L. C. and S. R. Stephenson (2013), New Trans-Arctic shipping routes navigable by midcentury, P. Natl. Acad. Sci. USA, doi:10.1073/pnas.1214212110
    Streets, D. G., K. F. Yarber, J. H. Woo, et al. (2003), Biomass burning in Asia:Annual and seasonal estimates and atmospheric emissions, Global Biogeochem. Cycles,17 (4),1099, doi:10.1029/2003gb002040.
    Turco, R. P., O. B. Toon, T. P. Ackerman, et al. (1983), Nuclear winter:Global consequences of multiple nuclear explosions, Science,222 (4630),1283-1292.
    UNEP and WMO (2011), Integrated assessment of black carbon and tropospheric ozone, By the United Nations Environment Programme and World Meteorological Organization, Available on the Internet at http://www.unep.org/dewa/Portals/67/pdf/BlackCarbon_report.pdf.
    Warren, S. G. (1982), Optical-properties of snow, Rev. Geophys.,20 (1),67-89.
    Warren, S. G., and A. D. Clarke (1990), Soot in the atmosphere and snow surface of Antarctica, J. Geophys. Res.,95 (D2),1811-1816.
    Warren, S. G., and W. J. Wiscombe (1980), A model for the spectral albedo of snow. II:Snow containing atmospheric aerosols, J. Atmos. Sci.,37 (12),2734-2745.
    Warren, S. G., and W. J. Wiscombe (1985), Dirty snow after nuclear-war, Nature,313 (6002), 467-470.
    Xu, B. Q., J. J. Cao, D. R. Joswiak, et al. (2012), Post-depositional enrichment of black soot in snow-pack and accelerated melting of Tibetan glaciers, Environ. Res. Lett.,7,014002.
    Xu, B. Q., T. D. Yao, X. Q. Liu, et al. (2006), Elemental and organic carbon measurements with a two-step heating-gas chromatography system in snow samples from the Tibetan Plateau, Ann. Glaciol.,43,257-262.
    明镜,效存德,杜振彩,等.中国西部雪冰中的黑碳及其辐射强迫.气候变化研究进展,2009,5(6):328-335.
    石广玉,王标,张华,等.大气气溶胶的辐射与气候效应.大气科学,2008,32(4):826-840.
    秦世广,汤洁,温玉璞,黑碳气溶胶及其在气候变化研究中的意义.气象,2001,27(11):3-7.
    Brankov, E., S. Trivikrama, and P. Steven (1998), A trajectory-clustering-correlation methodology for examining the long-range transport of air pollutants, Atmos. Environ.,32:1525-1534.
    Clarke, A. D., and K. J. Noone (1985), Soot in the Arctic snowpack-A cause for perturbations in radiative transfer, Atmos. Environ.,19 (12),2045-2053, doi:10.1016/0004-6981(85)90113-1.
    Doherty, S. J., S. G. Warren, T. C. Grenfell, et al. (2010), Light-absorbing impurities in Arctic snow, Atmos. Chem. Phys.,10(23),11647-11680, doi:10.5194/acp-10-11647-2010.
    Dorling, S. R., T. D. Davies, and C. E. Pierce (1992), Cluster analysis:a technique for estimating the synoptic meteorological controls on air and precipitation chemistry-method and applications, Atmos. Environ.,26A (14):2575-2581.
    Draxler, R. R., and G. D. Hess (1998), An overview of HYSPLIT-4 modeling system for trajectories, dispersion and deposition, Aust. Met. Mag.,47:295-308.
    Draxler, R. R., and G. D. Hess (2004), Description of the HYSPLIT-4 modeling system, NOAA technical memorandum ERL ARL-224.
    Grenfell, T. C., B. Light, and L. Sturm (2002), Spatial distribution and radiative effects of soot in the snow and sea ice during the SHEBA experiment, J. Geophys. Res.,2002,107(C10):8032.
    Grenfell, T. C., S. G.Warren, and P. C. Mullen (1994), Reflection of solar-radiation by the Antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths, J. Geophys. Res., 99(D9):18669-18684.
    Hegg, D. A., S. G. Warren, T. C. Grenfell, et al. (2010), Sources of light-absorbing aerosol in arctic snow and their seasonal variation, Atmos. Chem. Phys,10:10923-10938, doi:10.5194/acp-10-10923-2010.
    Hegg, D. A., S. G. Warren, T. C. Grenfell, et al. (2009), Source Attribution of Black Carbon in Arctic Snow, Environ. Sci. Technol.,43(11):4016-4021.
    Hurley, P. (1994), PARTPUFF-A Lagrangian particle-puff approach for plume dispersion modeling applications, J. App. Meteoro.,33:285-294.
    Wang, X., S. J. Doherty, and J. P. Huang (2013), Black carbon and other light-absorbing impurities in snow across Northern China, J. Geophys. Res.,118, doi:10.1029/2012JD018291.
    Warren, S. G., and A. D. Clarke (1990), Soot in the atmosphere and snow surface of Antarctica, J. Geophys. Res.,95 (D2),1811-1816.
    Huang, J. P., Q. Fu, W. Zhang, et al. (2011), Dust and black carbon in seasonal snow across Northern China, Bull. Amer. Meteor. Soc.,92,175-181.
    Wang, X., S. J. Doherty, and J. P. Huang (2013), Black carbon and other light-absorbing impurities in snow across Northern China, J. Geophys. Res.,118, doi:10.1029/2012JD018291.
    Zhang, R., D. Hegg, J. Huang, et al. (2013), Source attribution of light-absorbing impurities in seasonal snow across northern China, Atmos. Chem. Phys. Discuss.,13,2155-2177.
    车涛,李新,1993-2002年中国积雪水资源时空分布与变化特征.冰川冻土,2005,27(1):64-67.
    严晓瑜,赵春雨,任国玉等,1962--2008年辽宁省积雪变化特征.气象与环境学报,2012,28(2):34-39.
    Ming, J., C. D. Xiao, H. Cachier, et al. (2009), Black Carbon (BC) in the snow of glaciers in west China and its potential effects on albedos, Atmos. Res.,92:114-123.
    Liston, G., and M. Sturm (2004), The role of winter sublimation in the Arctic moisture budget, Nord. Hydrol.,35,325-34.
    Wu, Z., H. Zhang, C. M. Krause, et al. (2010), Climate change and human activities:a case study in Xinjiang, China Climatic Change,99,457-72.
    Doherty, S. J., S. G. Warren, T. C. Grenfell, et al. (2010), Light-absorbing impurities in Arctic snow, Atmos. Chem. Phys.,10(23),11647-11680, doi:10.5194/acp-10-11647-2010.
    明镜,效存德,杜振彩,等.中国西部雪冰中的黑碳及其辐射强迫.气候变化研究进展,2009,5(6):328-335.
    Doherty, S. J., S. G. Warren, T. C. Grenfell, et al. (2010), Light-absorbing impurities in Arctic snow, Atmos. Chem. Phys.,10 (23),11647-11680, doi:10.5194/acp-10-11647-2010.
    Hegg, D. A., S. G. Warren, T. C. Grenfell, et al. (2010), Sources of light-absorbing aerosol in arctic snow and their seasonal variation, Atmos. Chem. Phys,10:10923-10938, doi:10.5194/acp-10-10923-2010.
    Hegg, D. A., S. G. Warren, T. C. Grenfell, et al. (2009), Source Attribution of Black Carbon in Arctic Snow, Environ. Sci. Technol.,43(11):4016-4021.
    IPCC (2007), Climate Change 2007:The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment, Report of the Intergovernmental Panel on Climate Change,996 pp., Cambridge University Press, Cambridge, United Kingdom, and New York, NY, USA.
    Wang, X., S. J. Doherty, and J. P. Huang (2013), Black carbon and other light-absorbing impurities in snow across Northern China, J. Geophys. Res.,118, doi:10.1029/2012JD018291.
    Warren, S. G. (1982), Optical-properties of snow, Rev. Geophys.,20 (1),67-89.
    Zhang, R., D. Hegg, J. Huang, et al. (2013), Source attribution of light-absorbing impurities in seasonal snow across northern China, Atmos. Chem. Phys. Discuss.,13,2155-2177.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700