用户名: 密码: 验证码:
分布式光纤振动传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分布式光纤传感技术是应用光纤纵向特性进行测量的技术,它把被测参量作为光纤长度的函数,可以在整个光纤长度上对沿光纤几何路径分布的外部物理参量进行连续的测量,为工业和研究领域提供了同时获得被测物理参量的空间分布状态和随时间变化信息的手段,在智能飞行器、智能桥梁、高速公路、重要建筑、煤气管道监测以及光缆监测等领域获得了广泛的应用。
     本文主要研究了分布式光纤振动传感器,具体对基于Sagnac结构的分布式光纤振动传感器和基于Michelson结构的光时域反射仪两种结构进行了深入的分析和试验研究。
     文中详细分析了基于Sagnac结构的分布式光纤振动传感系统的基本原理,与传统的Sagnac干涉环不同,系统用3×3耦合器分光和引入相位偏置,用1×2光纤耦合器将光返回,采用直线型光纤传感,采用波长为1316.7nm的LD脉冲光源,既解决了连续光源的低功率入射问题,又回避了受激布里渊散射阈值的限制。通过探测干涉光强的交流分量的零点频率,就能定位出振动发生的位置。在此系统结构下,本文进一步分析了系统的探测灵敏度、最大可探测距离。用PZT相位调制器模拟振动源进行实验,结果表明:此系统的实验结果与理论分析完全相符,在振动源为5.245km时,系统的相对误差为2.6%,理论上最大监测距离大于100km。
     利用传输光纤中存在的后向瑞利散射光携带有光纤位置、外界振动等信息的特点,采用光纤迈克尔逊结构构成干涉型光时域反射仪,有望分布式传感沿光纤的微小振动信号。文中设计了一种新型结构的分布式光纤振动传感器,该传感器用3dB耦合器将1310nm激光分为两路相干光:参考光纤和传感光纤,它们中的后向瑞利散射光在耦合器处发生干涉,干涉信号的变化点对应着振动点所在位置。将没有振动信号、加微小振动信号和加损耗干扰三种情况分别作用于传感光纤进行试验对比,结果表明:在微小振动的情况下,光强变化微弱;加损耗时光强变化显著,初步试验定位准确度在92%以上,通过进一步软件校正还可大大提高此准确度。
Distributed optical fiber sensor technology is based on the lengthways characteristic of the fiber. It puts the measured parameters as a function of fiber length, and can maintain the external physical parameters throughout the fiber path continuously. It offers a way to measure the physical parameters of the spatial distribution and time-varying state at the same time for industry and research fields, and it has been widely used in intelligent vehicles, smart bridges, highways, major buildings, gas pipeline monitoring and fiber optic cable monitoring.
     The distributed optical fiber vibration sensors are studied in this dissertation. Two specific structures, which are based on Sagnac structure and Michelson structure OTDR respectively, are analyzed and studied in detail.
     The basic principle of a distributed optical fiber vibration sensor based on Sagnac structure is studied in this dissertation. Different from traditional Sagnac ring, this system uses a 3×3 fiber coupler to divide the laser and to bring a phase bias, a 1×2 fiber coupler to return the laser, a straight optical fiber as sensor component and a LD pulse light source. The laser's wavelength is 1316.7nm. It not only resolves a low-power incidence problem of the continuous light source, but also evades the stimulated Brillouin scattering threshold limit. By detecting the exchange component of the interference light intensity, finding out the zero frequency, the vibration spot can be located. The detection sensitivity and the maximum detection range of this system structure are also further analyzed. The experiment by using a PZT phase modulator to simulate the vibration demonstrates: the experimentation result accords with the theoretical analysis; when the vibration is 5.245km far away from the 1×2 fiber coupler, the relative error of location is 2.6% and the largest monitoring distance is more than 100km in theory.
     Since the Rayleigh backscattering in optical fiber contains some information, just as the location of dispersion and vibration, an OTDR with fiber Michelson structure is designed, in order that the tiny vibration along the sensor fiber could be monitored. A simple novel distributed vibration sensor system is proposed is this dissertation. In this system, the 1310nm laser source is divided by a 3dB coupler into two coherent light beams: the sensing light beam and the reference light beam. When the Rayleigh Backscattering in the two optical fibers transmits back to the coupler, it would interfere. The place where the interference light changes is the place where vibration occurs. Under the three conditions of no vibration, tiny vibration and a light-loss on fiber, we experiment respectively and observe the difference. Conclusion: Under the condition of tiny vibration, the light is changed faintly, but the light is changed obviously and the location is precise with a light loss.
引文
[1]李香华.POTDR传感技术的研究:[硕士学位论文].成都:电子科技大学,2008
    [2] Bernini, L. CroccoA. Minardo, F. Soldoveieri. All frequency domain distributed fiber-optic Brillouin sensing. IEEE Sensors Journal. 2003.(3): 36-43
    [3] M. J. Garcia, J. A. Ortega, et al. A novel distributed fiber-optic strain sensor. IEEE transaction on Instrumentation and Measurement. 2002.51(4): 685-690
    [4]于涛.分布式光纤应变传感系统设计与研究: [硕士学位论文].燕山:燕山大学,2005
    [5]邓大鹏,李洪顺,林初善.一种新型光纤光缆窃听及监测技术研究.光通信研究, 2007,4:55-58
    [6]端木承中.美国最新窃听手段:切开海底光缆.国际间谍:22-24
    [7] Marek Chojnacki, Bogdan Kizlik, Wieslaw Ciurapinski. Distributed sensor of vibration in fiber optic Michelson’s Interferometer Configuration. Lviv-Slavsko, Ukraine, VI-th International Conference the Experience of Designing and Application of CAD Systems in Microelectronics. 2001:183-186
    [8] Paul R. Hoffman, Mark G. Kuzyk. Position Determination of an Acoustic Burst Along a Sagnac Interferometer. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2004,22(2): 494-498
    [9]何存富,杭利军,吴斌等.基于Sagnac光纤干涉仪的管道泄露监测装置.中国发明专利,200610113044.0,2007-03-21
    [10]周琰,靳世久,栗大超等.干涉型分布式光纤管道泄露实时监测方法及装置.中国发明专利, 200410020046.6, 2005-03-23
    [11]陈伟民,谭靖.用于长途管线安全监测的光纤干涉型自动监测方法及系统.中国发明专利,200410040282.4,2005-03-23
    [12]王茜.光纤微振动传感器:[硕士学位论文].成都:电子科技大学,2007
    [13]孙琪真,刘德明,王健.基于环结构的新型分布式光纤振动传感系统.物理学报,2007, 56(10):5903-5908
    [14] Garcia-Souto, JA, and Rivera H L. Multichannel fiber-optic interferometric sensor formeasurements of temperature and vibrations in composite materials. IEEE Journal on Selected Topics in Quantum Electronics. 2000,6(5): 780-787
    [15] Pannell C N, Jones JDC Jackson D A. The effect of environmental acoustic noise on opticalfibre based velocity and vibration sensor systems. Measurement Science &Technology. 1994, 5(4): 412-417
    [16]倪玉婷,吕辰刚,葛春风等.基于OTDR的分布式光纤传感器原理及其应用.光纤与光缆及其应用技术,2006,(1):1-4
    [17] PAKERT R, FARHADIROUSHAN M, HANDEREK V A, et al. A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter[J]. IEEE Photonics Technology Letter,1997,9(7):979-981.
    [18] BAO X, WEBB D T, JACKSON D A. Recent progress in distributed fiber optic sensors based on Brillouin scattering. Proceeding of SPIE-The International Society for Optical Engineering,1995,2507:175-185.
    [19] UCHIYAMAH, SAKAIRI Y, NOZAKI T. An optical fiber strain distribution measurement instrument using the new detection method[J]. ANDOTechnical Bulletin, 2002:52-60.
    [20] KURASHIMAT, TATEDAM, KOYAMADAY. Performance improvement of a combined OTDR for distributed strain and loss measurement by randomizing the reference light polarization state. IEEE Photonics Technology Letter, 1997,9(3):360-362.
    [21]张丹,施斌,吴智深等.BOTDR分布式光纤传感器及其在结构健康监测中的应用.土木工程学报,2003,36(11):83-87
    [22]岳慧敏,代志勇,刘永智等.BOTDR分布式光纤传感器研究进展.激光杂志, 2007,28(4):4-5
    [23] Dakin J P, Pratt D J, Bibby G W, Ross J N. Distributed optical fibre Roman temperature sensor using a semiconductor light source and detector. IEEE photonics Technology Letters.1985.21(13): 569-570
    [24] Rogers A , et a1.Distributed optical-fibre sensing. Proc. SPIE. 1991.15(11):2-24
    [25]黄尚廉等.分布式光纤温度传感系统的研究.仪器仪表学报.1991.12 (4 ): 359-364
    [26]张在宣等.激光拉曼型分布光纤温度传感系统.光学学报.1995.15(11): 1585-1589
    [27]汤林.光纤应变测量系统设计:[硕士学位论文].南京:南京航空航天大学,2006
    [28] June-Ho Lee, Dae-Yong Shin, Tae-Ho Kwon, et al. Ultrasonic Location using the Sagnac interferometric optical fiber sensor in underwater. Proceedings of the 7th International Conference on Properies and Applications of Dielectric Materials. 2003,475-478
    [29]戴金, B. Culshaw, J Dakin.光纤传感器.华中理工大学出版社,1997.7
    [30]杭利军,何存富,吴斌等.新型分布式光纤管道泄漏检测技术及定位方法研究.光学学报, 2008, 28(1):123-127
    [31] James S. Sirkis, Yu-Lung Lo.Simultaneous Measurement of Two Strain Components Using 3 x3 and 2 x 2 Coupler-Based Passive Demodulation of Optical Fiber Sensors. JOURNAL OF LIGHTWAVE TECHNOLOGY, 1994,12(12):2153-2161
    [32] Stephanus J. Spammer, Pieter L. Swart, Anatoli A. Chtcherbakov. Merged Sagnac–Michelson Interferometer for Distributed Disturbance Detection. JOURNAL OF LIGHTWAVE TECHNOLOGY, 1994,15(6):972-976
    [33] Tae Seong Jang, Seung Seok Lee, I1 Bum Kwon, et al.Noncontact Detection of Ultrasonic Waves Using Fiber Optic Sagnac Interferometer. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, 2002, 49(6):767-775
    [34] Ki Ho Han, Wang Joo Lee, Byoung Yoon Kim. Fiber-Optic Sensor Array Based on Sagnac Interferometer with Stable Phase Bias. IEEE PHOTONICS TECHNOLOGY LETTERS, 2001, 13( 2):148-150
    [35]何毅.分布式相位调制型光纤振动传感器信号处理技术研究:[硕士学位论文].武汉:华中科技大学,2006
    [36] M. K. Barnoski, S. M. Jensen. Fiber waveguides: A novel technique for investigation attenuation characteristics. Appl. Opt. 1976 .15:2112-2115
    [37]杨福先.基于OTDR的分布式光纤微弯测试系统的研究:[硕士学位论文].南京:南京航空航天大学,2006
    [38] Wavetek. Guideto Fiber Optic Measurements. Wavetek Saint-Etienne,1997,3(1):4-5
    [39] M. P. Gold, A. H. Hartog, Measurement of backscatter factor in single-mode fibers, Electron. Letter, 1981,17:965-966
    [40] A. H. Hartog, M. P. Gold, On the theory of backscattering in single-mode optical fiber, J. LightWave Techonl, 1984, LT-2:76-82
    [41]卢坤.基于光纤迈克尔逊干涉现象的应变测量系统设计:[硕士学位论文].南京:天南京航空航天大学,2005
    [42]波恩,沃耳夫.光学原理.北京:电子工业出版社,2005,8:278-282
    [43]雷肇棣.光纤通信基础.西安:西安电子科技大学出版社,1997
    [44]刘永智,张利勋,代志勇.干涉型光时域反射仪.中国专利, 200810044737, 2008-10-22
    [45]郭永康,鲍培谛.光学教程.四川:四川大学出版社,1996,134-140
    [46]王彦溥.光纤传感的应用研究:[硕士学位论文].天津:天津大学,2006
    [47]刘欣.压电陶瓷(PZT)特性的分析及实验测试:[硕士学位论文].昆明:昆明理工大学,2006
    [48]吴东方.Sagnac干涉式光纤声传感器及其定位技术研究:[博士学位论文].上海:复旦大学,2008
    [49]杨明.基于光纤迈克尔逊干涉原理的应变测试系统设计:[硕士学位论文].南京:南京航空航天大学,2006
    [50]何存富,杭利军,吴斌.用于模拟声发射信号的PZT柱状相位调制器设计.北京工业大学学报,2006,32(8):683-687
    [51] http://baike.baidu.com/view/1620586.htm
    [52]陈力.基于ARM7的可见光光谱采集系统设计:[硕士学位论文].成都:电子科技大学,2008
    [53] Ziyi Zhang, Xiaoyi Bao. Continuous and Damped Vibration Detection Based on Fiber Diversity Detection Sensor by Rayleigh Backscattering. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2008, 26(7):832-838
    [54] Arthur H. Hartog, Martin P Gold. On the theory of backscattering in single-mode optical fibers. JOURNAL OF LIGHTWAVE TECHNOLOGY, 1984, LT-2(2):76-82
    [55] PETER GYSEL, ROLAND K. STAUBLI. Statistical Properties of Rayleigh Backscattering in Single-Mode Fibers. JOURNAL OF LIGHTWAVE TECHNOLOGY, 1990,8(4):561-567
    [56]叶玉堂,饶建珍,肖峻等.光学教程.北京:清华大学出版社. 2005,408-411
    [57]郭永康,鲍培谛.光学教程.四川:四川大学出版社,1996,134-140
    [58]刘增基,周洋溢,胡辽林等.光纤通信.西安:西安电子科技大学出版社,2003,31-32
    [59]范登华,刘永智,张利勋.一种具有迈克耳孙结构的新型光时域反射仪.红外,2009,30(7)
    [60]尚平,牛学忠,施斌.影响OTDR测量准确度的因素分析.铁道通信信号.2002,38(12):34-35

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700