用户名: 密码: 验证码:
大动态范围光时域反射计的实现与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光时域反射计(OTDR)是表征光纤传输特性的测量仪器,可测量整个光纤链路的衰减并提供与长度有关的衰减细节,同时能探测、定位和测量光纤链路上的事件,如:接头损耗、尾端反射等。在实际工程应用中,用于电信长距离的光纤通信系统的安装与维护,并能在单端非破坏性地迅速准确地确定光纤中断点的位置。
     本文介绍了OTDR的发展历史与研究现状,分析了其工作原理和主要技术指标。OTDR的技术指标最终都可以归结为动态范围的提高和对微弱信号的检测能力。可以通过取样积分、相干OTDR、脉冲编码等方式提高OTDR的动态范围。
     本次设计实现了一种基于嵌入式系统的OTDR,它在硬件上具有噪声小、AD采样率高、取样精度大的特点,分别提高了动态范围、距离分辨率与损耗值分辨率;在软件上借助高性能的ARM处理器与FPGA控制系统实现了数据的高速采集和复杂的数字处理,从软件的角度进一步提升了动态范围和距离分辨率。经实验得出,该OTDR的动态范围达到了国内外的先进水平,其设计优势与局限性都为以后的版本提供了重要的改进思路,也为此类移动手持OTDR的产品化提供了有价值的技术参考。
     通过将该OTDR应用于无源光网络(PON),验证了用波形对比法定位和测量PON支路事件的方法,同时对OTDR的动态范围等技术指标以及波形比较等功能提出了更高的要求与更新的挑战。
Optical time-domain reflectometry (OTDR) is an instrument to measure the transmission characteristics of fiber-link. It not only can measure the attenuation and report its detail with respect to distance along the fiber-link but also can monitor, locate and quantify any kind of events along the fiber such as slice loss, end point reflection and so on. In practical engineering application, the OTDR can be used in the installation and maintenance work in the long-haul fiber-optic communication system. It could accurately and rapidly locate the broken point along the fiber from one end without breaking the fiber.
     This paper introduces the history of development of OTDR and its status quo of research, analyzes the working principle and main technical specifications of OTDR. These technical specifications boil down to the improvement of dynamic range of OTDR and its capability of detecting weak signal as well. The dynamic range increase of OTDR could be achieved by coherent OTDR, co-related OTDR, sampling integration, pulse coding and so on.
     In this design we implement a new type of OTDR based on the embedded system. The hardware of this OTDR bears the strengths of low noise, high AD sample rate and high sample resolution, which promotes the dynamic range, distance resolution and loss value resolution of OTDR respectively; On the other hand, with the help of high performance device such as ARM processor and FPGA, we implement and high-rate data sampling and complicated digital processing, which improve the dynamic range and distance resolution of OTDR on a software bases. As shown by the experiments, the OTDR could boast itself among the advanced level in terms of dynamic range both at home and abroad. The achievement, strength in design and limits of this OTDR not only provide the methodology for improving in later version of development, but also offer the valuable technical reference for the manufacture of such kind of hand-held OTDR product.
     This OTDR is also put into use in the surveillance of PON architecture, which verifies the method of waveform comparison in the locating of fault events along the branches in PON. The experimental results also set higher requirements for the technical specifications and new function of OTDR such as dynamic range and waveform comparison. The OTDR is faced with more challenges in such kind of application.
引文
[1]张士文,殳国华.基于OTDR的光纤参数测量系统[J].光通信技术,2005(2): 56-57.
    [2]秦书乐.光纤到户(FTTH)及计量测试应对[J].上海计量测试,2005(4):8-11.
    [3] Walt Soto. Optical Testing for Passive Optical Networks[C]. OFC/NFOEC, 2008:1-3.
    [4] Nicholas Gagnon, AndréGirard, Michel Leblanc. Considerations and Recommendations for In-Service Out-of-Band Testing on Live FTTH Networks [C]. OFC/NFOEC, 2006:8-15.
    [5] Paul W. Shumate. Fiber-to-the-Home: 1977–2007 [J]. J. Lightwave Technology., 2008, 26(9):1093-1103.
    [6]卫正统.光传感技术简述[J].中国信息科技. 2007(22): 301-303.
    [7]吴晨平.基于DSP的OTDR信号处理. [硕士学位论文],成都:电子科技大学,2007: 1-2.
    [8]M.K.Barnoski,S.M.Jensen,Fiber waveguides:A novel technique for investigating attenuation characteristics,Appl.Opt,vo1.15,no.9,pp.2112-2115,1976.
    [9]S.D.Personik,Photon probe-an optical-fiber time-domain reflectpmeter,Bell syst.Tech.J., vo1.56,no.3,pp.355-366 1977.
    [10]E.Brinkmeyer,Backscattering in single-mode fibers,Electron.Lett,vo1.16,no.9,pp.329-330, 1980.
    [11]A.H.Hartog,M.P.Gold. On the theory of backscattering in single-mode optical fiber. J.LightWave Techonl,vo1.LT-2,pp.76-82,1984.
    [12]ANRITSU CORPORATION OPERATION MANUAL OPTICAL TIME DOMAIN REFLECTOMETER MW9040B,JUN.1992 Ver.W.
    [13]代志勇.高性能PC_OTDR技术研究:[硕士学位论文],成都:电子科技大学,2001,10-40.
    [14]沈美丽.基于DSP的光时域反射仪的研制:[硕士学位论文],长春:长春理工大学,2002,12-69.
    [15]朱磊.一种PC插卡式的OTDR的实现.军事通信技术,2002,vol23,42-46.
    [16] B. De Mulder, W. Chen, et al. Non-Intrusive Fiber Monitoring of TDM Optical Networks[J]. J. Lightwave Technology., 2007, 25(1):305-317.
    [17] Kuniaki Tanaka, Hisashi Izumita, et al. In-service Individual Line Monitoring and a Method for Compensating for the Temperature-dependent Channel Drift of a WDM-PON Containing an AWGR Using a 1.6 pm Tunable OTDR[C]. Integrated Optics and Optical Fibre Communications, 11th International Conference on, and 23rd European Conference on Optical Communications, 1997(3):295-298.
    [18] Habib Fathallah, Leslie A. Rusch. Code-division multiplexing for in-service out-of-band monitoring of live FTTH-PONs[J]. Journal of Optical Networking, 2007, 6(7):819-829.
    [19]原荣.光纤通信(第2版).电子工业出版社,2006,9.
    [20] M. Tateda and T. Horiguchi.Advances in optical time-domain reflectometry[J], J. LightwaveTechnology., 1989, 7(8): 1217-1224.
    [21] J. P. King, D. F. Smith, et al. Development of a Coherent OTDR Instrument[J], J. Lightwave Technology., 1987, LT-5(4): 616-624.
    [22] Hisashi Izumita, Yahei Koyamada, et al. Stochastic Amplitude Fluctuation in Coherent OTDR and a New Technique for Its Reduction by Stimulating Synchronous Optical Frequency Hopping[J], J. Lightwave Technology., 1997, 15(2): 267-278.
    [23] F. Sischka, F. Newton, S. A. Nazarathy, H&P Journal, 1988,Dec: 14 - 21.
    [24] M. Nakazawa, M. Tokuda, K. Washio and Y. Morishige. Marked Extension of Diagnosis Length in Optical Time-Domain Reflectometry Using 1.32μm YAG Laser. Electron. Lett., 1980(17):783.
    [25] J L Colliery, B J Goddard, etc. A low-cost gated integrator boxcar averager. Measurement Science and Technology, 1996, 7(9):1204-1211(8)
    [26]姜卓娇,于生宝等.基于取样积分技术的数据采集系统.吉林大学学报, 2007, 25(3): 233-238.
    [27] Kazumasa Takada, Akira Himeno. High Sensitivity and Submillimeter Resolution Optical Time-Domain Reflectometry Based on Low-Coherence Interference. J. Lightwave Technology., 1992, 10(12): 1998-2005.
    [28] Hisashi Izumita, Yahei Koyamada. The Performance Limit of Coherent OTDR Enhanced with Optical Fiber Amplifiers due to Optical Nonlinear Phenomena. J. Lightwave Technology., 1994, 12(7): 1230-1238.
    [29] Michael D. Jones. Using Simplex Codes to Improve OTDR Sensitivity. J. Lightwave Technology., 1993, 15(7): 822-824.
    [30] Duckey Lee, Hosung Yoon, etc. Optimization of SNR Improvement in the Noncoherent OTDR Based on Simplex Codes. J. Lightwave Technology., 2006, 24(1): 322-328.
    [31]王丽敏,芮雄丽,陆履豪.基于PC机的OTDR系统的研究及软硬件实现工业控制计算机[J],2006, 19(10): 35-36, 38.
    [32]梁爽,王怀江.OTDR事件分析和故障判断的研究和实现[J].光通信技术, 2007(1): 49-51.
    [33] W. Chen, B. De Mulder, et al. Embedded OTDR Monitoring of the Fiber Plant behind the PON Power Splitter[C]. Proceedings Symposium IEEE/LEOS Benelux Chapter, Eindhoven, 2006:13-16.
    [34] Nnriyuki Araki, Hisashi Izumita, et al. High spatial resolution PON measurement using an OTDR enhanced with a dead-zone-free signal analysis method[C]. Optical Fiber Measurements, 2004:69-72.
    [35] K. Yuksel, S. Dupont, et al. FTTx automated test solution: requirements and experimental implementation[J]. Electronics Letters, 2005, 41(9):546-547.
    [36] J. Laferriere, M. Saget, et al. Original method for analyzing multipaths networks by OTDR measurement[C]. OFC’97, 1997:99-101.
    [37] Yoshitaka Enomoto, Hisashi Izumita, Masahito Arii. Optical fiber management and testing system for PON enhanced with identification technologies using a mobile access terminal with a two-dimensional code scanner and fault isolation technologies using high spatial resolution OTDR[J]. J. Lightwave Technology., 2007, 6(5):408-414.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700