用户名: 密码: 验证码:
北京大气臭氧浓度变化特征及其形成机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
臭氧在全球和区域大气环境变化中扮演着重要角色,它不仅对地-气辐射收支系统产生重要影响,而且作为城市污染大气中的首要污染物,有着显著的环境效应。本研究以北京城区地面观测资料为基础,对大气中臭氧及其相关前体物NOx、CO和VOCs浓度及气象要素的分布特征进行了讨论;分析了臭氧等污染气体的相互关系,就气象要素对污染物浓度影响做了比较;并运用模型对光化学污染过程展开研究,主要研究内容如下:
     (1)北京市大气中O_3浓度较高,并呈季节性波动,大气光化学污染以夏季最为严重。受太阳紫外辐射和城市交通的影响,城市大气中O_3和OX(O_3+NO_2)浓度在午后15:00左右出现峰值,NOx呈双峰态日变化,在07:00和23:00左右出现峰值。NO_2的光解速率夏季最大,在正午前后出现目最大值。NOx浓度存在100×10~(-9)(体积分数)的“分界点”,NOx低浓度时以NO_2为主,NOx高浓度时NO占大部分。OX区域贡献和局地贡献存在明显的季节变化,前者主要受区域背景O_3的影响,在春季最大,后者主要受局地NOx光化学反应的制约,在夏季最强,同时OX组分呈现显著的昼夜差异。受城市车流量的变化,周末NOx浓度高于工作日,O_3浓度周末与工作日白天差异较小,而夜晚O_3浓度工作日高于周末。
     (2)北京地区大气臭氧总量平均为329DU,并呈冬春季较高,夏秋季较低的季节变化规律,到达地面的紫外辐射呈现相反的变化趋势。受城区大气污染的影响,地面处的紫外辐射量大幅减少(最大50%),且在夏季波动较大。云和污染物对紫外辐射的影响要大于总辐射,紫外辐射衰减约为总辐射衰减的2倍。城市低层大气中O_3和NOx浓度的增加是造成紫外辐射衰减的重要原因,午后O_3浓度与紫外辐射衰减相关系数为0.70。O_3浓度变化与与温度,风速成正相关,与相对湿度成反相关,且存在季节变化,夏季与温度相关性较高,冬季与风速相关性较高。受上游污染源的影响,当北京盛行东南、偏南和偏西气流时,容易造成高O_3浓度。夏季O_3浓度主要受局地光化学反应控制,可以利用常规气象要素对O_3浓度趋势预测。北京大气中CO浓度受排放源和大气扩散能力的影响呈现冬季高,夏季低的季节变化特征。白天8-h(09:00~16:00)CO浓度与风速分布频率存在负的统计相关性,相关系数r=0.93,K值为3.5±0.5。受观测点地理位置和周边道路机动车分布的影响,偏东气流控制时的CO浓度是偏西气流的2.3倍。
     (3)北京大气中光化学反应程度夏季最高,平均为0.25。光化学反应程度呈单峰型日变化曲线,在午后15:00出现峰值。在自由基和氮氧化物作用下,O_3超标目光化学反应程度平均增加率为空气优良日的5.3倍。大气中NMHCs浓度中苯乙烯浓度最高(按丙烯等量浓度计),AHC丙烯等量浓度占NMHCs的大部分,而AHC中以R-AROM组分最高。臭氧产生效率平均为4.0,OX产生率随着NOx浓度的增加而递增,平均产生率为(12.5±8.3)×10~(-9)h~(-1)。大气中O_3净产生率在正午12:00最大,并以HO_2+NO和XO_2+NO光化学生成反应为主。北京大气中O_3浓度主要受VOCs浓度的控制,其中以人为源排放的活性芳香烃类化合物和烯烃类对大气中O_3产生的贡献最大。对排放此类化合物的人为活动,如建筑涂料、石油精炼、机动车尾气以及油品挥发性的控制改善,将对降低北京光化学污染程度起到关键作用。此外城市绿化植被品种的科学选择,对减缓城市光化学污染也具有一定程度的帮助。
Atmospheric ozone plays an important role in global and regional environment change.It has a significant impact on the solar radiation budget.As one of primary gaseous contaminant in urban ambient,ozone has an important effect on the urban and suburbant atmospheric environment. Based on the data of air pollutants and meteorological parameter collected in Beijing, Characteristics of ozone precursor are explored.Trace gases NOx and CO,VOCs,temperature and solar radiation are associated with ozone formation.The major contents and conclusions are presented as follows:
     Firstly,O_3 pollution is very serious,and O_3 concentrations fluctuate periodically.The photochemical pollution in Beijing is most serious in summer.The peak O_3 and oxidant (OX=O_3+NO_2)concentration in Beijing often appear about 15:00 in the early afternoon;the diurnal variation of NOx concentrations show a very clear cycle with two peaks;one appears about 07:00 in the morning and the other is at 23:00 in the evening.The highest photolysis rate coefficient of NO_2(J_3)appears in summer.The greatest J_3 in daytime appears at noon.The NOx crossover point occurs at about 100×10~(-9)NOx At lower levels,NO_2 is the major component of NOx,whereas NO dominates at higher mixing ratios.It is also shown that the level of OX is made up of two contributions,regional contribution and local contribution.The former is affected by regional background O_3 level,with the maximum in spring,whereas the latter is effectively correlates with the level of primary pollution,with the maximum in summer.Diurnal variation also appears in the concentrations of the components of oxidants.Owing to changes of traffic in urban,NOx concentrations on weekends are higher than weekdays.Variations of O_3 concentrations in daytime in weekend are a little different from weekdays,but O_3 concentrations in night on weekends are lower than weekdays.
     Secondly,average total ozone content in Beijing is 329 DU and higher in winter and spring, lower in summer and autumn.The inverse relationship exists between ground level UV radiation and total ozone content.This study also shows that a substantial reduction(up to 50%)in the UV radiation on days with high levels of air pollution.Larger fluctuations are found in UV radiation in the summer.The effects of clouds and air pollution on UV are higher than on total solar radiation, and the reduction in UV is about twice as large as the total solar radiation values.Strong reduction in the UV radiation reaching the ground is associated with the increase of tropospheric ozone and nitrogen oxides in Beijing.The correlation coefficient between ozone concentration and decrease in UV radiation is 0.70 in the early afternoon.Both temperature and wind speed have significant positive correlation with ozone.Relative humidity has a significant negative correlation with ozone.Ozone concentrations have signficant correlation with temperature in summer and with wind speed in winter.The distant transport associated with southeastern,southern and western winds contributes substantially to the ozone because the air mass is polluted.The main relationships we could observe in these analyses are then used to obtain a regression equation linking diurnal ozone concentration in summer with meteorological parameters.The characteristics of CO concentration and wind-speed data distribution show that there is an obviously seasonal cycle of CO concentration,with the maximum in winter and minimum in summer.The seasonal variations are believed to be due to the combination results of emission sources and atmospheric diffusion.Data show an inverse relationship between opposing percentiles of the distribution of CO concentration and mean wind speed,and its correlation coefficient is 0.93.The value of K is 3.5±0.5.CO concentrations when prevailing wind direction is from East sector may be 2.3 times higher as compared from West sector,which are affected by where the sample is located and the advection of pollution air from high traffic density area nearby.
     Thirdly,the highest mean extent of reaction appears in summer.Hourly average extent of reaction in summer is 0.25.The diurnal variation of extent of reaction shows a very clear cycle with single peak,the peak often appears at about 15:00 in the early afternoon.With the availability of radicals and oxides of nitrogen,the mean of reaction increase may be 5.3 times higher at high level as compared at low level.The reactivity of NMHCs is dominated by anthropogenic NMHCs and of the anthropogenic NMHCs,reactive aromatics dominate in which eth-benzene is the most important.Ozone production efficiency is 4.0.Oxidant production rate increases with increasing NOx,with the average of(12.5±8.3)×10~(-9)·h~(-1).The highest net ozone production rate appears in the noontime.Generally the formation of ozone throughout of Beijing area is limited by VOCs,in which reactive aromatics and alkene are dominant.
引文
[1] Aardenne, J.A., Carmichael, G.R., Levy, H., et al. Anthropogenic NOx emissions in Asia in the period 1990 - 2020 [J]. Atmospheric Environment 1999,33:633-646.
    [2] Acosta L R, Evans W F J. Design of the Mexico City UV monitoring network:UV-B measurements at ground level in the urban environment [J]. Journal of Geophysical Research, 2000,105:5017-5026.
    [3] Akimoto H, Narita H. Distribution of SO_2,NO_x and CO_2 emission from fuel combustion and industry activities in Asia with 1°×1° resolusion [J]. Atmospheric Environment, 1994, 28:213-225.
    [4] Al-Wali K I , Samson P J. Preliminary sensitivity analysis of Urban Airshed Model simulations to temporal and spatial availability of boundary layer wind measurements [J]. Atmospheric Environment, 1996,30:2027-2042.
    [5] Andreae, M. O., P. Merlet. Emissions of trace gases and aerosols from biomass burning [J]. Global Biogeochemical Cycles, 2001,15:955-966.
    [6] Andronache C, Chameides W L, Rodgers M O, et al. Vertical distribution of isoprene in the lower boundary layer of the rural and urban southern United States [J]. Journal of Geophysical Research, 1994,99:16989-17000.
    [7] Aneja, V.P., Kim, D., Chameides, W.L. Trends and analysis of ambient NO, NOy, CO, and ozone concentrations in Raleigh, North Carolina [J]. Chemosphere, 1997,34:611-623.
    [8] Aneja V P, Agarwal A, Roelle P A, et al. Measurements and analysis of criteria pollutants in New Delhi, India [J]. Environment International, 2001,27:35-42.
    [9] Atkinson R. Gas-phase tropospheric chemistry of organic compounds: a review [J]. Atmospheric Environment, 1990, 24:1-24.
    [10] Atkinson-Palombo C M, Miller J A, Robert C, et al. Quantifying the ozone "weekend effect" at various locations in Phoenix, Arizona [J]. Atmospheric Environment, 2006,40:7644-7658.
    
    [11] Atkinson R, Aschmann S M, Pitts J N. Rate constants for the gas-phase reactions of the NO_3 radical with a series of organic compounds at 296.2K [J]. J. Phys. Chem., 1988, 92: 3454-3457.
    [12] Barletta B, Meinardi S, Simpson, et al. Mixing ratios of volatile organic compounds (VOCs) in the atmosphere of Karachi, Pakistan [J]. Atmospheric Environment, 2002,36:3429-3443.
    [13] Baumann, K., F. Ift, J. Z. Zhao, et al. Discrete measurements of reactive gases and fine particle mass and composition during the 1999 Atlanta Supersite Experiment [J]. Journal of Geophysical Research, 2003,108(D7), 8416, doi:10.1029/2001 JD001210.
    [14] Bell M L and Davis D L . Reassessment of the Lethal London Fog of 1952:Novel Indicators of Acute and Chronic Consequences of Acute Exposure to Air Pollution [J]. Environmental Health Perspectives, 2001,109(3): 389-394.
    [15] Blanchard C L, Lurmann F W, Roth P M, et al. The use of ambient data to corroborate analyses of ozone control strategies [J]. Atmospheric Environment, 1999,33:369-381.
    [16] Blanchard, C. L. Ozone process insights from field experiments - Part III: extent of reaction and ozone formation [J]. Atmospheric Environment, 2000,34: 2035-2043.
    [17] Blanchard C L, Fairley D. Spatial mapping of VOC and NOx-limitation of ozone formation in central California [J]. Atmospheric Environment, 2001,35:3861-3873.
    [18] Bogo H, Negri R M, San R E. Continuous measurements of gaseous pollutants in Buenos Aires city [J]. Atmospheric Environment, 1999,33:2587-2598.
    
    [19] Brown, M., The singular value decomposition method applied to the deduction of the emissions and the isotopic composition of atmospheric methane [J], Journal of Geophysical Research, 1995 100(D6): 11425-11446.
    [20] Cardellino C A , Chameides W L . Natural hydrocarbons, urbanization, and urban ozone [J]. Journal of Geophysical Research, 1990,95:13971-13979.
    
    [21] Cardelino, C. and W. L. Chameides. An observation-based model for analyzing ozone precursor relationships in the urban atmosphere [J]. Journal of Air & Waster Management Association, 1995,45: 161-180.
    [22] Cardelino, C. and W. L. Chameides. The application of data from photochemical assessment monitoring stations to the observation-based model [J]. Atmospheric Environment, 2000, 34: 2325-2332.
    [23] Carter, W. P. L., R. Atkinson. An experimental study of incremental hydrocarbon reactivity [J]. Environmental Science & Technology, 1987,21:670-679.
    [24] Carter, W. P. L., and R. Atkinson. Computing modeling study of incremental hydrocarbon reactivity [J]. Environmental Science & Technology, 1989, 23: 864-880.
    [25] Carter W P L. Development of ozone reactivity scales for volatile organic compounds [J], Journal of Air Waste Management Association, 1994,44:881-899.
    [26] Carter W P L, Atkinson R. Atmospheric chemistry of alkanes [J]. Journal of Atmospheric Chemistry, 1996,3:377-405.
    [27] Calvert, J. G. Test of the theory of ozone generation in Los Angeles atmosphere [J]. Environmental Science & Technology, 1976,10: 248-262.
    [28] Cantrell C A, Shetter R E, Calvert J G, et al. Peroxy radicals from photostationary state deviations during the Tropospheric OH Photochemistry Experiment at Idaho Hill, Colorado, 1993 [J]. Journal of Geophysical Research, 1997,102:6369-6378.
    [29] Cantrell, C. A., R. E. Shetter, T. M. Gilpin, et al. Peroxy radical concentrations measured and calculated from trace gas measurements in the Mauna Loa Observatory Photochemistry Experiment 2 [J]. Journal of Geophysical Research, 1996,101:14653-14664.
    [30] Cantrell, C. A., L. Mauldin, M. Zondlo, et al. Steady state free radical budgets and ozone photochemistry during TOPSE [J]. Journal of Geophysical Research, 2003,108 (D4), doi: 10. 1029/2002JD002198.
    [31] Cardenas, L.M., Austin, J.F., Burgess, R.A., et al. Correlations between CO, NOy, O_3 and non-methane hydrocarbons and their relationships with meteorology during winter 1993 on the North Norfolk Coast, U.K [J]. Atmospheric Environment, 1998,32:3339-3351.
    [32] Carpenter L J, Clemitshaw K C, Burgess R A, et al. Investigation and evaluation of the NO_x/O_3 photochemical steady state [J]. Atmospheric Environment, 1998,32:3353-3365.
    [33] Cass, G. R., and G. J. McRae. Source-receptor reconciliation of routine air monitoring data for trace metals: An emission inventory assisted approach [J]. Environmental Science & Technology, 1983,17:129-139.
    [34] Castro, T., S. Madronich, S. Rivale, et al. The influence of aerosols on photochemical smog in Mexico City [J]. Atmospheric Environment, 2001,35:1765-1772.
    [35] Chameides, W. L., and J. C. G. Walker. A photochemical theory of tropospheric ozone [J]. Journal of Geophysical Research, 1973, 78: 8751-8760.
    [36] Chameides, W. L., D. Davis, M. O. Rodgers, et al. Net ozone photochemical production over the eastern and central North Pacific as inferred from GTE/CITE 1 observations during fall 1983 [J]. Journal of Geophysical Research, 1987,92: 2131-2152.
    [37] Chameides W L , Lindsay R W , Richardson J, et al. The role of biogenic hydrocarbons in urban photochemical smog: Atlanta as case study [J]. Science, 1988,241:1473.
    [38] Chameides, W. L., D. D. Davis, J. Bradshaw, S, et al. Observed and model-calculated NO2:NO ratios in 161 tropospheric air sampled during the NASA GTE/CITE 2 field study [J]. Journal of Geophysical Research, 1990,95:10235-10247.
    [39] Chameides W L, Fehsenfeld F , Rodgers M O, et al Ozone precursor relationships in the ambient atmosphere [J]. Journal of Geophysical Research, 1992,97:6037-6055.
    [40] Chameides W L, Kasibhatla P S, Yienger J, et al. Growth of continental-scale metro-agro-plexes, regional ozone pollution and world food production [J]. Science, 1994, 246:74-77.
    [41] Chameides W L, Is ozone pollution affecting crop yields in China? [J]. Geophys. Res. Lett, 1999,26:867-870.
    [42] Chan L Y, Liu H Y, Lam K S, et al. Analysis of seasonal behavior of tropospheric ozone at Hong Kong [J]. Atmospheric Environment, 1998,32:159-168
    [43] Chan C Y, Chan L Y, Cui H, et al. Origin of the springtime tropospheric ozone maximum over east China at LinAn in 2001 [J]. Tellus, 2003,55B, 982-992.
    [44] Chang, M. E., D. E. Hartley, C. Cardelino, et al. Inverse modeling of biogenic isoprene emissions [J]. Geophysical Research letters, 1996,23:3007-3010.
    [45] Chang, M. E., D. E. Hartley, C. Cardelino, et al On using inverse methods for resolving emissions with large spatial inhomogeneities [J]. Journal of Geophysical Research, 1997,102: 16023-16036.
    [46] Chang C C, Chen T Y, Lin C Y, et al. Effects of reactive hydrocarbons on ozone formation in southern Taiwan [J]. Atmospheric Environment, 2005,39:2867-2878.
    [47] Chatterton T, Doring S, Lovett A, et al. Air quality in Norwich, UK: multi-scale modeling to assess the significance of city, county and regional pollution sources [J]. Environmental Monitoring and Assessment, 2000, 65:425-433.
    
    [48] Chou C C K, Liu S C, Lin C Y, et al The trend of surface ozone in Taipei, Taiwan, and its causes: Implications for ozone control strategies [J]. Atmospheric Environment, 2006, 40: 3898-3908.
    [49] Clapp L J, Jenkin M E. Analysis of the relationship between ambient levels of O_3, NO_2 and NO as a function of NOx in UK [J]. Atmospheric Environment, 1995,29:923-946.
    [50] Cope, M. E. and J. Ischtwan. Perth Photochemical Smog Study: Airshed Modelling Component, Final Report, 1995, pp. 320, Environmental Protection Authority of Victoria, Melbourne, Australia.
    [51] Crawford, J., D. Davis, G. Chen, et al. Photostationary state analysis of the NO_2-NO system based on airborne observations from the western and central North Pacific [J]. Journal of Geophysical Research, 1996,101:2053-2072.
    [52] Cruzen, P. A discussion of the chemistry of some minor constituents in the stratosphere and troposohere [J].Pure and Applied Geophysics, 1973,106-108,1385-1399.
    [53] Crutzen P J, Zimmermann P H, The changing chemistry of tropospheric [J]. Tellus, 1999, 51:123-146.
    [54] Crutzen P J, Andreae M O. Biomass burning in the tropics :impact on atmospheric chemistry and biogeochemical cycle [J]. Science, 1990,250:1669-1678.
    [55] Cunnold, D. M., R. G. Prinn, R. A. Rasmussen, et al. The atmospheric lifetime experiment, 3, Lifetime methodology and application to three years of CFC13 data [J]. Journal of Geophysical Research, 1983,88: 8379-8400.
    [56] Cunnold, D. M., R. G. Prinn, R. A. Rasmussen, et al. Atmospheric lifetime and annual release estimates for CFCl3 and CF2Cl2 from 5 years of ALE data [J]. Journal of Geophysical Research, 1986,91:10797-10817.
    [57] Dahlback A, Stamnes K. A new spherical model for computing the radiation field available for photolysis and heating at twilight [J]. Planet. Space. Sci, 1991,39: 671-683.
    [58] Danalatos, D., Glavas, S. Diurnal and seasonal variations of surface ozone in a Mediterranean coastal site, Patras, Greece [J]. Science of the Total Environment, 1996,177:291-301.
    [59] Davis, D. D. A photostationary state analysis of the NO_2-NO system based on airborne observations from the subtropical/tropical North and South Atlantic [J]. Journal of Geophysical Research, 1993,98:23501-23523.
    [60] Davis, D. D., J. Crawford, G. Chen, et al. Assessment of ozone photochemistry in the western North Pacific as inferred from PEM-West A observations during the fall 1991 [J]. Journal of Geophysical Research, 1996,101:2111-2134.
    
    [61] Davidson J A, Cantrell C A, McDaniel A H, et al. Visible-Ultraviolet absorption cross sections for NO_2 as a function of temperature [J]. Journal of Geophysical Research, 1988, 93: 7105-7112.
    [62] Debaje S B, Jeyakumar S J, Ganesan K, et al. Surface ozone measurements at tropical rural coastal station Tranquebar, India [J]. Atmospheric Environment, 2003,37:4911-4916
    [63] Dennis, R. L., J. N. McHenry, W. R. Barchet, et al. Correcting RADM's sulfate underprediction: Discovery and correction of model errors and testing the corrections through comparisons against field data [J]. Atmospheric Environment, 1993,27A: 975-997.
    [64] Dickerson R R, Kondragunta S, Stenchikov G, et al The impact of aerosols on solar ultraviolet radiation and photochemical smog [J]. Science, 1997,278:827-830.
    [65] Duenas C, Fernandez M C, Canete S, et al. Assessment of ozone variation and meteorological effects in an urban area in the Mediterranean Coast [J]. Science of the Total Environment, 2002,299:97-113.
    [66] Eder B, Kang D W, Mathur R, et al. An operational evaluation of the Eta - CMAQ air quality forecast model [J]. Atmospheric Environment, 2006, 40: 4894-4905.
    
    [67] Ehhalt D H, Durmmond J W, The tropospheric cycle of NOx. In: Georgii H W, Jaeschk W (Eds), Chemistry of the Unpolluted and Polluted Troposphere. D. Reidel Publishing, Hingham, MA, 1982,219-251.
    [68] Elminir H K. Dependence of urban air pollutants on meteorology [J]. Science of the Total Environment, 2005, 350: 225-237.
    [69] Elterman L. UV, visible and I. R. attenuation for altitudes to 50km, AFCRL Environ. Res., 285.
    [70] Enting, I., and J. Mansbridge. Seasonal sources and sinks of atmospheric CO_2 direct inversion of filtered data [J], Tellus, 1989,41B: 111-129.
    [71] Fehsenfeld, F. C, M. J. Bollinger, S. C. Liu, et al. A study of ozone in the Colorado mountains [J]. Journal of Atmospheric Chemistry, 1983,1: 87-105.
    [72] Fishman, J., and R. Kalish. Global Alert: The Ozone Pollution Crisis, 1990, pp. 257-262, Plenum Press, New York.
    [73] Fishman, J., and P. Crutzen. A numerical study of tropospheric photochemistry using a one-dimensional model [J]. Journal of Geophysical Research, 1977,82: 5897-5906.
    [74] Geron, C. D., A. B. Guenther, T. E. Pierce. An improved model for estimating emissions of volatile organic compounds from forests in the eastern United States [J]. Journal of Geophysical Research, 1994,99:12773-12791.
    [75] Gertler, A. W., D. N. Wittorff, R. Mclaren, et al. Characterization of vehicle emissions in Vancouver BC during the 1993 Lower Fraser Valley Oxidants Study [J]. Atmospheric Environment, 1997,31: 2107-2112.
    [76] Guenther, A., C. Geron, T. Pierce, et al. Natural emissions of non-methane volatile organic compounds, carbon monoxide, and oxides of nitrogen from North America [J], Atmospheric Environment, 2000,34:2205-2230.
    [77] Gusten H, Heinrich G, Cvitas L T. Photochemical formation and transport of ozone in Athens, Greece [J]. Atmospheric Environment, 1988,22:1855-1861.
    [78] Haagen-Smit A J. The air pollution problem in Los Angeles [J]. Engineering and Science, 1950, XIV, 7-13.
    [79] Haagen-Smit A J, Darley E F et al. Investigation on injury to plants from air pollution in the Los Angeles area [J]. Plant Physiology, 1951,27:18.
    [80] Haagen-Smit A J. Chemistry and physiology of Los Angeles smog [J]. Industrial &Engineering Chemistry, 1952,44:1342-1346.
    [81] Haagen-Smit A J and Fox M M. Photochemical ozone formation with hydrocarbons and automobile exhaust [J]. Journal of Air Pollution Control Association, 1954,4:105-109.
    [82] Hanna, S. R., G. E. Moore, M. E. Fernau. Evaluation of photochemical grid models (UAM-IV, UAM-V, and the ROM/UAM-IV couple) using datafrom the Lake Michigan Ozone Study (LMOS) [J]. Atmospheric Environment, 1996,30:3265-3279.
    [83] Hao J M, He D Q, Wu Y, et al. A study of the emission and concentration distribution of vehicular pollutants in the urban area of Beijing [J]. Atmospheric Environment, 2000, 34:453-465.
    [84] Hartley, D. and R. Prinn. Feasibility of determining surface emissions of trace gases using an inverse method in a three-dimensional chemical transport model [J]. Journal of Geophysical Research, 1993,98:5183-5197.
    [85] Heuss J M, Kahlbum D F, Wolff G T.Weekday/weekend ozone differences: what can we learn from them? [J]. Journal of the Air Waste Management Association, 2003,53:772-788.
    [86] Hidy G M. Ozone process insights from field experiments Part I: Overview [J]. Atmospheric 5 urban areas: A case of high ozone concentration in Houston [J]. Geophysical Research Letters, 2002,29:1-4.
    [101]Koepke P, Bais A, Balis D, et al. Comparison of models used for UV Index calculations [J]. Photochemistry and Photobiology, 1998, 67:657-662.
    [102]Kramp F, Volz-Thomas A. On the budget of OH radicals and ozone in an urban plume from the Decay of C5-C8 hydrocarbons and NO [J]. Journal of Geophysical Research, 1992, 97:15833-15901.
    [103]Kuhn M, Builtjes P J H, Poppe D, et al. Intercomparison of the gas-phase chemistry in several chemistry and transport models [J]. Atmospheric Environment, 1998,32:693-709.
    [104]Kuklin, A. and J. H. Seinfeld. Emissions reductions needed to meet the standard for ozone in Southern California: effect of boundary conditions [J], Journal of the Air & Waste Management Association, 1995,45: 899-901.
    [105] Kumar, N., and A. G. Russell. Comparing prognostic and diagnostic meteorological fields and their impacts on photochemical air quality modeling [J]. Atmospheric Environment, 1996,30:1989-2010.
    [106] Lam K S, Wang T, Chan L Y, et al. Flow patterns influencing the seasonal behavior of surface ozone and carbon monoxide at a coastal site near Hong Kong [J]. Atmospheric Environment, 2001,35:3121-3135.
    [107] Lam, K.S., Wang, T.J., Wu, et al. Study on an ozoneepisode in hot season in Hong Kong and transboundary air pollution over Pearl River Delta region of China [J]. Atmospheric Environment,2005,39: 1967-1977.
    [108]Lalas D P, Asimakopoulos D N , Deligiorgi D G, Seabreeze circulation and photochemical pollution in Athens, Greece [J]. Atmospheric Environment, 1983,17:1621-1632.
    [109] Lai, S., Naja, M., Subbaraya, B.H. Seasonal variations in surface ozone and its precursors over an urban site in India [J]. Atmospheric Environment, 2000,34: 2713-2724.
    [110] Lehman J, Swinton K, Bortnick S, et al. Spatio-temporal characterization of tropospheric ozone across the eastern United States [J]. Atmospheric Environment, 2004,38:4357-4369
    [111]Leighton P A. Photochemistry of Air Pollution [M]. New York: Academic Press, 1961.
    [112] Logan J A. Tropospheric ozone: Seasonal behacior, trends, and anthropogenic influence [J]. Journal of Geophysical Research, 1985,90:10463-10482.
    [113] Liu K-Y, Wang Z, Hsiao L-F.A modeling of the sea breeze and its impacts on ozone distribution in northern Taiwan [J]. Environ Modelling Software, 2002,17(1):21-27.
    [114] Liu S C, Trainer M, Fehsenfeld F C, et al. Ozone production in the rural troposphere and the implications for regional and global ozone distributions [J]. Journal of Geophysical Research, 1987,92:4191-4207.
    [115]Madronich S. Implications of recent total atmospheric ozone measurements for biologically active ultraviolet radiation reaching the earth' surface [J]. Geophys. Res. Lett., 1992, 19: 37-40.
    [116]Madronich S, Flocke S. Theoretical estimation of biologically effective UV radiation at the Earth's surface [A].In: Zerefos C S, Bais A F. Solar Ultraviolet Radiation-Modeling [C].Berlin: Springer, 1997.23-48.
    [117] Mantis, H. T., C. C. Repapis, C. S. Zerefos. Assessment of the potential for photochemical air pollution in Athens: A comparison of emissions and 167 air-pollutant levels in Athens with those in LA [J]. Journal of Applied Meteorology, 1992,31:1467-1476.
    [118]Massambani, O. and F. Andrade. Seasonal behavior of tropospheric ozone in the Sao Paulo (Brazil) metropolitan area [J]. Atmospheric Environment, 1994,28:3165-3169.
    [119]Mazzeo N A, Venegas L E. Estimation of cumulative frequency distribution for carbon monoxide concentration from wind-speed data, in Buenos Aires (Argentina) [J]. Water, Air, and Soil Pollution: Focus, 2002,2:419-432.
    [120]Mazzeo N A, Venegas L E, Choren H. Analysis of NO, NO_2, O_3 and NO_x concentration measured at a green area of Buenos Aires City during wintertime [J]. Atmospheric Environment, 2005, 39:3055-3068.
    [121] McGee T J, Burris J. SO_2 absorption cross sections in the near UV [J]. J. Quant. Spec. Radiat. Transfer, 1987,32:165-182.
    [122]Mckeen S A, Hsie E Y, Liu S C. A study of the dependence of rural ozone on ozone precursors in the eastern United States [J]. Journal of Geophysical Research, 1991, 96:10809-10845.
    [123]Mcheen S A, Liu S C. Hydrocarbon ratios and photochemical history of air masses [J]. Geophysical Research Letters, 1993,20:2363-2366.
    
    [124]McKeen, S. A., G. Mount, F. Eisele, E, et al. Photochemical modeling of hydroxyl and its relationship to other species during the Tropospheric OH Photochemistry Experiment [J]. Journal of Geophysical Research, 1997,96:6467-6493.
    [125]Middleton P, Chang J S. Analysis of RADM gas concentration predictions using OSCAR and NEROS monitoring [J]. Atmospheric Environment, 1990,24A: 2113-2125.
    [126] Miller, M. S., S. K. Friedlander, and G. M. Hidy. A chemical element balance for the Pasadena aerosol [J]. Journal of Colloid and Interface Science, 1972,39:165-176.
    [127] Mitchell, J. F. B., T. C. Johns, J. M. Gregory. Climate response to increasing levels of greenhouse gases and sulphate aerosols [J]. Nature, 1995,376:501-504.
    [128] Molina L T, Molina M J. Absolute absorption cross section of ozone in the 185-to 350-nm wavelength range [J]. Journal of Geophysical Research, 1986,91:14501-14508.
    [129] Monks P S. A review of the observations and origins of the spring ozone maximum [J]. Atmospheric Environment, 2000,34:3545-3561.
    [130]Moussiopoulos N., P. Sahm, and C. Kessler. Numerical simulation of photochemical smog formation in Athens, Greece-a case study [J], Atmospheric Environment, 1995, 29: 3619-3632.
    [131]Mulholland, M. and J. H. Seinfeld. Inverse air pollution modeling of urban-scale CO emissions [J]. Atmospheric Environment, 1995,28:497-516.
    [132]Naja, M., Lal, S., Chand, D. Diurnal and seasonal variabilities in surface ozone at a high altitude site Mt Abu (24.6°N, 72.7°E, 1689 m asl) in India [J]. Atmospheric Environment, 2003,37:4205-4215.
    [133]Nicolet M. On the molecular scattering in the terrestrial atmosphere: An empirical formula for its calculation in the homoshpere [J]. Planet. Space Sci., 1984,32:1467-1468.
    [134]Nowak D J, Civerolo K L, Rao T, et al. A modeling study of the impact of urban trees on ozone [J]. Atmospheric Environment, 2000,34:1601-1613.
    [135]Nunnermacker L J, Kleinman L I, Imre D, et al. NOx lifetimes and O_3 production efficiencies in urban and power plant plumes: Analysis of field data [J]. Journal of Geophysical Research, 2000,105:9165-9176.
    [136]Olcese L E, Toselli B M. Effects of meteorology and land use on ambient measurement of primary pollutants in Cordoba City, Argentina [J]. Meteorology and Atmospheric Physics, 1997,62:241-248.
    [137]Olcese L E, Toselli B M. Unexpected high levels of ozone measured in Cordoba City, Argentina [J]. Journal of Atmospheric Chemistry, 1998,31:269-279.
    [138]Olcese L E, Palancar G G, Toselli B M. An inexpensive method to estimate CO and NOx emissions from mobile sources [J]. Atmospheric Environment, 2001,35:6213-6218.
    [139]Olcese L E, Toselli B M. Some aspects of air pollutant in Cordoba, Argentina [J].Atmospheric Environment, 2002,36:299-306.
    [140]Olszyna, K.J., Luria, M., Meagher, J.F. The correlation of temperature and rural ozone levels in southeastern U.S.A [J]. Atmospheric Environment, 1997,31:3011-3022.
    [141]Oltmans S J, Levy H. Surface ozone measurements from a global network [J]. Atmospheric Environment, 1994,28:9-24.
    [142] Palancar G G, Toselli B M. Erythemal ultraviolet irradiance in Cordoba, Argentina [J]. Atmospheric Environment, 2002,36:287-292.
    [143] Palancar G G, Toselli B M. Effects of meteorology on the annual and interannual cycle of the UV-B and total radiation in Cordoba City, Argentina [J]. Atmospheric Environment, 2004, 38:1073-1082.
    [144] Palancar G G, Fernandez R P, Toselli B M. Photolysis rate coefficients calculations from broadband UV-B irradiance: model-measurement interaction [J]. Atmospheric Environment, 2005,39:857-866.
    [145]Parrish D D, Hahn C J, Williams E J, et al. Indications of photochemical histories of Pacific air masses from measurements of atmospheric trace species at Point Arena California [J]. Journal of Geophysical Research, 1992, 97:15833-15901.
    [146]Parrish D D, Dunlea E J, Atlas E L, et al. Changes in the photochemical environment of the temperate North Pacific troposphere in response to increased Asian emissions [J]. Journal of Geophysical Research, 2004,109, D23S18, doi: 10.1029/2004JD004978.
    [147] Paulson S E, Seinfeld J H. Development and evaluation of a photooxidation mechanism for isoprene [J]. Journal of Geophysical Research, 1992,97:20703-20715.
    [148]Pierson, W. R., A. W. Gertler, R. L. Bradow. Comparison of the SCAQS tunnel study with other on-road vehicle emission data [J]. Journal of Air & Waste Management Association, 1990,40:1495-1504.
    
    [149]Prinn, R. G., D. Cunnold, R. Rasmussen, et al. Atmospheric emissions and trends of nitrous oxide deduced 169 from 10 years of ALE-GAGE data [J]. Journal of Geophysical Research, 1990,95:18369-18385.
    [150]Pryor, S. C. A case study of emission changes and ozone responses [J]. Atmospheric Environment, 1988,32:123-131.
    [151]Pudasainee D, Sapkota B, Shrestha M L, et al. Ground level ozone concentrations and its association with NOx and meteorological parameters in Kathmandu valley, Nepal [J], Atmospheric Environment, 2006,40:8081-8087.
    [152]Qin Y, Tonnesen G S, Wang Z. Weekend/weekday differences of ozone, NOx, CO, VOCs, PM_(10) and the light scatter during ozone season in southern California [J]. Atmospheric Environment, 2004,38:3069-3087.
    [153] Raddatz R L, Cummine J D. Temporal surface ozone patterns in urban Manitoba, Canada [J]. Bounday-Layer Meteorology, 2001,99:411-428.
    [154] Raga, G. B., and A. C. Raga. On the formation of an elevated ozone peak in Mexico City [J]. Atmospheric Environment, 2000,34:4097-4102.
    [155] Raga, G. B., T. Castro, and D. Baumgardner. The impact of megacity pollution on local climate and implications for the regional environment: Mexico City [J]. Atmospheric Environment, 2001,35:1805-1811.
    [156]Repapis C C, Mantis H F, Paliatsos A G, et al. Case study of UV-B modification during episodes of air pollution [J]. Atmospheric Environment, 1998,32:2203-2208.
    [157] Russell, A. G., and R. L. Dennis. Critical review of photochemical models and modeling. NARSTO Critical Review Papers Special Issue [J]. Atmospheric Environment, 2000, 34, 2283-2324.
    [158] Rye, P. J., K. Rayner, and P, Weir. The Perth photochemical smog study, Western Power Report CS20/96, Department of Environmental Protection Report 16,1996, Perth, Australia.
    [159]Saito S, Nagao I, Tanaka H. Relationship of NOx and NMHC to photochemical O_3 production in a coastal and metropolitan area of Japan [J]. Atmospheric Environment, 2002, 36:1277-1286.
    [160]Satsangi G S, Lakhani A, Kulshrestha P R, et al. Seasonal and diurnal variation of surface ozone and a preliminary analysis of exceedance of its critical levels at a semi-arid site in India [J]. Journal of Atmospheric Chemistry, 2004,47:271-286.
    [l61]Schauer, J. J., W. F. Rogge, L. M. Hildemann, et al. Source apportionment of airborne paniculate matter using organic compounds as tracers [J]. Atmospheric Environment, 1996, 30:3837-3855.
    [162]Scotto T, Cotton G, Urbach F, et al. Biologically Effective Radiation: Surface Measurements in the US [J]. Science, 1988,239:762-764.
    [163]Schauer, J. J., and G. R. Cass. Source apportionment of wintertime gas-phase and particle-phase air pollutants using organic compounds as tracers, Environmental Science & Technology [J], 2000,34:1821-1832.
    [164] Seaman N L. Meteorological modeling for air-quality assessments [J]. Atmospheric Environment, 2000,34:2231-2259.
    [165] Seinfeld J H, Pandis S N. Atmospheric Chemistry and Physics [M]. New York: A Wiley Interscience Publication, 1998.
    [166]Shiu C J, Liu S C, Chang C C, et al. Photochemical production of ozone and control strategy for Southern Taiwan [J]. Atmospheric Environment, 2007, dio: 10.1016/j.atmosenv.2007.09. 014.
    [167]Sillman S. The sensitivity of ozone to nitrogen oxides and hydrocarbons in regional ozone episodes [J]. Journal of Geophysical Research, 1990,95(D2):1837-1851.
    [168]Sillman S, He D, Cardelino C, et al. The use of photochemical indicators to evaluate ozone-NOx-hydro-carbon sensitivity: case studies from Atlanta, New York and Los Angeles [J]. Journal of Air Waste Management Association, 1997, 47:1030-1040.
    [169]Sillman S, He D, Pippin M, et al. Model correlations for ozone, reactive nitrogen and peroxides for Nashville in comparison with measurements: implications for O_3NO_x-hydrocardon chemistry [J], Journal of Geophysical Research, 1998, 103: 22629-22644.
    [170]Sillman, S. The method of photochemical indicators as a basis for analyzing O_3-NO_x-ROG sensitivity, NARSTO Critical Review (http://www.cgenv.com/Narsto), 1999.
    [171]Sillman, S., and D. He. Some theoretical results concerning O_3-NO_x-VOC chemistry and NO_x-VOC indicators [J]. Journal of Geophysical Research, 2002, 107(D22), 4659, doi: 10.1029/2001JD001123.
    
    [172] Simpson R W, Jakeman A L, Daly N J. The relationship between the ATDL model and the statistical distributor of wind-speed and pollution data [J]. Atmospheric Environment, 1985, 19:75-82.
    [173] Simpson, D. Biogenic emissions in Europe, 2, implications for ozone control strategies [J]. Journal of Geophysical Research, 1995,100:22891-22906.
    [174] So, K.L., Wang, T. On the local and regional influence on ground-level ozone concentrations in Hong Kong [J]. Environmental Pollution, 2003,123:307-317.
    [175] Solomon, P. A. Regional photochemical measurement and modeling studies: a summary of the A&WMA International Specialty Conference, Feature Article [J]. Journal of the Air & Waste Management Association, 1995,45:253-286.
    [176]Stamnes K, Tsay S, Wiscombe W J, et al. Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media [J]. Appl. Optics, 1988a, 27: 2502-2509.
    [177] Streets D G, Waldhoff S T. Present and future emissions of air pollutants in China: SO_2, NO_x and CO [J]. Atmospheric Environment, 2000,34:363-374.
    [178]Stong J, Whyatt J D, Hewitt C N. Application of multiple wind-roses to improve the modeling of ground-level ozone in the UK [J]. Atmospheric Environment, 2006, 40: 7480-7493.
    [179]Taha H. Modeling impacts of increased urban vegetation on ozone air quality in the South Coast Air Basin [J]. Atmospheric Environment, 1996,30:3423-3430.
    [180] Tang X Y, Li J L, Dong Z X, et al. Photochemical pollution in Lanzhou China-A case study, Journal of Environmental Sciences, 1989,1:31-38.
    [181]Terje B. Impact of increased anthropogenic emission in Asia on troposphereic ozone and climate [J]. Tellus, 1996,23:251-254.
    [182] Toon O B, Mckay C P, Ackerman T P. Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres [J]. Journal of Geophysical Research, 1989,94:16287-16301.
    [183] Tiao G C , Box G E D ,Hamming W J. Analysis of Los Angeles photochemical smog data: a statistical overview [J]. Journal of Air Pollution Control Association, 1975,25:260-268.
    [184] Trainer, M., B. A. Ridley, M. P. Buhr, Regional ozone and urban plumes in the southeastern United States: Birmingham, a case study [J]. Journal of Geophysical Research, 1995,100: 18823-18834.
    
    [185] Tu J, Xia Z G, Wang H S, et al. Temporal variation in surface ozone and its precursors and meteorological effects at an urban site in China [J]. Atmospheric Research, 2007, 85: 310-337.
    [186] US EPA. Latest finding on national air quality: 2001 Status and Trends.2001.
    [187] Venegas L E, Mazzeo N A. Carbon monxide concentrations in a street canyon of Buenos Aires city (Argentina) [J]. Environmental Monitoring and Assessment, 2000,65:417-424.
    [188]Vingarzan, R., and B. Taylor. Trend analysis of ground level ozone in the greater Vancouver/Fraser Valley area of British Columbia, Atmospheric Environment, 2003, 37: 2159-2171.
    [189] Wakamatsu S., I. Uno, M. Suzuki. A field study of photochemical smog formation under stagnant meteorological conditions [J]. Atmospheric Environment, 1990, 24A:1037-1050.
    [190] Wakamatsu, S., T. Ohara, I, Uno. Recent trends in precursor concentrations and oxidant distributions in the Tokyo and Osaka areas [J], Atmospheric Environment, 1996,30:715-721.
    [191] Wakamatsu, S., I. Uno, T. Ohara, K. L., Schere. A study of the relationship between photochemical ozone and its precursor emissions of nitrogen oxides and hydrocarbons in Tokyo and surrounding areas [J]. Atmospheric Environment, 1999,33:3097-3108.
    [192] Wang W X, Wang T. Short Communication: On acid rain formation in China [J]. Atmospheric Environment, 1996,30:4091-4093.
    [193] Wang T, Lam K S, Chan A S, et al. Trace gas measurements in coastal Hong Kong during the PEMWestB [J]. Journal of Geophysical Research, 1997,102:28575-28588.
    [194] Wang, T., Y. Y. Wu, T. F. Cheung, K. S. Lam. A study of surface ozone and the relation to complex wind flow in Hong Kong [J]. Atmospheric Environment, 2001a, 35:3203-3215.
    [195] Wang, T., V. T. F. Cheung, K. S. Lam, et al. The characteristics of ozone and related compounds in the boundary layer of the South China coast: temporal and vertical variations during autumn season [J]. Atmospheric Environment, 2001b, 35:2735-2746.
    [196] Wang T, Kwok J Y H. Measurement and analysis of a multiday photochemical smog episode in the Pearl River Delta of China [J]. Journal of Applied Meteorology, 2003,42:404-416.
    [197] Wilkins E T. Air pollution and the London fog of December [J]. Journal of the Royal Sanitary Institute, 1954, 74:1-21.
    [198]Wolff G T,Lioy P J.Development of an ozone river associated with synoptic scale episodes in the eastern United States[J].Environ.Sci.Technol,1980,14:1257-1261.
    [199]Wu H W Y,Chan L Y.Surface ozone trends in Hong Kong in 1985-1995[J].Environment International,2001,26:213-222
    [200]Xu,J.,Zhu,Y.,Li,J.Seasonal cycles of surface ozone and NOx in Shanghai[1].Journal of Applied Meteorology,1997,36:1424-1429.
    [201]Zaveri R A,Berkowitz C M,Kleinman L,et al.Ozone production efficiency and NOx depletion in an urban plume:Interpretation of field observations and implications for evaluating O_3-NOx-VOC sensitivity[J].Journal of Geophysical Research,2003,108:1-22.
    [202]Zhang,B.N.,Oanh,N.T.K.Photochemical smog pollution in the Bangkok Metropolitan Region of Thailand in relation to O3 precursor concentrations and meteorological conditions [J].Atmospheric Environment,2002,36:4211-4222.
    [203]Zhang J,Wang T,Chameides W L,et al.Ozone production and hydrocarbon reactivity in Hong Kong,Southern China[J].Atmospheric Chemistry and Physics,2007,7:557-573.
    [204]Zheng,Y.,Stevenson,K.J.,Barrowcliffe,R.,et al.Ozone levels in Chongqing:a potential threat to crop plants commonly grown in the region[J].Environmental Pollution 1998,99:299-308.
    [205]Zheng,M.,G.R.Cass,J.J.Schauer,et al.Source apportionment of PM2.5 in the Southeastern United States using solvent-extractable organic compounds as tracers[J].Environmental Science & Technology,2002,36:2361-2371.
    [206]Zerefos C S,Meleti C,Bais A F,et al.The recent variability of total ozone over southeastern Europe[J].Journal of Photochemical and Photopathology B:Biology,1995,31:15-19.
    [207]安俊岭,韩志伟,王自发,等.NOx与NMHC的变化对O_3生成量的影响[J].大气科学,1999,23(6):753-761.
    [208]安俊岭.北京近交通主干线地区的臭氧生成效率[J].环境科学学报,2006,26(4):652-657.
    [209]安俊琳,李昕,王跃思,等.北京气象塔夏季大气O_3,NOx及CO浓度变化的观测实验[J].环境科学,2003,24(6):43-47.
    [210]安俊琳,王跃思,李昕等.北京大气中NO,NO_2和O_3浓度变化的相关性分析[J].环境科学,2007,28(4):706-711.
    [211]白建辉,王明星,Graham J,等.鼎湖山地面臭氧、氮氧化物变化特征的分析[J].环境科学 学报,1999,19(3):262-265.
    [212]白建辉,王明星.地面臭氧光化学过程规律的初步研究[J].气候与环境研究,2001,6(1):91-102.
    [213]丁国安,徐晓斌,罗超,等.中国大气本底条件下不同地区地面臭氧特征[J].气象学报,2001,59(1):88-96.
    [214]丁国安,郑向东,马建中,等.近30年大气化学和大气环境研究回顾[J].应用气象学报,2006,17(6):796-814.
    [215]段欲晓,徐晓峰.北京地区SO_2污染特征及气象条件分析[J].气象科技.2001,22(4):11-14.
    [216]傅立新,郝吉明,何东全,等.北京市机动车污染物排放特征[J].环境科学,2000,21(3):68-70.
    [217]GB 3095-1996,环境空气质量标准[S].
    [218]高东峰,张远航,曹永强.应用OBM模型研究广州臭氧的生成过程[J].环境科学研究,2007,20(1):47-51.
    [219]郝吉明,吴烨,傅立新等.北京市机动车污染物分担率的研究[J].环境科学,2001,22(5):1-6.
    [220]贺千山,毛节泰.北京城市大气混合层与气溶胶垂直分布观测研究[J].气象学报,2005,63(3):374-384.
    [221]胡波.中国紫外与光合有效辐射的联网观测及其时空分布特征研究[D].北京:中国科学院大气物理研究所,2005.33-38.
    [222]胡建林,张远航.长江三角洲地区臭氧生成过程分析[J].环境科学研究,2005,18(2):13-18.
    [223]姜允迪,王式功,祁斌,等.兰州城区臭氧浓度时空变化特征及其与气象条件的关系[J].兰州大学学报(自然科学版)2000,36(5):118-125.
    [224]李金龙.青岛市沙子口站地面大气臭氧、气溶胶及其前体物的观测研究(2).中国地区大气臭氧变化及其对气候环境的影响(二)(周秀骥主编)[M].北京:气象出版社,1997.
    [225]李昕,安俊琳,王跃思,等.北京气象塔夏季大气臭氧观测研究[J].中国环境科学,2003,23(4):353-357.
    [226]刘小红,洪钟祥,李家伦,等.北京市气象塔秋季大气O_3,NOx及CO浓度变化的观测实验[J].自然科学进展.2000,10(3):338-342.
    [227]刘小红,洪钟祥,李家伦,等.北京地区严重大气污染的气象和化学因子[J].气候与环境研究.1999,4(3):231-236.
    [228]马一琳,张远航.北京市大气光化学氧化剂污染研究[J].环境科学研究.2000,13(1):14-17.
    [229]孙扬,王跃思,李昕等.北京地区一次持续重污染过程O_3、NOx、CO的垂直分布分析[J].地球物理学报,2006,49(6):1616-1622.
    [230]邵敏,付琳琳,刘莹,等.北京市大气挥发性有机物的关键活性组分及其来源[J].中国科学(D辑),2007,35(增刊 Ⅰ):123-130.
    [231]唐孝炎,田炳申,陈长和,等.兰州西固地区大气光化学污染规律和防治对策的研究[J].中国环境科学,1985,5(2):1-11.
    [232]唐孝炎.光化学烟雾[J].金属世界,1994,5:24-25.
    [233]唐孝炎,张远航,邵敏.大气环境化学[M].北京:高等教育出版社;2006,63-67.
    [234]汤洁,周凌晞,郑向东,等.拉萨地区夏季地面臭氧的观测和特征分析[J].气象学报,2002,60(2):221-229.
    [235]王明星.大气化学(第二版)[M].北京:气象出版社,1999.360-368.
    [236]王贵勤等编译.大气臭氧研究[M].北京:科学出版社,1985.
    [237]王式功,张镭,陈长和.兰州地区大气环境研究的回顾与展望[J].兰州大学学报(自然科学版),1999,35(3):189-201.
    [238]王庚辰.我国大气臭氧探测技术的进展现状[J].地球科学进展,1991,6(6):31-36.
    [239]王跃思,孙扬,徐新,等.大气中痕量挥发性有机物的分析方法研究[J].环境科学,2005,26(4):18-23.
    [240]肖辉,朱彬,黄美元,等.云对云中大气臭氧影响因子的分析[J].气候与环境研究.1999,4(3):260-266.
    [241]谢绍东,张远航,唐孝炎.我国城市地区机动车污染现状与趋势[J].环境科学研究.2000,13(1):23-25.
    [242]谢扬飏,邵敏,陆思华,等.北京市园林绿地植被挥发性有机物排放的估算[J].中国环境科学,2007,27(4):498-502.
    [243]徐宏辉.北京及周边地区大气气溶胶的质量浓度和无机组合的特征及其来源研究[D].北京:中国科学院大气物理研究所,2007.36-41.
    [244]徐家骝.大气中的四种污染物的垂直梯度观测及其气象参数的关系[J].环境科 学,1991,10(9):21-25.
    [245]徐家骝,朱毓秀.气象因子对近地面臭氧污染影响的研究[J].大气科学,1994,18(6):751-757.
    [246]徐家骝,朱毓秀.臭氧和氮氧化物四季浓度特征及其相关性[J].上海环境科学,1998,17(1):36-38.
    [247]徐祥德,汤绪.城市化环境气象学引论[M].北京:气象出版社,2002.
    [248]徐祥德,丁国安,卞林根.北京城市大气环境污染机理与调控原理[J].应用气象学报,2006,17(6):815-828.
    [249]殷永泉,单文坡,纪霞,等.济南大气臭氧浓度变化规律[J].环境科学,2006,27(11):2299-2302.
    [250]殷永泉,李昌梅,马桂霞,等.城市臭氧浓度分布特征[J].环境科学,2004,25(6):16-20.
    [251]姚小红,何东全,周中平,等.北京城市大气中NOx、CO、O_3的变化规律研究[J].环境科学,1999,20(1):23-26
    [252]姚克亚,陈月娟,黄美元,等.小张庄地面O_3和NOx的初步研究[J].中国科学技术大学学报,1997,27(2):153-157.
    [253]张武,张蕾,张婕,等.兰州地区太阳紫外辐射及其与空气污染的关系[J].兰州大学学报(自然科学版),2004,40(3):100-105.
    [254]张远航,徐峻.北京市区夏季O_3生成过程分析[J].环境科学学报,2006,26(6):973-980.
    [255]郑向东,丁国安,于海青,等.十三陵“清洁区”秋季O_3在地面及近地边界层垂直分布变化的探测研究[J].中国科学(D辑),地球科学,2005,35(增刊):45-52.
    [256]周秀骥.中国地区大气臭氧变化及其对气候环境的影响(一)[M].北京:气象出版社,1996.
    [257]周秀骥.中国地区大气臭氧变化及其对气候环境的影响(二)[M].北京:气象出版社,1997.
    [258]周秀骥.长江三角洲低层大气与生态系统相互作用研究[M].北京:气象出版社,2004.
    [259]朱彬,肖辉,黄美元,等.应用查表法模拟区域对流层O_3、NOx分布和演化的研究[J].大气科学,2001,25(1):49-60.
    [260]朱彬,王韬,倪东鸿,等.临安秋季近地层臭氧的形成及其前体物特征[J].南京气象学院学报,2004,27(2):185-192.
    [261]朱毓秀,徐家骝,李静兰.秋季典型光化学污染过程的分析[J].环境科学,1996,17(3):69-74.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700