用户名: 密码: 验证码:
HFC网络的全数字接收技术和MAC层研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
用户接入网已成为了B-ISDN和信息高速的“瓶颈”问题。混合光纤/同轴电缆(HFC)网络是目前很有竞争力的宽带用户接入技术之一,有望解决信息高速公路的“最后一公里”问题。
     HFC网络的关键在于上行信道多址接入技术。这需要解决两个主要问题:(1)设计合理有效的MAC协议,以解决多用户共享系统带宽资源问题;(2)物理层的突发模式传送技术。采用全数字接收技术可以减少突发接收机的前导字开销,从而提高信道传送效率,并且接收机的全数字化实现可以提高接收机的稳定性、兼容性和可重复性,具有很好的经济效益。本文的研究工作就是针对上述问题展开的。
     第一章:回顾了HFC网络的发展背景、历史和现状。介绍了HFC网络上行信道的特性。概述了突发模式传送和全数字接收技术。
     第二章:系统而全面地论述了全数字接收机的基本理论和实现方法问题。首先分析了数字化前端的模拟预滤波、采样率和中频配置等问题。深入研究了全数字极大似然最佳接收机的算法和结构。指出,全数字极大似然最佳接收机算法中包含非因果操作,是复杂、不可物理实现的,但是它可以作为次最优可实现算法和结构的基础。接着,详细分析了获得全数字接收机的可实现算法和结构的两种途径。深入讨论和研究了全数字接收机中的特殊问题—插值滤波器的设计和控制问题。指出全数字接收机采用多项式内插函数的主要理由是多项式插值滤波器易于硬件实现。最后给出一种新的多项式插值滤波器设计技术。
     第三章:讨论了在多址接入信道上,往往需要实现的两极同步:网络同步和突发同步,并深入研究了突发同步问题。详细分析了全数字突发模式载波和位时钟同步技术。以多址接入信道上广泛采用的QPSK调制信号为模型,给出一类特定图案的前导字及基于该前导字的全数字突发模式快速同步参数恢复算法。同时,也给出了一种全数字无前导字突发模式PSK信号解调方案。讨论了HFC网络上行多址接入信道的特性和各种抗干扰技术,给出了基于MCNS协议的HFC网络上行多址接入信道全数字突发模式发射和接收机的具体实观。
     第四章:讨论了适合HFC网络上行信道的两种多址接入技术:TDMA/FDMA和CDMA。深入研究了基于TDMA/FDMA的HFC网络MAC技术。分析比较了IEEE 802.14和MCNS协议的性能。详细研究了HFC网络用户站点加入过程。研究了HFC网络的DS-CDMA上行多址接入技术,主要是物理层方面要解决的一些问题。
The access networks have become the bottleneck of B-ISDN and Information Superhighway in their development. The Hybrid Fiber/Coax ( HFC ) network is one of the broadband access networks with high competitive power, and is expected to be the solution of the "last mile" for the Information Superhighway.
    The thesis presents the study of the MAC protocols and burst mode transmission techniques, which are the two key aspects in HFC networks. All digital implementation of burst mode modulators and demodulators is preferred for its advantages.
    Chapter 1: Survey the fundamental and development of HFC networks, burst mode transmission techniques and all digital modulation and demodulation techniques.
    Chapter 2: The fundamental theory and implementation methodology of all digital receiver are studied. Firstly , this paper analyses a series of problems caused within the sampling and quantifying process, including analog prefiltering. sampling rate and IF configuration, etc. The ML-Function and optimal digital receiver algorithm and structure are then studied thoroughly, which are nonrealizable since it contains noncausal operations. After that . two approaches from which realizable algorithm and structure can be derived are discussed. The special and also key aspects , interpolation filters design and control . of all digital receivers are studied thoroughly. The paper states that polynomial based interpolators are not optimal, but they can be efficiently implemented using Farrow structure. At last . a new synthesis technique for polynomial based interpolators is proposed.
    Chapter 3: Firstly, two levels of synchronization, network synchronization and burst synchronization, usually to be performed in the multiple access system are discussed. After that, burst synchronization is studied thoroughly. The author proposes a dedicated algorithm for clock and carrier synchronization in a QPSK demodulator, which is based on the use of a very short special carrier preamble modulated by a known pattern. An all digital preambleless burst mode PSK demodulator is also proposed and studied. The upstream channel characteristics of HFC network and anti-noise and interference techniques are then analysed. At last, this paper introduces the function implementation of all digital burst mode modulator and demodulator for upstream channel, which is compatible with MCNS Specification. The hardware frame figures and photos are also given.
    Chapter 4: Firstly, the performance of TDMA/FDMA and CDMA in the upstream channel is discussed. The MAC protocol for HFC network based on TDMA/FDMA is studied thoroughly. After that , the performance of IEEE802.14 Protocol and MCNS Protocol is analysed and compared. The station acquisition process is also studied. At last , the key techniques on physical dependent layer of DS-CDMA upstream scheme are studied.
引文
[1] Gagnaire M.. An overview of broad-band access technologies. Proc. of the IEEE. 1997,85(12) : 1958-1972.
    [2] Malek M.. Broadband access technologies and operations. ISCC. 1998: 680-684.
    [3] Ims L.A.. et al.. Economics of residential broadband access network technologies and strategies. IEEE Network Magazine, 1997,11(1) : 51-57.
    [4] Im G.H.,Werner J.J.. Bandwidth efficient digital transmission over unshielded twisted-pair wiring. IEEE Journal On SAC,1995,13(9) :1643-1655.
    [5] Lechleider j.w.. High bit rate digital subscriber lines: a review of ADSL progress. IEEE Journal On SAC,1991,9(6) :769-784.
    [6] Kyees P.J., et al.. ADSL: a new twisted-pair access to the information highway. IEEE Communication Magazines, 1995,33(4) :52-60.
    [7] Oksman V, Werner J.J.. Single carrier modulation technology for very high-speed digital subscriber line. IEEE Communication Magazines, 2000,38(5) :82-89.
    [8] Correira L.M., Prasad R.. An overview of wireless broadband communications. IEEE Communication Magazines, 1997,3 5 (1) :28-33.
    [9] Noerpel A.R., Yi-Bing Lin. Wireless local loop: architecture, technologies and services. IEEE Personal Communications, 1998;5(3) :74-80.
    [10] 郭梯云 ,杨家玮,李建东。《数字移动通信》,人民邮电出版社,1996.
    [11] Global CDMA II for IMT-2000 RTT System Description (version 1. 1) , TTA, June 1998.
    [12] The CDMA 2000 ITU-R RTT Submission, TIA TR54. 4, June 1998.
    [13] Lamaire R.O., et al.. Wireless LANS and mobile networking: standards and future directions. IEEE Communication Magazines. 1996,34(8) :86-94.
    [14] Seidman L.P.. Satellites for wideband access. IEEE Communication Magazines, 1996,34(10) :108-111.
    [15] Driel C.T.J., et al.. The (R)evolution of access networks for the information superhighway. IEEE Communication Magazines, 1997,35(6) :104-112.
    [16] Bisdikian C., et al.. Cable access beyond the hype: on residential broadband data services over HFC networks. IEEE Communication Magazines. 1996,34(11) :128-135.
    [17] Lai W.S., Jewell S.T.. Hybrid Fiber-Coax systems. SPIE, 1995,2609:23-24.
    [18] 王健成。混合光纤/同轴电缆(HFC)网络MAC层研究。浙江大学博士学位论文, 1999. 6
    [19] Wood T.H., Feldman R.D.. Fiber access in USA: systems and implication for devices. IEICE Trans. Electron, 1997,E80-C(1) :9-16.
    [20] Mcgarty T.P., Clancy G.J.. Cable-based metro area networks. IEEE Journal On SAC, 1983,1(5) :816-831.
    [21] ENNIS G., Filice P.. Overview of broadband local area network protocol architecture. IEEE Journal On SAC, 1983,1(5) :832-841.
    [22] Combs D.. Hybrid Fiber Coax Network Architecture. SPIE, 1996,2917:6-12.
    [23] Sierens C., et al.. A system study of alternative approaches for upstream transmission in ATM based HFC system. SPIE, 1996,2917:87-98.
    [24] DAVIC 1. 1 Specification, Digital Audio-Visual Council, Geneva, Switzerland, 1996.
    [25] IEEE Project 802. 14 /a Draft 3 Revision /, April 1998.
    [26] Laubach M.. Using ATM over Hybrid Fiber-Coax Networks. SPIE, 1995,2609:22-32.
    [27] Cable Television Laboratories, Inc., Data-over-cable Service Interface Specifications: Radio Frequency Interface Specification. SP-RFIV1. 1-I01-990311,1999.
    
    
    [28] Bisdikian C, et al.. MLAP:A MAC level access protocol for the HFC 802. 14 Network. IEEE Communication Magazines, 1996,34(3) : 114-121.
    [29] Sala D., Limb J.O.. A protocol for efficient transfer of data over fiber/coax systems. Proc. IEEE INFOCOM 1996:904-911.
    [30] Sriram K., et al. An adaptive MAC-Layer protocol for multiservice digital access via tree and branch communication networks. SPIE, 1995. 2609:10-21.
    [31] Angelopoulos J.D., Orphanoudakis T.G.. A MAC method offering high utilization of the return channel in HFC systems. SPIE, 1996,2917:131-141.
    [32] Forney G.D.,Lee-Fang W.. Multimentional constellations-part I: introduction, figures of Merit, and generalized cross constellations. IEEE Journal of SAC,1989,7(6) :877-892.
    [33] Ungerboeek G..Trellis-coded modulation with redundant signal sets-part I: Introduction. IEEE Communication magazine,1987,25(2) :5-11.
    [34] Szu-Lin S.,et al..A new combination of block coded modulation and trellis coded modulation. Globecoml991:34. 2. 1-34. 2. 5.
    [35] Hirosaki B.. Advanced groupband data modem using orthogonally multiplexed QAM techniques. IEEE Trans. Com., 1986,34(6) :587-592.
    [36] William Y.Z.,Yiyan W.. COFDM: an overview. IEEE Trans. Broadcasting, 1995. 41(1) : 1-7.
    [37] Ruiz A.. Discrete multiple tone modulation with coset coding for the spectrally shaped Channel. IEEE Trans. com.,1992,40(6) :I012-I029.
    [38] Proakis J.G. Digital communications. 3rd version, McGraw-Hill Inc.,1995.
    [39] Im G.H., et al.. 51. 84Mb/s 16-CAP ATM LAN standard. IEEE Journal on SAC, 1995, 13(4) : 620-632.
    [40] Goldsmith A.J.,Chua S.G.. Variable-rate power MQAM for fading channels. IEEE Trans. com.,1997,45(10) :1218-1230.
    [41] Andren C.,Webster M.. CCK modulation delivers 11Mbps for high rate, IEEE 802. 11 extension. Wireless symposium/portable by design conference.1999:l-10.
    [42] Mitola J.. The software radio architecture. IEEE Communications Magazine.l995. 33(5) :26
    [43] Lackey R.J.. Upmal D.W.. Speakeasy: The military software radio. IEEE Communication Magazine ,1995,33(5) :56-61.
    [44] Srikanteswara S., et al.. A soft radio architecture for reconfigurable platforms. IEEE Communications Magazine, 2000, 38(2) : 140-147.
    [45] Tsurumi H., Suzuki Y. Broadband RF stage architecture for software-defined radio in handheld terminal applications. IEEE Communications Magazine. 1999, 37(2) .90-95.
    [46] Bada A.M., Maddiotto M.. Design and realization of digital radio transceiver using software radio architecture. IEEE VTC 2000-Spring: 1727-1731.
    [47] Sawai R., et al.. Adaptive symbol timing synchronization method based on maximum likelihood estimation for the realization of multi-mode & multi-service software radio. IEEE VTC 2000-Spring: 1276-1280.
    [48] Tuttlebee W.H.W.. Software radio technology: a European perspective. IEEE Communications Magazine, 1999, 37(2) : 118-131.
    [49] Kam.P.Y. Maximum likelihood carrier phase recovery-for linear suppressed-camer digital data modulation. IEEE Trans. Com., 1986, 34(6) : 605-627.
    [50] Oerder M., Meyr H.. Digital filter and square timing recovery. IEEE Trans. Com., 1988,
    
    36(5) : 605-611.
    [51] Ascheid G., Oerder M., Stahl J., Meyr H.. An all digital receiver architecture for bandwidth efficient transmission at high data rates. IEEE Trans. Com., 1989, 37(8) :804-813.
    [52] Oerder M., Meyr H.. VLSI implementation of synchronization algorithm in a 100M bits/s digital receiver. Globecoml990: 589-593.
    [53] Gardner F.M.. Interpolation in digital modems-part I: fundamentals. IEEE Trans. Com.. 1993, 41(3) : 501-507.
    [54] Erup L, Gardner F.M.. Interpolation in digital modems-part II: implementation and Performance. EEEE Trans. Com., 1993,41(6) :998-1008.
    [55] Armstrong J., Strickland D.. Symbol synchronization using samples and interpolation. IEEE Trans. Com., 1993,41(2) :318-321.
    [56] Kim D., Narasimha M.J., Cox D.C.. Design of optimal interpolation filter for symbol timing recovery. IEEE Trans. Com., 1997,45(7) :877-884.
    [57] Gottscheber A., Fines P., Ayhvami.A.H.. Combined interpolator filter for timing recovery in a fully digital demodulator. Proc. ICC1994: 1467-1471.
    [58] Vesma J., Saramaki T. Interpolation filters with arbitrary frequency response for all digital Receivers. Proc. IEEE Int. Symp. Circuits & Syst, 1996: 568-571.
    [59] 樊平毅,冯重熙。全数字接收机中插值滤波器的设计--全响应线性调制信号的插值问题。电子科学学刊, 1997, 19(2) : 217-223.
    [60] Sabel L.P.. On the BER performance of digital demodulators using fixed point FIR interpolators. IEEE Int. Conf. Universal Personal Com.,1994:215-219.
    [61] Meyr H.. Subramanian R. Advanced digital receiver principles and technologies for PCS. IEEE Communication Magazines, 1995,33 (1) : 68-78.
    [62] Vesma J., Renfors M., Rinne J.. Comparison of efficient interpolation techniques for symbol timing recovery. Globecom 1996:953-957.
    [63] Tuukkanen V, Vesma J., Renfors M.. Combined interpolation and maximum likelihood Symbol timing recovery in digital receivers. IEEE Int. Conf. Universal Personal Com. 1997:698-702.
    [64] Vesma J., Saramaki T, Renfors M.. Combined matched filter and polynomial-based interpolator for symbol synchronization in digital receivers. IEEE Int. Symp. Circuits &Syst.,1999: 94-97.
    [65] Gardner P.M. Timing Adjustment via interpolation in digital demodulators. European space Agency. ESTEC contract No 8022/88/NL/DG. Final report, 1991.
    [66] Zivojnovic V, Meyr H.. Design of optimum interpolation filters for digital demodulators. IEEE Int. Symp. Circuits & Syst., 1993: 140-143.
    [67] Meyr H., Oerder M., and Polydoros A.. On sampling rate, analog prefiltering, and sufficient Statistics for digital receivers. IEEE Trans. Com., 1994, 42(12) : 3208-3213.
    [68] Meyr H., Moeneclaey M., and Fechtel S.A.. Digital communication receivers. John Wiley & Sons, Inc., 1998.
    [69] Shannon C.E.. Communications in the presence of noise. Proc. IRE, 1949, 37(1) : 10-21.
    [70] Van Trees H.L.. Detection, estimation and modulation theory. Willey, New York, Parti, 1968; PartII, 1971; PartIII, 1971.
    [71] Mueller K.H., Mueller M.. Timing recovery in digital synchronous data receivers. IEEE Trans. on Com, 1976,24(5) :516-531.
    
    
    [72] Gardner F.M.. A BPSK/QPSK timing-error detector for sampled receivers. IEEE Trans. Com., 1986, 34(5) : 423-429.
    [73] Bergmans W. M. J.. A class of data-aided timing-recovery schemes. IEEE Trans, on Com., 1995,43(2/3/4) : 1819-1827.
    [74] Bergmans W. M. J.. Efficiency of data-aided timing-recovery techniques. IEEE Trans. Info. Theory, 1995, 41(5) :1397-1408.
    [75] Cowley W.G., Sabel L.P.. The performance of two symbol timing recovery algorithms for PSK demodulators. IEEE Trans. Com., 1994, 42(6) : 2345-2355.
    [76] Classen F., Meyr H., and Sechier P.. Maximum likelihood open loop carrier synchronization for digital radio. ICC 1993: 493-497.
    [77] Viterbi Andrew, Viterbi Audrey. Nonlinear estimation of PSK-modulated carrier phase with application to burst digital transmission. IEEE Trans. Info. Theory, 1983, 32(7) : 543-551.
    [78] Bellini S., Molinari C., and Tartara G. Digital carrier recovery with frequency offset in TDMA transmission. ICC 1991: 789-793.
    [79] Sabel L.P., Cowley W.G.. Block processing feedforward symbol timing estimator for digital Modems. IEEE Electronics Letters, 1994, 30(16) : 1273-1274.
    [80] 樊平毅,冯重熙。全数字接收机中一种载波恢复的新方法。通信学报, 1992,11(6) :31-37.
    [81] Oerder M., Meyr H.. Derivation of Gardners timing error detector from the maximum likelihood principle. IEEE Trans. Com., 1987, 35(6) : 684-685.
    [82] Andrea A.N.. Symbol timing estimation with CPM modulation. IEEE Trans. Com., 1996, 44(10) : 1362-1372.
    [83] Bucket K., Moeneclaey M.. The effect of non-ideal interpolation on symbol synchronization performance. 3rd European Conf. Satellite Com., 1993. 379-383.
    [84] Kim D., Narasimha M.J., Cox D.C.. Unbiased timing-error estimation in the presence of nonideal interpolation. IEEE Trans. Com., 1997,45(6) :647-650.
    [85] Farrow C.W.. A continuously variable digital delay element. IEEE Int. Symp. Circuits &Syst, 1988: 2641-2645.
    [86] Schafer R.W., Rabiner L.R.. A digital signal processing approach to interpolation. Proc. of The IEEE,1973,61(6) :692-702.
    [87] Gardner F. M.. Hangup in phase lock loops. IEEE Trans. Com., 1977, 25 (10 ): 1210-1214.
    [88] Crochiere R.E., Rabiner L.R.. Multirate digital signal processing. Prentice-Hall Inc., 1983.
    [89] Bucket.K., Moeneclaey M.. The effect of interpolation on the BER performance of narrowband BPSK and (O)QPSK on rician fading channels. IEEE Trans. Com.. 1994, 42 (11) : 2929-2933
    [90] Oppenheim A.V., Schafer R.. Discrete-time signal processing. Prentice-Hall. 1989.
    [91] Coulson A.J.. Signal Combination using bandpass sampling. IEEE Trans. Signal Processing, 1995,43(8) : 1809-1818.
    [92] Biggs, M.C.. Constrained minimization using recursive quadratic programming. Towards Global Optimization, North-Holland, 1975: 341-349.
    [93] Thomas C., Mary A. B. Optimization Toolbox Manual. MathWorks Inc., 1 999.
    [94] 张朝阳。全数字接收机理论与VSB调制在HDTV中应用和实现的研究。浙江大学博士学位论文,1998年9月。
    [95] Liang Shi Z., et al.. A sub-burst DFT scheme for CW burst detection in mobile satellite
    
    communication. EEEE Journal on SAC, 2000, 18(3) : 380-390.
    [96] Gossink D.E., et al.. Code-directed synchronization scheme for burst spread spectrum communications. MILCOM 1997 Proceedings: 592-597.
    [97] Wolters R., et al.. An initialization protocol for a burst-mode transport HFC system with delay determination by power distribution measurement. SPIE. 1997,3233: 353-360.
    [98] Wang X.H., et al.. Fast synchronization algorithms of burst-mode 16QAM receiver for video-on-demand applications. SPEE, 1997,3233: 371-378.
    [99] Kumar s., Nanda S.. High data-rate packet communications for cellular networks using CDMA: algorithms and performance. IEEE Journal on SAC, 1999, 17(3) : 472-492.
    [100] Ohsawa T., Iwasaki M.. Preamble-less demodulator for Inmarsat Standard-C coast earth station. ICC1992: 783-787.
    [101] Robertson P.. Optimum frame synchronization of preamble-less packets surrounded by noise with coherent and differentially coherent demodulation. ICC1994: 874-879.
    [102] Schaub T., Hansson A.. Frame synchronization for spontaneous transmission. GLOBECOM1990:617-622.
    [103] Vinck A.J.H., Wijngaarden A.J.V.. On synchronization for burst transmission. IEICE Trans. Fundamentals, 1997, E80-A(11) : 2130-2135.
    [104] Kamal S.S.. Lyons R.G.. Unique-word detection in TDMA: acquisition and retention. IEEE Trans. Com., 1984,32(7) : 804-817.
    [105] Driessen P.F.. Performance of frame synchronization in packet transmission using bit erasure information. IEEE Trans. Com., 1991, 39(4) : 567-573.
    [106] Massey J.L.. Optimum frame synchronization. IEEE Trans. Com., 1972,20(2) : 115-119.
    [107] Heegard C., et al.. A microprocessor-based PSK modem for packet transmission over satellite channels. EEEE Trans. Com., 1. 978,26(5) : 552-564.
    [108] Onizawa T, et al.. A novel coherent preambleless demodulator employing sequential processing for PSK packet signals-AFC and carrier recovery circuits. IEICE Trans. Com., 1999, E82-B(3) :542-550.
    [109] Efstathiou D., Aghvami A.H.. Preamble-less nondecision-aided(NDA) feedforward synchronization techniques for 16-QAM TDMA demodulators. IEEE Trans. Vehicular technology, 1998, 47(2) : 673-685.
    [110] Chuang J.C.-L, Sollenberger N.. Burst coherent demodulation with combined symbol timing, frequency offset estimation and diversity selection. IEEE Trans. Com., 1991, 39(7) : 1157-1164.
    [111] Sollenberger N., Chuang J.C.-L Low-overhead symbol timing and carrier recovery for TDMA portable radio systems. IEEE Trans. Com., 1990, 38(10) : 1886-1892.
    [112] Ahmad J., et al.. DSP implementation of a preambleless all digital OQPSK demodulator for maritime and mobile data communications. IEE Colloquium on DSP Applications in Communication Systems, 1993: 4/1-4/5.
    [113] Chalmers H., et al.. A digitally implemented preambleless demodulator for maritime and mobile data communications. GLOBECOM 1990: 729-732.
    [114] Tomita H., Namiki J.. Preambleless demodulator for satellite communications. ICC1989: 504-508.
    [115] Takeuchi Y, et al.. A novel preambleless demodulator designed for the Inmarsat-C system signaling channel. IEEE Int. Symposium on PIMRC, 1992: 299-305.
    
    
    [116]Mehlan R, Meyr H.. Optimum frame synchronization for asynchronous packet transmissin. ICC1993: 826~830.
    [117]Stantchev B., Fettweis G.. Optimum frame synchronization for orthogonal FSK in flat fading channels and one burst application. WCNC1999: 1070~1074.
    [118]Fechtel S.A., Meyr H.. Improved frame synchronization for spontaneous packet transmission over frequency-selective radio channels. IEEE International Symposium on WN, 1994: 353~357.
    [119]Mehlan R., Meyr H.. Efficient preamble design for digital DMSK packet synchronization. ICC1994: 918~922.
    [120]Gopalakrishnan N., Fitz M.P.. Burst mode carrier synchronization with digital phase-locked loops. MILCOM1992: 324~328.
    [121]Uchishima M., et al.. Burst DSP demodulation for low E_b/ N_0 operation. ICC1991: 226~230.
    [122]Chang L. F., et al.. Performance of a TDMA portable radio system using a cyclic block code for burst synchronization and error detection. IEEE Trans. Com., 1993, 41(1): 22~31.
    [123]Matsumoto Y., et al.. New DQPSK simultaneous carrier and bit-timing recovery coherent demodulator for wireless broadband communication systems. IEICE Trans. Com., 1997, E80-B(8): 1145~1152.
    [124]Matsumoto Y.. Offset QPSK simultaneous carder and bit-timing recovery scheme—agile acquisition over satellite communication channels. IEICE trans. Com., 1997, E80-B(1): 16~24.
    [125]Andronico M., et al.. A new algorithm for fast synchronization in a burst mode PSK demodulator. ICC1995: 1641~1646.
    [126]Andronieo M., et al.. Reference parameter estimation in the presence of a frequency shift in burst mode PSK transmission. ICC1996: 309~314.
    [127]Mehlan R., et al.. A fully digital feedforward MSK demodulator with joint frequency offset and symbol timing estimation for burst mode mobile radio. IEEE Trans. Vehicular Technology, 1993, 42(4): 434~443.
    [128]Caouras N., et al.. Fast carrier recovery for burst-mode coherent demodulation using feedforward phase and frequency estimation techniques. IEEE Conf. Electrical and Computer Engineering, 1999: 79~83.
    [129]Morawski R., et al.. Data-aided fast symbol timing recovery for TDMA/TDM point-to-multipoint radio communication systems. IEEE Conf. Electrical and Computer Engineering, 1999: 73~78.
    [130]Luise M., Reggiannini R.. Carrier frequency recovery in all-digital modems for burst-mode transmissions. IEEE Trans. Com., 1995, 43(2/3/4): 1169~1178.
    [131]朱健军,姚庆栋。突发模式PSK信号的联合载波位时钟恢复算法。电路与系统学报,2000,5(4):73~77。
    [132]Tretter S.A.. Estimating the frequency of a noisy sinusoid by linear regression. IEEE Trans. Information theory., 1985, 31(6): 832~835.
    [133]朱健军,姚庆栋。突发模式OQPSK接收机的一种快速同步算法。电子科学学刊(已录用)。
    [134]Paden B.. A matched nonlinearity for phase estimation of a PSK-modulated carrier. IEEE Trans. Information Theory., 1986, 32(3): 419~423.
    
    
    [135]郭金生。双向HFC网上行通道的噪声与干扰。电视技术,1999,(5):39~41。
    [136]汪晓阳。双向有线电视网络的码分多址上行研究。浙江大学博士学位论文,2000年3月。
    [137]Eldering C.A., et al.. CATV return path characterization for reliable communications. IEEE Communications Magazine, 1995, 33(8): 62~69.
    [138]赵问道等。交互式有线电视同轴电缆分配网上行信道非线性失真分析。通信学报,1998,19(11):18~22。
    [139]Kolze T.J.. Upstream HFC channel modeling an physical layer design. SPIE, 1996, 2917: 240~251.
    [140]Wolters R.P.C.. Characteristics of upstream channel noise in CATV-Networks. IEEE Trans. Broadcasting, 1996, 42(4): 328~332.
    [141]Li K.H., et al.. Impulse noise identification for the HFC upstream channel. IEEE Trans. Broadcasting, 1998, 44(3): 324~329.
    [142]Haspeslagh J., et al.. Cable Modem architectures adapted to the noise problem in the upstream direction for multiple access Hybrid Fiber-Coax networks. SPIE, 1998, 3408: 95~106.
    [143]Jong Y.L.C., et al.. A CDMA based bidirectional communication system for Hybrid Fiber-Coax CATV networks. IEEE Trans. Broadcasting, 1997, 43(2): 127~135.
    [144]Wolters R.P.C., et al.. An initialization protocol for CDMA based communications scheme for HFC CATV network. IEEE Trans. Broadcasting, 1997, 43(3): 329~338.
    [145]http://www.terayon.com
    [146]http://www.zenith.com
    [147]胡建东等。码分多址与个人通信。人民邮电出版社,1996。
    [148]Victor O.K.LI, Xiao xin Q Personal communication systems. Proc. of IEEE, 1995, 83(9): 1210~1243.
    [149]沈允春。扩谱技术。国防工业出版社,1995。
    [150]A.J.维特比。CDMA扩频通信原理。李世鹤等译,人民邮电出版社,1997。
    [151]Schwartz M.. Computer-communication network design and analysis, Prentice Hall, 1977.
    [152]Abramson N.. The ALOHA system-another alternative for computer communications. Proc. 1970 Fall Joint Computer Conf., 1970, 37: 281~285.
    [153]Metcalfe R.M., et al.. Ethernet: distributed packet switching for local computer networks. Communications of ACM, 1976, 19(7): 395~404.
    [154]Goodman D.J., et al.. Packet reservation multiple access for local wireless communications. IEEE Trans. Com., 1989, 37(8): 885~890.
    [155]Clarke M., et al.. Brunel University/The cable corporation homeworkee network trial. SPIE, 1996, 2971: 358~363.
    [156]Golmie N.. Performance evaluation of MAC protocol components for HFC networks. SPIE, 1996, 2917: 120~130.
    [157]Momona M., Yamazaki S.. Framed pipeline polling for cable TV networks. IEEE802.14-96/076, 1995.
    [158]Zhang H.. Service disciplines for guaranteed performance service in packet-switching networks. Proc. of IEEE, 1995, 83(10): 1374~1399.
    [159]Merakos L. F., Bisdikian C.. Delay analysis of the n-ary stack random-access algorithm. IEEE Trans. Infor. Theory, 1988, 34(5): 931~942.
    
    
    [160] Tanenbaum A.S.. Computer Network, 3rd ed. Prentice Hall, 1996.
    [161] Mathys P., Flajolet P.. Q-ary collision resolution algorithms in random-access systems with free or blocked channel access. IEEE Trans. Infor. Theory, 1985, 31(2) : 217-243.
    [162] Golmie N., et al.. A comparison of MAC protocols for Hybrid Fiber/Coax networks: IEEE802. 14 vs. MCNS. ICC1999: 266-272.
    [163] Ying D.L., et al.. Allocation and scheduling algorithms for IEEE802. 14 and MCNS in hybrid fiber coaxial networks. IEEE Trans. Broadcasting, 1998, 44(4) : 427-435.
    [164] Sdralia V, et al.. Performance characterization of the MCNS DOCSIS 1. 0 CATV protocol with prioritized first come first served scheduling. IEEE Trans. Broadcasting, 1999, 45(2) : 196-205.
    [165] Suming J., Guangguo B.. An algorithm of dynamically assigning upstream bandwidth of Hybrid Fiber-Coax networks. IEEE Trans. Broadcasting, 1998, 44(3) : 330-335.
    [166] Roberts L.G.. Aloha packet system with and without slots and capture. Computer and Communication Rev., 1975, 5(4) : 28-42.
    [167] M.施瓦茨。电信网一协议、建模和分析。屠世桢译,人民邮电出版社, 1991。
    [168] Lam S.S., Kleinrock L.. Packet switching in a multiaccess broadcast channel: dynamic control procedures. IEEE Trans. Com., 1975, 23 (9) : 891-904.
    [169] Glisic S.G., Leppanen P.A.. Code division multiple access communications. Kluwer, Dordrecht, 1995.
    [170] Colzi, et al.. Synchronous CDMA for satellite frequency-selective broadcasting channels: performance and receiver structures. ICC1993: 1746-1751.
    [171] Chen X.H., et al.. Multiple chip-rate DS/CDMA system and its spreading code dependent performance analysis. IEE Proc. Com., 1998, 145(5) : 371-377.
    [172] Gaudenzi D,, et al.. Bandlimited quasi-synchronous CDMA: a novel satellite access technique for mobile and personal communication systems. IEEE Journal on SAC, 1992, 10(2) : 328-343.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700