用户名: 密码: 验证码:
后交叉韧带断裂对内侧半月板影响的生物力学和组织学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
后交叉韧带(posterior cruciate ligament, PCL)在膝关节动态稳定性中发挥重要作用,是膝关节保持后向稳定性的主要结构。半月板是膝关节的重要组成部分,具有吸收震荡、传递负荷、维持膝关节稳定等重要功能。研究发现,PCL损伤可引起膝关节产生骨关节炎,且发现PCL损伤后关节软骨退变以膝关节内侧间室及髌股关节最为明显。内侧半月板是膝关节内侧间室胫股关节的重要缓冲结构,然而PCL损伤是否影响内侧半月板,研究甚少。为此,本研究拟采用生物力学测定的方法,观察PCL完全断裂和部分断裂对内侧半月板应变的影响;运用组织学方法,观察PCL损伤后内侧半月板组织形态学的变化,同时检测MMP1、MMP13、TIMP1的表达,以了解其在内侧半月板退变中的作用机制;测量PCL完全断裂和部分断裂后内侧半月板的周缘性移位,探讨PCL不同断裂程度对内侧半月板移位的影响及移位发生的机制,为PCL损伤继发内侧半月板的损伤提供早期正确诊治的理论依据。
     目的探讨PCL断裂对内侧半月板生物力学特性的影响。
     方法新鲜成人正常膝关节标本12具(PCL完整组),膝关节0°、30°、60°、90°位,在200N、400N、600N、800N、1000N载荷下,测试内侧半月板前角、体部和后角的应变;然后将标本随机分为前外侧束(ALB)切断组和后内侧束(PMB)切断组,各6具,造模后,同法测试;再将12具标本的PCL完全切断(PCL全断组),同法测试。采用SPSS 17.0 forWindows进行统计学分析,检验水准α=0.05,即当P<0.05时有统计学意义。
     结果1.①膝0°位,内侧半月板前角、体部、后角的应变均为压应变。②膝0°位,在200N载荷下,内侧半月板前角、体部和后角的应变在PCL完整组、ALB切断组、PMB切断组、PCL全断组各组之间均无显著性差异,均P>0.05。③膝0°位,在400N、600N载荷下内侧半月板前角、体部、后角的应变在PCL完整组和ALB切断组之间无显著性差异,P>0.05,在PMB切断组和PCL全断组之间无显著性差异,P>0.05;前角和体部在PCL完整组和ALB切断组的应变绝对值均小于PMB切断组和PCL全断组的应变绝对值,均P<0.05;后角在PCL完整组和ALB切断组的应变绝对值均大于PMB切断组和PCL全断组的应变绝对值,均P<0.05。④膝0°位,在800N和1000N载荷下,内侧半月板前角、体部、后角的应变在各实验组之间均有显著性差异,均P<0.05;前角和体部的应变绝对值表现为PCL完整组ALB切断组>PMB切断组>PCL全断组。
     2.①膝关节30°、60°位,在200N、400N、600N载荷下,内侧半月板前角的应变在PCL完整组和PMB切断组为拉应变,两组之间无显著性差异,P>0.05;应变在ALB切断组和PCL全断组为压应变,两组之间无显著性差异,P>0.05。内侧半月板体部的应变均为压应变,在PCL完整组和PMB切断组之间无显著性差异,P>0.05;在ALB切断组和PCL全断组之间无显著性差异,P>0.05;PCL完整组和PMB切断组的应变绝对值均小于ALB切断组和PCL全断组的应变绝对值,均P<0.05。内侧半月板后角的应变在PCL完整组和PMB切断组为压应变,两组之间无显著性差异,P>0.05;应变在ALB切断组和PCL全断组为拉应变,两组之间无显著性差异,P>0.05。
     ②膝关节30°、60°位,在800N、1000N载荷下,内侧半月板前角的应变在PCL完整组和PMB切断组为拉应变,在ALB切断组和PCL全断组为压应变;应变绝对值在PCL完整组>PMB切断组,P<0.05,ALB切断组PMB切断组,P<0.05, ALB切断组     3.膝关节90°位,在各实验载荷下,内侧半月板前角的应变在PCL完整组和PMB切断组为拉应变,在ALB切断组和PCL全断组为压应变,应变绝对值在PCL完整组>PMB切断组,P<0.05,在ALB切断组PMB切断组,P<0.05,ALB切断组     结论1.膝0°位,在200N载荷下,PMB切断和PCL完全切断对内侧半月板前角、体部和后角的应变均无影响。2.膝0°位,在400N、600N、800N、1000N载荷下,PMB切断和PCL完全切断对内侧半月板前角、体部和后角的应变均有影响。3.在200N、400N、600N载荷下,ALB切断在膝0°位和PMB切断在膝关节屈曲30°、60°位对内侧半月板前角、体部和后角的应变均无影响。4.在800N和1000N载荷下,ALB切断在膝关节0。位和PMB切断在屈膝30°、60°位对内侧半月板前角、体部和后角的应变均有影响。5.在各实验载荷下,ALB切断在屈膝30°、60°、90°位和PMB切断在屈膝90°位对内侧半月板前角、体部和后角的应变均有影响。6.在各实验载荷下,屈膝30°、60°、90°位,PCL完全切断对内侧半月板前角、体部和后角的应变均有影响。
     目的探讨PCL断裂对内侧半月板组织学的影响。
     方法48只兔双侧膝关节配对为实验侧和对照侧,实验侧行PCL完全切断造模,造模后第4、8、16、24周各随机处死12只,行内侧半月板大体观察,并进行HE染色,免疫组化检测MMP1、MMP13、TIMP1表达。
     结果1.大体观察,随时间延长,实验组内侧半月板出现磨损,甚至撕裂,呈黄色,弹性差。2.组织学观察,随时间延长,半月板表面不平整,组织疏松,胶原纤维排列紊乱,间质水肿,软骨细胞变性减少。各时间点实验组和对照组组织学退变评分均有显著性差异,实验组评分均高于对照组,均P<0.05。不同时间点实验组间组织学退变评分均有显著性差异,均P<0.05,评分第24周>第16周>第8周>第4周。3.各时间点实验组MMP1、MMP13、TIMP1表达均高于对照组,均有显著性差异,P<0.05。4.实验组MMP1表达阳性率第8周高于第4周,有显著性差异,P<0.05;第16周、第24周均高于第4周和第8周,均有显著性差异,均P<0.05;第16周和第24周无显著性差异,P>0.05。5.实验组MMP13阳性表达率第8周和第16周均高于第4周和第24周,均有显著性差异, P<0.05;第24周高于第4周,有显著性差异,P<0.05;第8周和第16周无显著性差异,P>0.05。6.实验组TIMP1表达阳性率第8周高于第4周、第16周和第24周,均有显著性差异,均P<0.05;第16周高于第4周和第24周,均有显著性差异,均P<0.05;第24周和第4周无显著性差异,P>0.05。
     结论1.PCL断裂可引起内侧半月板组织退变,随时间延长而加重。2.MMP13、TIMP1在PCL断裂膝关节内侧半月板中的表达呈先增高后降低的变化规律。3.MMP1在PCL断裂膝关节内侧半月板中的表达呈先增高后持续高表达的变化规律。4.MMP1、MMP13、TIMP1在PCL断裂后内侧半月板组织中异常表达提示MMP1、MMP13、TIMP1介导的病理生理机制可能是PCL断裂后内侧半月板退变的原因之一。
     目的探讨PCL断裂对内侧半月板周缘性移位的影响以及不同断裂程度与周缘性移位程度之间的关系。
     方法新鲜成人正常膝关节标本12具(PCL完整组),在200N、400N、600N、800N、1000N载荷下,测量膝关节0°、30°、60°、90°位内侧半月板周缘性移位,然后将标本随机分为前外侧束(ALB)切断组和后内侧束(PMB)切断组,各6具,造模后,同法测试;再将12具标本的PCL完全切断(PCL全断组),同法测试。采用SPSS 17.0forWindows进行统计学分析,检验水准α=0.05,即当P<0.05时有统计学意义。
     结果1.膝关节0°位,在200N、400N、600N载荷下,PCL全断组和PMB切断组内侧半月板移位无显著性差异,P>0.05;PCL完整组和ALB切断组内侧半月板移位无显著性差异,P>0.05;内侧半月板移位在PCL全断组和PMB切断组均大于PCL完整组和ALB切断组,均有显著性差异,均P<0.05;在800N、1000N载荷下,各组内侧半月板移位均有显著性差异,均P<0.05,移位在PCL全断组>PMB切断组>ALB切断组>PCL完整组。2.膝关节屈曲30°、60°,在200N、400N、600N载荷下,PCL完整组和PMB切断组内侧半月板移位无显著性差异,P>0.05;ALB切断组和PCL全断组内侧半月板移位无显著性差异,P>0.05;内侧半月板移位在ALB切断组和PCL全断组均大于PCL完整组和PMB切断组,均有显著性差异,均P<0.05;在800N、1000N载荷下各组间内侧半月板移位均有显著性差异,均P<0.05,移位在PCL全断组>ALB切断组>PMB切断组>PCL完整组。3.膝关节屈曲90°,在200N、400N、600N、800N、1000N载荷下,各组间内侧半月板移位均有显著性差异,均P<0.05,移位在PCL全断组>ALB切断组>PMB切断组>PCL完整组。
     结论1.ALB断裂后内侧半月板在膝关节屈曲30°、60°、90°时周缘性移位明显增大,提示ALB断裂主要影响内侧半月板在膝关节屈曲位稳定性。2.PMB断裂后内侧半月板在膝关节0°位及屈曲90°位时移位明显增大,提示PMB断裂主要影响内侧半月板在膝关节伸直位和屈曲90°位稳定性。3.PCL完全断裂后内侧半月板移位在膝关节屈曲、伸直时均明显增大。4.以上提示,PCL损伤后早期重建有助于恢复膝关节稳定性。
The posterior cruciate ligament (PCL) provides dynamic stability to knee by preventing posterior translation of the tibia relative to the femur. The role of medial meniscus is shocks absorption,stress transmission, and stabilization of the knee joint. They influence each other in maintaining the stability of knee joint. With the development of MRI and arthroscope, early diagnosis and treatment of PCL injury turns to be easily achieved, Additionally, some studies have shown that the beginning of arthritis within a PCL-deficient knee could be caused by abnormal kinematics, but it is little known whether deficiency of PCL effects on the medial meniscus. Therefore, more comprehension of the histological effect and biomechanics effect of PCL rupture on medial meniscus is of great value and meaning on prevention and cure of medial meniscus injury and osteoarthrosis caused by PCL rupture. In this study,straining changes in several sites of medial meniscus caused by PCL injury is observed through biomechanics approach; histological changes of meniscus and expression of MMP1, MMP13and TIMP1 in medial meniscus are observed so as to investigate the function of MMP1, MMP13 and TIMP1 in degeneration of medial meniscus; circumferentia displacement of medial meniscus after PCL injury is measured, so as to provide theoretical evidence whether deficiency of PCL effects on the medial meniscus.
     OBJECTIVE The effect of PCL injury in several sites of medial meniscus by measuring biomechanics is observed so as to explore the mechanism of medial meniscus injury after PCL rupture.
     METHOD The straining of medial meniscus anterior horn, caudomedial part and posterior horn in all fresh normal adult knee joint specimens including 12 specimens of complete PCL,6 of anterolateral bundle (ALB) rupture,6 of posteromedial bundle (PMB)rupture and 12 of complete rupture PCL are tested when the knee joints loaded 200N,400N,600N,800N,1000N at 0°,30°,60°and 90°of flexion.
     RESULT 1.①The straining of medial meniscus anterior horn, caudomedial part and posterior horn are negative values (pressing strainings) at 0°of flexion.②The straining of medial meniscus anterior horn, caudomedial part and posterior horn shows no significant difference among all the groups under the loads of 200N at 0°of flexion,P >0.05;③The straining of medial meniscus anterior horn, caudomedial part and posterior horn shows no significant difference between PMB rupture group and PCL complete rupture group, between complete PCL group and ALB rupture group under the load of 400N and 600N at 0°of flexion,P>0.05;④significant difference is showed among all the groups under the loads of 800N and 1000N at 0°of flexion,P<0.05, under the same load and angle of flexion, the correlation of the absolute value of straining in every group of medial meniscus anterior horn and caudomedial part increases in this way of PCL complete rupture group > PMB rupture group> ALB rupture group> complete PCL group,and of posterior horn increases in this way of PCL complete rupture group< PMB rupture group     2.①The straining of medial meniscus anterior horn in complete PCL group and PMB rupture group are pulling strainings, and in ALB rupture group and PCL complete rupture group are pressing straining at 30°,60°of flexion.The straining of medial meniscus caudomedial part in all groups are pressing strainings, at 30°,60°of flexion. The straining of medial meniscus posterior horn in complete PCL group and PMB rupture group are pressing strainings,and in ALB rupture group and PCL complete rupture group are pulling strainings at 30°,60°of flexion.
     ②The straining of medial meniscus anterior horn,caudomedial part and posterior horn shows no significant difference between ALB rupture group and PCL complete rupture group,between complete PCL group and PMB rupture group under the loads of 200N,400N,600N at 30°,60°of flexion,P> 0.05.③The straining of medial meniscus anterior horn,caudomedial part and posterior horn shows significant difference in all groups under the load of 800N and 1000N at 30°,60°of flexion,P<0.05. The absolute value of anterior horn straining(pressing straining) in ALB rupture group< PCL complete rupture group, the absolute value of anterior horn straining(pulling straining) in complete PCL group>PMB rupture group. The correlation of the absolute value of caudomedial part straining in every group increases in this way of PCL complete rupture group> ALB rupture group>PMB rupture group > complete PCL group.The the absolute value of posterior horn straining(pulling straining) in ALB rupture group< PCL complete rupture group, The the absolute value of posterior horn straining(pressing straining) in complete PCL group>PMB rupture group.
     3.①The straining of medial meniscus anterior horn in complete PCL group and PMB rupture group are pulling strainings at 90°of flexion,and in ALB rupture group and PCL complete rupture group are pressing strainings at 90°of flexion.The straining of medial meniscus caudomedial part in all groups are pressing strainings at 90°of flexion.The straining of medial meniscus posterior horn in complete PCL group and PMB rupture group pressing strainings, and in ALB rupture group and PCL complete rupture group are pulling strainings at 90°of flexion.②The straining of medial meniscus anterior horn,caudomedial part and posterior horn shows significant difference in all groups under different load at 90°of flexion,P<0.05. The absolute value of anterior horn straining(pressing straining) in ALB rupture group< PCL complete rupture group, The absolute value of anterior horn straining(pulling straining) in complete PCL group> PMB rupture group. The correlation of the absolute value of medial meniscus caudomedial part straining in every group increases in this way of PCL complete rupture group> ALB rupture group>PMB rupture group> complete PCL group.The absolute value of posterior horn straining(pulling straining) in ALB rupture group< PCL complete rupture group. The absolute value of posterior horn straining(pressing straining) in complete PCL group>PMB rupture group.
     CONCLUSION 1.Under the load of 200N PCL complete rupture, PMB rupture at 0°of flexion cause no effect on the straining in all regions of medial meniscus.2.Under the load of 400N,600N and 800N, PCL complete rupture and PMB rupture at 0°of flexion is likely to cause abnormal straining in all regions of medial meniscus.3. Under the load of 200N,400N and 600N, ALB rupture at 0°of flexion and PMB rupture at 30°,60°of flexion cause no effect on the straining in all regions of medial meniscus.4. Under the load of 800N and 1000N, ALB rupture at 0°of flexion and PMB rupture at 30°, and 60°of flexion cause apparently effect on the straining in all regions of medial meniscus.5. Abnormal straining in all regions of medial meniscus can be caused by ALB rupture at 30°,60°,90°of flexion and PMB rupture at 90°of flexion under different load.6. Abnormal straining in all regions of medial meniscus can be caused by PCL rupture at 30°,60°,90°of flexion under different load.
     OBJECTIVE Study the effect on medial meniscus which was caused by rupture of PCL.
     METHOD Medial meniscus of 48 rabbits matched mode pairs both in experiment side which PCL were transacted and control side, at the 4th,8th,12th,16th and 24th week, execute 12 rabbits randomly, then to observe medial meniscus in general and through HE staining and immunohistochemisty staining, detect the expression of MMP1, MMP13 and TIMP1.
     RESULT 1. The observation in general showed that along with the increase of the time medial meniscus of experiment group gradually wore, even ruptured, presenting yellow and bad elasticity.2. Along with the increase of the time the observation of histology shows uneven surface of meniscus, loose tissue, disorder of collagen fibers, interstitial edema and deformation of intracytoplasm mitochondrion in the chondrocytes. Histological evaluation of the degeneration in fibrocartilage of meniscus in both groups:The scores at the 4th,8th,12th, 16th and 24th week were higher in the experimental group than those in the control group,showing significant difference, P<0.05; the scores of experimental group at the 24th week group> 16th week group> 8th week group> 4th week group,showing significant difference, P<0.05.3. At the4th,8th,16th and 24th week, expression of MMP1, MMP13 and TIMP1 is higher in experimental group than that in control group,showing significant difference, P<0.05.4. In experimental group, expression of MMP1 is higher at the 8th than that at 4th week, showing significant difference, P<0.05, expression of MMP1 is higher at the 16th and 24th week than that at 4th and 8th week, showing significant difference, P<0.05, and there is no significant difference between the 16th and 24th week,P>0.05.5. In experimental group, expression of MMP13 is higher at the 8th and 16th week than that at 4th and 24th week,showing significant difference, P<0.05, expression of MMP13 is higher at the 24th week than that at 4th week, showing significant difference, P<0.05,but there is no significant difference between the 8th and 16th week, P>0.05. 6. In experimental group, expression of TIMP1 is higher at the 8th week than that at 4th,16th and 24th week,showing significant difference, P< 0.05; expression of TIMP1 is higher at the 16th week than that at 4th and 24th week, showing significant difference, P<0.05, but there is no significant difference between the 4th and 24th week, P>0.05.
     CONCLUSION 1. Rupture of PCL could cause the degeneration of medial meniscus.2. A regularity of expression of MMP13 andTIMP1 is displayed that the expression is increasing in primal stage and decreasing in advanced stage after rupture of PCL.3. A regularity of expression of MMP1 is displayed that the expression is increasing in primal stage and keeping high level in advanced stage after rupture of PCL.4. MMP1, MMP13,TIMP1 play an important role in the degeneration of medial meniscus.
     OBJECTIVE To explore the effect of PCL rupture on medial meniscus circumferentia displacement and the correlation between the degree of PCL rupture and circumferentia displacement.
     METHOD The circumferentia displacement of medial meniscus in all fresh normal adult knee joint specimens including 12 specimens of complete PCL,6 of anteriolateral bundle(ALB) rupture,6 of posteromedial bundle rupture(PMB) and 12of complete rupture PCL are tested when the knee joints loaded 200N,400N,600N,800N and 1000N at 0°,30°, 60°and 90°of flexion.
     RESULT 1. At 0°of flexion and under the loads of 200N,400N and 600N, the circumferentia displacement of medial meniscus between PCL complete rupture group and PMB rupture group shows no significant difference, P>0.05; between complete PCL group and ALB rupture group shows no significant difference, P>0.05; the circumferentia displacement of medial meniscus in PCL complete rupture group and PMB rupture group>complete PCL group and ALB rupture group, P< 0.05. There is significant difference among each group under the load of 800N and 1000N at 0°of flexion, P<0.05, the correlation of the circumferentia displacement of medial meniscus in every group increases in this way of PCL complete rupture group> PMB rupture group> ALB rupture group> complete PCL group.
     2. Under the loads of 200N,400N and 600N, the circumferentia displacement of medial meniscus between complete PCL group and PMB rupture group, PCL complete rupture group and ALB rupture group shows no significant difference at 30°、60°of flexion, P>0.05, the circumferentia displacement of medial meniscus in PCL complete rupture group and ALB rupture group> complete PCL group and PMB rupture group, P<0.05.Under the loads of 800N and 1000N, the circumferentia displacement among every group shows significant difference at 30°,60°of flexion, P<0.05, the correlation of the circumferentia displacement of medial meniscus in every group increases in this way of PCL complete rupture group> ALB rupture group>PMB rupture group> complete PCL group.
     3. Under the loads of 200N,400N,600N,800N and 1000N the circumferentia displacement among every group shows significant difference at 90°of flexion, P<0.05, the correlation of the circumferentia displacement of medial meniscus in every group increases in this way of PCL complete rupture group> ALB rupture group>PMB rupture group > complete PCL group.
     CONCLUSION 1. The circumferentia displacement of medial meniscus in ALB rupture group at flexed position of the knee joint becomes bigger than that in complete PCL group.2.The circumferentia displacement of medial meniscus in PMB rupture group at straight position and 90°flexed position of the knee joint becomes bigger than that in complete PCL group.3.The circumferentia displacement of medial meniscus becomes big at all position of the knee joint when the PCL is ruptured completelyAALL the above may draw a conclusion that early reestablishment of the PCL help to maintain the stability of knee after PCL injury.
引文
[1]Race A, Amis AA. Loading of the two bundles of the posterior cruciate ligament:an analysis of bundle function in a-P drawer. J Biomech,1996,29 (7):873-879.
    [2]吕厚山,主译.膝关节外科学.北京人民卫生出版社,2006:45.
    [3]Seedhom BB, Dowson D, Wright V. Proceedings:Function of the menisci, A preliminary study. Ann Rheum Dis,1974,33:111.
    [4]Li G, Gill TJ, DeFrate LE, et al. Biomechanical consequences of PCL deficiency in the knee under simulated muscle loads:an in vitro experimental study. J Orthop Res,2002,20(4):887-892.
    [5]Skyhar MJ, Warren RF, Ortiz GJ, et al. The effects of sectioning of the posterior cruciate ligament and the posterolateral complex on the articular contact pressure within the knee. J Bone Joint Surg Am,1993,75:694-699.
    [6]MacDonald P, Miniaci A, Fowler P, et al.A biomechanical analysis of joint contact forces in the posterior cruciate deficient knee. Knee Surg Sports Traumatol Arthrosc,1996,3:252-255.
    [7]Maquet PG, Van de Berg AJ, Simonet JC. Femorotibial weight-bearing areas. Experimental determination. J Bone Joint Surg Am,1975,57:766-771.
    [8]Ahmed AM, Burke DL, Yu A. In-vitro measurement of static pressure distribution in synovial joints-Part II:Retropatellar surface. J Biomech Eng,1983, 105:226-36.
    [9]Keller PM,Shelbourne KD,Mc Carroll JR, et al.Nonoperatively treated isolated posterior cruciate ligament injuries Am J Sports Med 1993,21:132-136.
    [10]Boynton MD,Tietjens BR. Long-term followup of the untreated isolated posterior cruciate ligament-deficient knee Am J Sports Med 1996,24:306-310.
    [11]Allen CR, Kaplan LD, Fluhme DJ,et al. Posterior erueiate ligament injuries. Curt Opin Rheumatol.2002,14:142-149.
    [12]汪爱媛,卢世璧,马志鹏,等.压敏片成像分析系统的研制及生物力学应用.北京生物医学工程,2001,20(4):282-284.
    [13]Warner JJP, Bowen MK, Deng XH, et al. Articular contact patterns of the normal glenohumeral joint. J Shoulder Elbow Surg,1998,7(4):381-388.
    [14]Thambyah A, Goh JCH, Das De S.Contact stresses in the knee joint in deep flexion.Med Eng Phys,2005,27:329-335.
    [15]Donahue TL, Hull ML, Rashid MM, et al. A finite element model of the human knee joint for the study of'fibio-femoral contact. J Biomech Eng,2002, 124:273-280.
    [16]高士廉.实用解剖图谱(第二版).上海科技出版社,2006:219.
    [17]Hame SL, Markolf KL, Hunter DM, et al. Effects of notchplasty and femoral tunnel position on excursion patterns of an anterior cruciate ligament graft。 Arthroscopy,2003,19:340-345.
    [18]Loh JC, Fukuda Y, Tsuda E, et al. Knee stability and graft function following anterior cruciate ligament reconstruction:Comparison between 11 o'clock and 10 o'clock femoral tunnel placement. Arthroscopy,2003,19:297-304.
    [19]Kurosawa H, Yamakoshi K,Yasuda K, et al. Simultaneous measurement of changes in length of the cruciate ligament during knee motion. Clin Orthop Relat Res,1991,265:233-240.
    [20]Makris CA, Georgoulis AD, Papageorgiou CD, et al. Posterior cruciate ligament architecture:evaluation under microsurgical dissection. Arthroscopy, 2000,16(6):627-632.
    [21]Shelbourne KD, Muthukaruppan Y. Subjective results of nonoperatively treated, acute, isolated posterior cruciate ligament injuries. Arthroscopy,2005, 21:457-461.
    [22]Parolie JM, Bergfeld JA. Long-term results of nonoperative treatment of isolated posterior crueiate ligament injuries in the athlete. Am J Sports Med.1986, 14:35-38.
    [23]MaeGillivray JD, Stein BE, Park M, et al. Comparison of tibinl inlay versus tramtibial techniques for isolated posterior eruciate ligament reconstruction: minimum 2 year follow-up. Arthroscopy,2006,22:320-328.
    [24]Harner CD,Janaushek MA, Kanamori A, et al. Biomechanical analysis of a double-bundle posterior cruciate ligament reconstruction. Am J Sports Med,2000, 28(2):144-151.
    [25]Markolf KL, Feeley BT, Jackson SR, et al. Biomechanieal Studies of Double-Bundle Posterior Cruciate Ligament Reconstructions. J Bone Joint Surg(Am),2006.88:1788-1794.
    [26]Zhao J, Xiaoqian H, He Y, et al. Sandwich-style posterior crueiate ligament reconstruction. Arthroseopy,2008,24:650-659.
    [1]李国军,李康华,朱勇,等.免前交叉韧带断裂后外侧半月板的组织学退变.中国组织工程研究与临床康复,2009,13(20):3873-3876.
    [2]Geissler WB, Whipple TL. Intraarticular abnormalities in asso-clarion with posterior cruciate ligament injuries. Am J Sports Med,1993,21 (6):846-849.
    [3]Keller PM, Shelbourne KD, McCam,ll JR, et al. Nonoperatively treated isolated posterior cruciate ligament injuries. Am J Sports Med,1993,21(1):132-136.
    [4]王健,敖英芳.后交叉韧带断裂继发关软骨退行性变的实验研究.中国运动医学杂志2004,23(5):476-479.
    [5]Allen CR, Kaplan LD, Fluhme DJ.et al. Posterior erueiate ligament injuries. Curt OpinRheumat01.2002,14:142-149.
    [6]Fowler PJ, Messiah SS. Isolated posterior cruciate ligament injuries in athletes. Am J Sports Med,1987,15:553-557.
    [7]Brindle T, Nyland J, Johnson DL. The meniscus:review of basic principles with application to surgery and rehabilitation. J Athl Train,2001,36(2):160-169.
    [8]沙川华.膝关节半月板疲劳状态下组织结构变化的初步研究.西南民族大学学报,2007,33(2):326-329.
    [9]Reddi AH.Aging,osteoarthritis and transforming growth factor-beta signaling in cartilage.Arthritis Res Ther,2006,8(1):101.
    [10]Nagase H, Woessner JF. Matrix metalloproteinases. J Biol Chem,1999, 274 (31):21491-21494.
    [11]Gomez DE, Alonso DF, Yoshiji H, et al.Tissue inhibitors of metalloprotein--ases:structure, regulation and biological functions. Eur J Cell Biol,1997 74(2):111-122.
    [12]Ishiguro N, Ito T, Oguchi T, et al. Relationships of matrix metalloproteinases and their inhibitors to cartilage proteoglycan and collagen turnover and inflammation as revealed by analyses of synovial fluids from patients with rheumatoid arthritis. Arthritis Rheum,2001,44(11):2503-2511.
    [13]Ogata Y, Miura K, Ohkita A, et al. Imbalance between matrix metalloprot--einase 9 and tissue inhibitor of metalloproteinases 1 expression by tumor cells implicated in liver metastasis from colorectal carcinoma. Kurume Med J,2001, 48(3):211-218.
    [14]Close DR. Matrix metalloproteinase inhibitors in rheumatic diseases. Ann Rheum Dis,2001,60 (Suppl 3):62-67.
    [15]Lafleur MA, Hollenberg MD, Atkinson SJ, et al. Activation of pro-(matrix metalloproteinase-2)(pro-MMP-2) by thrombin is membrane-type-MMP-dependent in human umbilical vein endothelial cells and generates a distinct 63 kDa active species. Biochem J,2001,357(1):107-115.
    [16]Murphy G, Stanton H, Cowell S, et al. Mechanisms for promatrix metalloproteinase activation. APMIS,1999,107(1)::38-44.
    [17]魏平,付爽,王俊祥.基质金属蛋白酶3在类风湿关节炎中的表达及其意义临床荟萃.2006,21(19):1389-1390.
    [18]Hemandez Barrantes S, Bernardo M, Toth M, et al. Regulation of membrane type - matrix metalloproteinases. Semin Cancer Biol,2002,12(2): 131-138.
    [19]Kerkela E,Bohling T,Herva R, et al. Human macrophage metalloelastase (MMP-12)expression is induced in chondrocytes during fetal development and malignant transformation. Bone,2001,29(5):487-493.
    [20]Rhee JS, Diaz R, Korets L, et al. TIMP-1 alter susceptibility to carcinogenesis.Cancer Res,2004,64 (8):952-961.
    [21]Hulboy DL Rudolph LA, Mstrisian LM. Matrix metalloproteinases as mediators of reproductive function. Molecular Human Reproduction,1997,3(1): 27-45.
    [22]管剑龙,施桂英.基质金属蛋白酶与骨关节炎.中华风湿病学杂志,2000,4:54-56.
    [23]亓建洪,赵庆华,刘延菊,等.白细胞介素-1β对人软骨细胞基质金属蛋白酶-13mRNA表达的作用.中华风湿病学杂志,2005,9(3):138-141.
    [24]Hashimoto S, Ochs RL, Komiya S, et al. Linkage of chondrocyte apoptosis and cartilage degradation in human osteoarthritis, Arthritis Rheumm,1998, 41:1632-1638.
    [25]王健,敖英芳.后交叉韧带断裂和重建对兔膝关节软骨退变的影响 中华外科杂志2005,4(24):1598-1601.
    [26]Fernandesjc, Martel-Pelletier J, Lascau-Coman V, et al. Collagenase-I and collagenase-3 synthesis in normal and early experimental osteoarthritic canine cartilage:an immunehistochemical study. JRheumatol,1998,25(8):1585.
    [27]吴洪斌,杜靖远,胡勇,等.兔前交叉韧带切断骨关节炎模型中MMP-1,MMP-13及TIMP-1的mRNA表达研究.中华风湿病学杂志,2002,6(3):169
    [28]Tanaka S, Hamanish C, Kikuchi, et al.Factors related to degradation of articular cartilage in osteoarthritis:a review.Semin Arthritis Rheum,1998,27 (3): 332-339.
    [1]Vedi V, WilliamsA, Tennant SJ, et allMeniscalmovement:an invivo study using dynamic MRI J Bone Joint Surg Br,1999,81:37-41.
    [2]陈坚,吕厚山,劳山等,膝关节半月板周缘性移位现象的初步MRI研究中华放射学杂志,2006,40(6):612-615.
    [3]Breitenseher MJ, Trattnig S, Dohrocky I, et al. MR imaging of meniscal subluxation in the knee. Acta Radiol,1997,38:876-879.
    [4]George M, Wall EJ. Locked knee caused by meniscal subluxation:magnetic resonace imaging and arthroscopic verification. Arthroscopy,2003,19:885-888.
    [5]Rubin DA, Britton CA. Towers JD. et al. Are MR imaging signs of meniscocapsular separation valid? Radiolosy,1996,201:829-836.
    [6]Miller TT, Staron RB, Feldman F, et al. Meniscal position on routine MR imaging of the knee. Skeletal Radial,1997,26:424-427.
    [7]Pagnani MJ, Cooper DE, Warren RF. Extrusion of the medial meniscus, Arthroscopy,1991,7:297-300.
    [8]Renstrom P, Johnson RJ. Anatomy and biomechanics of the menisci. Clin Sports Med,1990,9:523-538.
    [9]Smith FB, Blair HC.Tibial collaterall ligament strain due to occult derangements of the medial meniscus:conformed by operation in thirty case.J Bone Joint Surg Am,1954,36:88-132.
    [10]Kenny C. Radial displacement of the medial meniscus and Fairbank,s signs. Clin Orthop Relat Res,1997,339:163-173.
    [11]Thompson WO, Thaete FL, Fu FH, et al. Tibial meniscal dynamics using three-dimensional reconstruction of magnetic resonance images. Am J sports Med, 1991,19(3):210-215.
    [12]Greis PE, Bardana DD, Holmstrom MC, et al. Meniscal injury:Ⅰ. Basic science and evaluation.J Am Acad Orthop Surg,2002,10(3):168-176.
    [13]Greis PE, Holmstrom MC, Bardana DD, et al. Meniscal injury:Ⅱ Management. J Am Acad Orthop Surg,2002,10(3):177-187.
    [14]Boxheimer L, Lutz AM, Treiber K, et al. MR imaging of the knee:position related changes of the menisci in asymptomatic volunteers. Invest Radiol,2004,39: 254-263.
    [15]Muhle C, Thompson WO, Sciulli R, et al. Transverse ligament and its effect on meniscal motion. Correlation of kinematic MR imaging and anatomic sections.Invest Radiol,1999,34(9):558-565.
    [16]Pagnani MJ, Cooper DE, Warren RF. Extrusion of the medial meniscus. Arthroscopy,1991,7(3):297-300.
    [17]Von Eisenhart-Rothe R, Bringmann C, Siebert M, et al. Femoro-tibial and menisco-tibial translation patterns in patients with unilateral anterior cruciate ligament deficiency-a potential cause of secondary meniscal tears. J Orthop Res, 2004,22(2):275-282.
    [18]Englund M, Roos EM, Roos HP, et al. Patient-relevant outcomes fourteen years after meniscectomy:influence of type of meniscal tear and size of resection. Rheumatology (Oxford),2001,40(6):631-639.
    [19]Chun-Hao Wu, Jiann-Jong Liau,, Cheng-Kung Cheng, The meniscal extrusion and tibial translation of incomplete or complete PCL rupture knee during passive flexion, Journal of Biomechanics.2007,40:575.
    [20]George M, Wall EJ. Locked knee caused by meniscal subluxation:magnetic resonance imaging and arthroscopic verification. Arthroscopy,2003,19:885-888.
    [21]王希强,刘世恩,郭永存,等.膝关节半月板损伤MR1分级与半月板半脱位的相关性分析.中国临床医学影像杂志,2007,18:657-660.
    [22]Stone KR, Stoller DW, Irving SG, et al.3D MRI volume sizing of knee meniscus cartilage. Arthroscopy,1994,10:641-644.
    [23]陈坚,劳山,吕厚山,等.膝关节半月板周缘性脱位现象及其临床意义.中华骨科杂志,2005,25:426-430.
    [24]黄竞敏,王植,赵力,等.半月板损伤的MRI诊断与关节镜所见的比较研究.中华骨科杂志,2003,23:403-407.
    [25]Naredo E, Cabero F, Palop MJ, et al.Ultrasonographic findings in knee osteoarthritis:a comparative study with clinical and radiogramphic assessment. Osteoarthritis and Cartilage,2005,13(7):568-574.
    [26]Ko CH,Chan KK,Peng HL.Sonographic imaging of meniscal subluxation in patients with radiographic knee osteoarthritis. Journal of the Formosan Medical Association,2007,106(9):700-707.
    [27]Verdonk P, Depaepe Y, Desmyter S, et al.Normal and transplanted lateral knee menisci:evaluation of extrusion using magnetic resonance imaging and ultrasound. Knee Surgery Sports Traumatology Arthroscopy,2004,12(5):411-419.
    [28]Ikeuchi K, Sakoda H, Sakaue R, et al. A new method for accurate measurement of displaycement of the knee menisci. Pro Inst Mech Eng,1998, 212(3):183-188.
    [29]Costa RC, Morrison WB. Medial meniscus extrusion on knee MRI:Is extent associated with severity of degeneration or type of tear? Am J Roentgenol,2004,183 (1):17-23.
    [1]Race A, Amis AA. Loading of the two bundles of the pos2terior cruciate ligament:an analysis of bundle function in a-P drawer. J Biomech,1996,29 (7): 873-879.
    [2]吕厚山.主译.膝关节外科学.北京人民卫生出版社.2006:45.
    [3]Girgis FG, Marshall JL, Monajem A. The cruciate ligaments of the knee joint. Anatomical, functional and experimental analysis. Clin Orthop Relat Res,1975, (106):216-231.
    [4]陶澄,何爱咏,王万春.膝关节后交叉韧带解剖研究及临床意义.中国临床解剖学杂志,2007,25(2):176-178.
    [5]许本柯,杨云平,彭天红,等.带血供半腱肌肌腱转位重建膝交叉韧带的应用解剖.中国临床解剖学杂志,2000.18(1):19-20.
    [6]Davis TJ, Shelbourne KD,Klootwyk TE. Correlation of the intercondy-lar notch of the femur to the width of the anterior and posterior cruciate ligaments. Knee Surg Sports Traumatol Arthrosc.1999,7:209-214.
    [7]Kurosawa H, Yamakoshi K,Yasuda K, et al. Simultaneous measurement of changes in length of the cruciate ligament during knee motion. Clin Orthop Relat Res,1991,265:233-240.
    [8]Makris CA, Georgoulis AD, Papageorgiou CD, et al. Posterior cruciate ligament architecture:evaluation under microsurgical dissection. Arthroscopy, 2000,16(6):627-632.
    [9]Amis AA, Gupte CM, Bull AM, et al. Anatomy of the posterior cruciate ligament and the meniscofemoral ligament s. Knee Surg Sports Traumatol Arthrosc, 2006,14(3):257-263.
    [10]Sheps DM, Otto D, Fernhout M. The anatomic characteristics of the tibial insertion of the posterior cruciate ligament. Arthroscopy,2005,21 (7):820-825.
    [11]Edwards A, Bull AM, Amis AA. The attachment s of the fiber bundles of the posterior cruciate ligament:an anatomic study. Arthroscopy,2007,23 (3):284- 290.
    [12]Harner CD, Baek GH, Vogrin TM, et al. Quantitative analysis of human cruciate ligament insertions. Arthroscopy,1999,15 (7):741-749.
    [13]刘平,敖英芳.膝关节后交叉韧带股骨止点与韧带重建股骨骨道定位的临床解剖学研究.中国运动医学杂志,2008,27(3):270-274.
    [14]Takahashi M.,Matsubara T.,Doi M.,Suzuki D.,Nagano A. (Anatomical study of the femoral and tibial insertions of the anterolateral and posteromedial bundles of human posterior cruciate ligament Knee Surg Sports Traumatol Arthrosc,2006,14 (11):1055-1059.
    [15]Amis AA, Bull AMJ, Gupte CM, et al. Biomechanics of the PCL and related structures:posterolateral, posteromedial and meniscofemoral ligaments. Knee Surg Sports Traumatol Arthrosc,2003,11(5):271-281.
    [16]Butler DL, Kay MD,Stouffer DC. Comparison of material properties in fascicle-bone units from human patellar tendon and knee ligaments. J Biomech,1986, 19 (6):425-432.
    [17]Race A, AmisAA. The mechanical properties of the two bundles of the human posterior cruciate ligament. J Biomech,1994,27 (1):13-24.
    [18]Harner CD, Xerogeanes JW,Livesay GA,et al,The human posterior cruciate ligament complex:an interdisciplinary study.Ligament morphology and biomechanical evaluation,Am J Sports Med,1995,23 (6):736-745.
    [19]Harner CD, Janaushek MA, Ma CB, et al.The effect of knee flexion angle and application of an anterior tibial load at the time of graft fixation on the biomechanics of a posterior cruciate ligament-reconstructed knee, Am J Sports Med,2000,28(4):460-465.
    [20]Li G; Papannagari R,; Li M, et al. Effect of posterior cruciate ligament deficiency on in vivo translation and rotation of the knee during weightbearing flexion,Am J Sports Med,2008,36 (3):474-479.
    [21]Race A, AmisAA. Loading of the two bundles of the posterior cruciate ligament:an analysis of bundle function in A-P drawer, J Biomech,1996,29 (7):873 -879.
    [22]Amiri S; Cooke D; Kim I Y; Wyss U Mechanics of the passive knee joint. Part 2:interaction between the ligaments and the articular surfaces in guiding the joint motion, Proc Inst Mech Eng,2007,221(8):821-832.
    [23]Papannagari R, Defrate LE, Nha KW, et al. Function of posterior cruciate ligament bundles during in vivo knee flexion. J Sports Med (Am),2007, 35:1507-1512.
    [24]Jordan SS, DeFrate LE, Nha KW. The in vivo kinematics of the anteromedial and posterolateral bundles of the anterior cruciate ligament during weightbearing knee flexion. J SportsMed (Am),2007,35 (4):547-554.
    [25]Grood ES, Stowers SF, Noyes FR. Limits of movement in the human knee. Effects of sectioning the posterior cruciate ligament and posterolateral, structures. J Bone Joint Surg (Am),1988,70(1):88-97.
    [26]Apsingi S.Nguyen T.Bull AM The role of PCL reconstruction in knees with combined PCL and posterolataral corner deficiency.Am J Sports Med,2008,36 (3):487-494;
    [27]Robinson JR, Sanchez2Ballester J, Bull AM, et al. The posterome2dial comer revisited. An anatomical descrip tion of the passive restraining structures of the medial aspect of the human knee. J BoneJoint Surg(Br),2004,86 (5):674-681
    [28]Warren LF, Marshall JL. The supporting structures and layers on the medial side of the knee. An anatomical analysis. J Bone Joint Surg(Am),1979,61 (1):56-62.
    [29]Robinson JR, Bull AM, Thomas RR, et al. The role of the medial collateral ligament and posteromedial cap sule in controlling knee laxity. J SportsMed (Am), 2006,34 (11):1815-1823.
    [30]Gup te CM, Bull AM J, Thomas RD, et al. The meniscofemoral ligaments: secondary restraints to the posterior drawer. Analysis of anteroposterior and rotatory laxity in the intact and posterior cruciate deficient knee. J Bone Joint Surg(Br), 2003,85 (5):765-773.
    [31]Gollenhon DL, Torzilli PA, Warren RF:The role of postero-lateral and cruciate ligaments in human knee stability a biomechanical study J Bone Joint Surg(Am),1987,69(2):233-242.
    [32]Robinson JR, Bull AM, Thomas RR, et al. The role of the medial collateral ligament and posteromedial cap sule in controlling knee laxity. J SportsMed (Am), 2006,34 (11):1815-1823.
    [33]Fowler PJ, Messiah SS. Isolated posterior cruciate ligament injuries in athletes. Am J Sports Med 1987; 15:553-557.
    [34]Clancy WGJ, Shelbourne KD, Zoellner GB, et al. Treatment of knee joint instability secondary to rupture of the posterior cruciate ligament:report of a new procedure. J Bone Joint Surg Am 1983; 65:310-322.
    [35]Lee HG. Avulsion fracture of the tibial attachments of the cruciate ligaments. J Bone Joint Surg Am 1937,19:460-468.
    [36]Abbot LC, Saunders JB, Bost FC, et al.Injuries to the ligaments of the knee joint. J Bone Joint Surg Am 1944; 26:503-521.
    [37]Margheritini F, Rihn J, Musah V. Posterior cruciate ligament injuries in the athletes2an anatomical, biomechanical and clinical review. Sport s Med,2002,32 (6):393-408.
    [38]Rubinstein RA Jr,Shelboume KD,McCarroll JR, et al. The accuracy of the clinical examination in the setting of posterior crueiate ligament injuries. Am J Sports Med,1994,22:550-557.
    [39]王子彬,王华东,刘汝落.俯式抽屉试验诊断后交叉韧带损伤中国矫形外科杂志1999,6(11):869.
    [40]Sonin AH, Fitzgerald SW, Friedman H, et al. Posterior cruciate ligament injury:MR imaging diagnosis and patterns of injury. RadiologY,1994,190:455-458.
    [41]Riel KA,Reinisch M,Kersting Sommerhoff B,et al.0.2-Tesla magnetic resonance imaging of internal lesions of the knee joint:a prospective arthroscopically controlled clinical study. Knee Surg Sports Traumatol Arthrose.1999; 7(1):37-41.
    [42]Servant CT,Ramos JP,Thomas NP. The accuracy of magnetic resovance imaging in diagnosing chronic posterior cruciate ligament injury. Knee,2004,11: 265-270.
    [43]Boks SS, Vroegindeweij D, Knes BW, et al. Follow-up of posttraumarie ligamentous and meniscal knee lesions detected at MR imaging:systematic creview. Radiology,2006,238:863-871.
    [44]Keller P.M.,Shelbourne K.D.,McCarroll J.R.,Rettig A.C. Nonoperatively treated isolated posterior cruciate ligament injuries Am J Sports Med,1993,21, 132-136.
    [45]Boynton MD,Tietjens B.R. Long-term followup of the untreated isolated posterior cruciate ligament-deficient knee Am J Sports Med,1996,24,306-310.
    [46]Allen CR, Kaplan LD, Fluhme DJ,et al. Posterior erueiate ligament injuries. Curt Opin Rheumat01.2002,14:142-149.
    [47]Parolie JM, Bergfeld JA. Long-term results of nonoperative treatment of isolated posterior crueiate ligament injuries in the athlete.Am JSports Med.1986,14: 35-38.
    [48]Sbelboacne KD, Muthukaruppan Y. Subjective results of nonoperatively treated, acute, isolated posterior eruciate ligament injuries. Arthroscopy,2005, 21:457-461.
    [49]MaeGillivray JD, Stein BE, Park M, et al. Comparison of tibial inlay Versus tramtibial techniques for isolated posterior cruciate ligament reconstruction minimum 2 year follow-up. Arthroscopy,2006,22:320-328.
    [50]Seon JK, Song EK. Reconstruction of isolated posterior cmciate ligament injuries:a clinical comparison of the transtibial and tibial inlay techniques. Arthroseopy,2006,22:27-32.
    [51]Markolf KL, Feeley BT, Jackson SR, et al. Biomechanieal Studies of Double-Bundle Posterior Cruciate Ligament Reconstructions. J Bone Joint Surgn (Am),2006,88:1788-1794.
    [52]Zhao J, Xiaoqian H, He Y, et al. Sandwich-style posterior crueiate ligament reconstruction. Arthroseopy,2008,24:650-659.
    [53]Trieb K, BIabovec H, Brand G,et al. In vivo and in vitro cellular ingrowth into a new generation of artificial ligaments. Eur Stag Res,2004,36:148-151.
    [54]Li B, Wen Y, Wu H, et al. Arthroscopic single-bundle posterior cruciate ligament reconstruction:retrospective review of hamstring tendon graft versus LARS artificial ligament. Int Orthop,2008,25:991-996.
    [55]Fanelli GC. Posterior Cruciate ligament rehabilitation:how slow should we go?Arthroscopy,2008,24:234-235.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700