用户名: 密码: 验证码:
水稻土壤重金属和硫分子形态转化的功能微生物作用机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稻田土壤不同区域中氧化还原电位变化影响功能微生物硫氧化菌和硫还原菌的种群分布,导致土壤硫形态转化,并影响重金属迁移转化。功能微生物作用下的金属硫化物的形成和氧化对于控制重金属的迁移转化有重要意义。随着环境分子科学及分子生物学的发展和研究方法的突破,从分子水平深入认识重金属在环境中的反应机制成为环境科学新的研究热点。本论文在传统分析方法的基础上,通过引入同步辐射x射线吸收光谱技术(XAS)、X射线荧光(XRF)微区XAFS以及PCR-DGGE、FISH和分子克隆等技术,研究水稻土壤重金属和硫分子形态转化的规律及其相互作用,考察硫氧化还原菌种群结构,探索其对金属形态转化的作用机制。主要研究结论为:
     明确了土壤-水稻系统中重金属Cu和硫的形态转化及相互关系。水稻根际土及非根际土中Cu的螯合官能团差异较大。根际土中Cu主要以Cu(Ⅱ)为主,而非根际土中有部分Cu(Ⅰ)存在。根际土中氧化态硫的含量比非根际土中高。稻田土壤不同区域的氧化还原电位变化导致硫的形态发生转化,并影响Cu的形态。Cu的解毒机理可能与铜和硫基团的高结合性有关。Cu-组氨酸和Cu-柠檬酸类似基团是水稻根中铜的主要分子形态,此外还有少量的Cu-谷胱甘肽类似基团,这些基团与重金属Cu的络合可能参与了水稻体内Cu的解毒。
     揭示了硫底物对重金属Cu、Zn、Pb的生物有效性及土壤微生物群落结构的影响。硫氧化菌在氧化条件下氧化低价态硫,降低土壤pH值,导致Cu、Zn、有效性显著提高,而Pb的有效性没明显变化。PCR-DGGE结果表明铜处理水稻根际土的微生物群落结构发生显著变化,而铅处理土壤微生物多样性的变化并不显著。硫底物作用下有特异性条带产生,经鉴定为硫杆菌。硫的形态转化对土壤重金属的有效性产生重要影响。
     明确了水稻根际硫氧化还原菌的种群结构及其与重金属Pb的相互作用关系。FISH结果表明水稻根际土中硫氧化菌的数量比硫还原菌多,硫氧化菌和硫还原菌共同作用促进硫的形态转化,导致重金属沉淀或释放,控制重金属迁移转化。根际土中硫的形态主要为氧化态,还有少量的负二价硫存在。水稻根际有少量耐氧的SRB子群促进硫还原反应进行。随着铅浓度的增加,根际土Eh值下降,pH值上升,SRB活性增强。水稻根际存在高效的SRB子群,能够存在于较高浓度Pb污染的土壤环境中,这对于较高Pb污染土壤中Pb污染控制具有重要意义。
     从水稻根际土中筛选出一株硫氧化菌HT1,证明该菌株属于硫氧化菌中的盐硫杆菌属Halothiobacillus。该菌株可利用硫代硫酸盐,连四硫酸盐、单质硫和亚硫酸盐等硫底物当电子供体,且耐盐(0-3 MNaCl)和耐重金属。菌株HT1不含soxB基因,其代谢途径是通过形成连四硫酸盐作为中间产物并被氧化的硫代硫酸盐,营该代谢途径的细菌会在体内聚集硫球,硫的K边XANES分析表明菌株HT1体内硫球形态主要为S8。
     初步探讨了硫氧化菌HT1与重金属的相互作用机制。吸附Cu2+,Pb2+和Zn2+后菌株HT1体内多数硫转化成半胱氨酸以络合重金属离子,起到提高耐性和解毒的作用。与金属硫化物作用后菌株HT1氧化硫化物中的负二价硫,形成高价硫。还原态硫也转化半胱氨酸,参与重金属的解毒。HT1生物膜上层、内层与培养基交界层是活性区域,氧含量对细胞膜中细菌的活性有重要影响。在LB培养基上与金属硫化物作用后,HT1生物膜上分别吸附了一定量的Pb、Cu,但基本不吸附Zn。XFR研究结果表明在CuS表面生长的HT1生物膜Cu主要分布在内层培养基界面层,其次是上层,而中间层铜含量较低。而在PbS上HT1生物膜Pb主要分布在上层。HT1对不同金属有选择性吸收或吸附,Zn对HT1毒性不大,因此ZnS上HT1的活细菌比CuS和PbS上的多。μ-XAFS研究结果表明生物膜不同水平微区与铜结合的基团有所不同,而Cu-半胱氨酸类似基团是生物膜中铜结合的重要配体,参与Cu的解毒。
In paddy soils, changes of redox conditions in different zones led to microbially mediated sulfur transformation, thus affecting heavy metal behavior. Microbe-mineral interactions play an important role in affecting geochemical transformations of heavy metals in the soil environment. With the developing of molecular environmental science and the evolution of molecular biology technologies in recent years, a late hotspot in the environmental science is how to understand the reaction mechanisms of heavy metals in environment medium at molecular scale. Based on the traditional analysis methods, the synchrotron radiation X-ray absorption spectroscopy (XAS), the synchrotron radiation X-ray fluorescence (XRF), as well as PCR-DGGE, FISH and molecular cloning were used in present study. The aim of our study was to clarify heavy metals and sulfur transformation and the relations between these processes under different conditions, and microbial community diversity and changes of biochemistry characters. The main results were as follows:
     The speciation of sulfur and copper in rice rhizosphere and bulk soil was investigated using integrated approaches including sequential extraction and XANES. Cu speciation exhibited some differences in rhizosphere and bulk soil. Most Cu in the rhizosphere existed as Cu(II), whereas part of Cu transformed to Cu(I) in the bulk soil. Sulfur XANES showed the presence of multiple both oxidized and reduced forms of sulfur, with more oxidized sulfur in the rhizosphere than in the bulk soil. Changes in redox potential and microbial action shifted the sulfur oxidation and reduction reaction and affected the Cu speciation. Combined action of organisms maintained Cu homeostasis through cation binding to bioactive molecules. Cu bond to histidine and citrate groups as well as glutathione in rice could be defenses against toxic copper.
     The effect of sulfur on the availability of Cu, Zn, Pb and the microbial community composition in rice rhizosphere soil was studied. Under the impact of sulfur, the availibity of Cu and Zn increased dramatically, while Pb did not. Accordingly, PCR-DGGE experiment suggested that sulfur action led to dramactic changes of soil bacteria composition in Cu polluted soil, while there were no obivious differences in Pb polluted soil. Some specific clones found in S addition soils had high similarity to Thiobacillus, which indicated relatively high rates of potential S oxidation.
     The compositions of SOB and SRB and their relationship with Pb were studied in rice rhizosphere. FISH results showed more SOB than SRB. Combined action of SOB and SRB contribute to transformation of heavy metals. The formation of metal sulfide, which is mediated by SRB through contributing to sulfate reduction is an important pathway for heavy metal stabilization in anoxic soil. The mechanism of SOB and SRB on transformation of sulfur and heavy metals was studied. PCR-DGGE fingerprinting and real-time PCR results showed increasing numbers of SRB with Pb addition, which corresponded with increases in soil pH and reduction in Eh, suggesting the enhancement of sulfur reduction and SRB activity. Sulfur K-edge XANES revealed reduced states of sulfur. The SRB mediated the sulfate reduction and contributed to the formation of reduced sulfur which interacted with Pb, leading to the formation of stable metal sulfide. In return, acclimated SRB populations developed in Pb-polluted conditions. Hence stabilization of reduced sulfur by Pb enhanced the activity of SRB and sulfate reduction in rice rhizosphere.
     A mesophilic, chemolithoautotrophic, SOB named HT1 was isolated from a rice rhizosphere soil polluted by Pb. The 16S rRNA gene sequence showed that it was a S oxidizing obligate chemolithotroph belonging to Grammproteobacteria, Halothiobacillus utilizing sulfide, elemental sulfur, thiosulfate and sulfite as substrates. Strain HT1 was able to use CO2 as a carbon source and was responsible for the reduction of nitrate to nitrite and represented a halophilic SOB capable of growth within 0 to 3 M NaCl and a heavy-metals-tolerant SOB. The soxB gene could not be detected in strain HT1. Its metabolism pathway was'S4 intermediate'(S4I) pathway. Sulfur globules accumulated in strain HT1 were mainly S8.
     It was illustrated that cysteine was involved in chelation within strain HT1 when interacted with Cu2+, Pb2+and Zn2+. Strain HT1 could oxidize sulfide in CuS, PbS and ZnS and cysteine was also synthesized for the tolerance against heavy metal. There were two active zones in the biofilm of HT1:air-biofilm interface and medium-biofilm interface. Oxygen played an important role in the distribution of live cells. The biofilm of HT1 presented different spatial distribution when reacted with different metal sulfides. Strain HT1 did not absorb Zn which resulted in more live cells of HT1 on ZnS than on CuS or PbS. XRF results showed that Pb was mainly on the upper layer while Cu was mainly on the under layer of the biofilm. Withμ-XAFS, it was found that ligands bond to Cu were different. Whiel Cu-cysteine was found to be an important ligand both in the middle and edge of the biofilm.
引文
Anandham R, Indiragandhi P, Madhaiyan M, Ryu KY, Jee HJ and Sa TM. Chemolithoautotrophic oxidation of thiosulfate and phylogenetic distribution of sulfur oxidation gene (soxB) in rhizobacteria isolated from crop plants. Research in Microbiology.2008,159(9-10): 579-589.
    Auernik KS, Maezato Y, Blum PH and Kelly RM. The genome sequence of the metal-mobilizing, extremely thermoacidophilic archaeon Metallosphaera sedula provides insights into bioleaching-associated metabolism. Applied and Environmental Microbiology.2008, 74(3):682-692.
    Bagchi A and Ghosh TC. A structural study towards the understanding of the interactions of SoxY, SoxZ, and SoxB, leading to the oxidation of sulfur anions via the novel global sulfur oxidizing (sox) operon. Biochemical and Biophysical Research Communications.2005, 335(2):609-615.
    Baumgartner LK, Reid RP, Dupraz C, Decho AW, Buckley DH, Spear JR, Przekop KM and Visscher PT. Sulfate reducing bacteria in microbial mats:Changing paradigms, new discoveries. Sedimentary Geology.2006,185(3-4):131-145.
    Beller HR, Letain TE, Chakicherla A, Kane SR, Legler TC and Coleman MA. Whole-genome transcriptional analysis of chemolithoautotrophic thiosulfate oxidation by Thiobacillus denitrificans under aerobic versus denitrifying conditions. Journal of Bacteriology.2006, 188(19):7005-7015.
    Ben-Dov E, Brenner A and Kushmaro A. Quantification of sulfate-reducing bacteria in industrial wastewater, by real-time polymerase chain reaction (PCR) using dsrA and apsA genes. Microbial Ecology.2007,54(3):439-451.
    Bidar G, Garcon G, Pruvot C, Dewaele D, Cazier F, Douay F and Shirali P. Behavior of Trifolium repens and Lolium perenne growing in a heavy metal contaminated field:Plant metal concentration and phytotoxicity. Environmental Pollution.2007,147(3):546-553.
    Brandt KK, Vester F, Jensen AN and Ingvorsen K. Sulfate reduction dynamics and enumeration of sulfate-reducing bacteria in hypersaline sediments of the Great Salt Lake (Utah, USA). Microbial Ecology.2001,41(1):1-11.
    Brown GE, Foster AL and Ostergren JD. Mineral surfaces and bioavailability of heavy metals:A molecular-scale perspective. Proceedings of the National Academy of Sciences of the United States of America.1999,96(7):3388-3395.
    Canfield DE and Des Marais DJ. Aerobic sulfate reduction in microbial mats. Science.1991,251: 1471-3.
    Cannon GC, Heinhorst S and Kerfeld CA. Carboxysomal carbonic anhydrases:Structure and role in microbial CO2 fixation. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics. 2010,1804(2):382-392.
    Caumette P, Matheron R, Raymond and Relexans JC. Microbial mats in the hypersaline ponds of Mediterranean salterns (Salins-de-Giraud, France). FEMS Microbiology Ecology.1994, 13(4):273-286.
    Celaya RJ, Noriega JA, Yeomans JH, Ortega LJ and Ruiz-Manriquez A. Biosorption of Zn(II) by Thiobacillus ferrooxidans. Bioprocess Engineering.2000,22(6):539-542.
    Chang YJ, Peacock AD, Long PE, Stephen JR, McKinley JP, Macnaughton SJ, Hussain AKMA, Saxton AM and White DC. Diversity and characterization of sulfate-reducing bacteria in groundwater at a uranium mill tailings site. Applied and Environmental Microbiology. 2001,67(7):3149-3160.
    Clemens S. Molecular mechanisms of plant metal tolerance and homeostasis. Planta.2001,212(4): 475-486.
    Corezzi S, Urbanelli L, Cloetens P, Emiliani C, Helfen L, Bohic S, Elisei F and Fioretto D. Synchrotron-based X-ray fluorescence imaging of human cells labeled with CdSe quantum dots. Analytical Biochemistry.2009,388(1):33-39.
    Crichton RR and Pierre JL. Old iron, young copper:From Mars to Venus. Biometals.2001,14(2): 99-112.
    Cui YS, Dong YT, Li HF and Wang QR. Effect of elemental sulphur on solubility of soil heavy metals and their uptake by maize. Environment International.2004,30(3):323-328.
    Daly K, Sharp RJ and McCarthy AJ. Development of oligonucleotide probes and PCR primers for detecting phylogenetic subgroups of sulfate-reducing bacteria. Microbiology-UK.2000, 146:1693-1705.
    Dam B, Mandal S, Ghosh W, Das Gupta SK and Roy P. The S4-intermediate pathway for the oxidation of thiosulfate by the chemolithoautotroph Tetrathiobacter kashmirensis and inhibition of tetrathionate oxidation by sulfite. Research in Microbiology.2007,158(4): 330-338.
    Dar SA, Kuenen JG and Muyzer G. Nested PCR-denaturing gradient gel electrophoresis approach to determine the diversity of sulfate-reducing bacteria in complex microbial communities. Applied and Environmental Microbiology.2005,71(5):2325-30.
    Deschamps P, Kulkarni PP, Gautam-Basak M and Sarkar B. The saga of copper(II)-L-histidine. Coordination Chemistry Reviews.2005,249(9-10):895-909.
    Detmers J, Strauss H, Schulte U, Bergmann A, Knittel K and Kuever J. FISH shows that Desulfdtomaculum spp. are the dominating sulfate-reducing bacteria in a pristine aquifer. Microbial Ecology.2004,47(3):236-242.
    Diener LM, Bleam WF and Balser T. Sulfur K-edge XANES studies of microbial cell walls. Abstracts of Papers of the American Chemical Society.2003,225:U830-U830.
    Dolla A, Fournier M and Dermoun Z. Oxygen defense in sulfate-reducing bacteria. Journal of Biotechnology.2006,126(1):87-100.
    Dou ZC, Heinhorst S, Williams EB, Murin CD, Shively JM and Cannon GC. CO2 fixation kinetics of Halothiobacillus neapolitanus mutant carboxysomes lacking carbonic anhydrase suggest the shell acts as a diffusional barrier for CO2. Journal of Biological Chemistry. 2008,283(16):10377-10384.
    Einsiedl F, Mayer B and Schafer T. Evidence for incorporation of H2S in groundwater fulvic acids from stable isotope ratios and sulfur K-edge X-ray absorption near edge structure spectroscopy. Environmental Science and Technology.2008,42(7):2439-2444.
    Engel AS, Lichtenberg H, Prange A and Hormes J. Speciation of sulfur from filamentous microbial mats from sulfidic cave springs using X-ray absorption near-edge spectroscopy. FEMS Microbiology Letters.2007,269(1):54-62.
    Ettema TJG, Brinkman AB, Lamers PP, Kornet NG, de Vos WM and van der Oost J. Molecular characterization of a conserved archaeal copper resistance (cop) gene cluster and its copper-responsive regulator in Sulfolobus solfataricus P2. Microbiology-SGM.2006,152: 1969-1979.
    Filgueiras AV, Lavilla I and Bendicho C. Chemical sequential extraction for metal partitioning in environmental solid samples. Journal of Environmental Moniting.2002,4(6):823-57.
    Flogeac K, Guillon E and Aplincourt M. Surface complexation of copper(II) on soil particles:EPR and XAFS studies. Environmental Science and Technology.2004,38(11):3098-3103.
    Fortin D, Davis B and Beveridge TJ. Role of Thiobacillus and sulfate-reducing bacteria in iron biocycling in oxic and acidic mine tailings. FEMS Microbiology Ecology.1996,21(1): 11-24.
    Foti MJ, Sorokin DY, Zacharova EE, Pimenov NV, Kuenen JG and Muyzer G. Bacterial diversity and activity along a salinity gradient in soda lakes of the Kulunda Steppe (Altai, Russia). Extremophiles.2008,12(1):133-45.
    Fourcans A, Ranchou-Peyruse A, Caumette P and Duran R. Molecular analysis of the spatio-temporal distribution of sulfate-reducing bacteria (SRB) in Camargue (France) hypersaline microbial mat. Microbial Ecology.2008,56(1):90-100.
    Frank P, George SD, Anxolabehere-Mallart E, Hedman B and Hodgson KO. A systematic resolution of sulfur in reticulated vitreous carbon using X-ray absorption spectroscopy. Inorganic Chemistry.2006,45(24):9864-9876.
    Frenkel AI and Korshin GV. Studies of Cu(II) in soil by X-ray absorption spectroscopy. Canadian Journal of Soil Science.2001,81(3):271-276.
    Frenkel AI, Korshin GV and Ankudinov AL. XANES study of Cu2+-binding sites in aquatic humic substances. Environmental Science and Technology.2000,34(11):2138-2142.
    Friedrich CG, Rother D, Bardischewsky F, Quentmeier A and Fischer J. Oxidation of reduced inorganic sulfur compounds by bacteria:Emergence of a common mechanism? Applied and Environmental Microbiology.2001,67(7):2873-2882.
    Fude L, Harris B, Urrutia MM and Beveridge TJ. Reduction of Cr(Vi) by a Consortium of Sulfate-Reducing Bacteria (Srb-Iii). Applied and Environmental Microbiology.1994, 60(5):1525-1531.
    Garcia B, Salome M, Lemelle L, Bridot JL, Gillet P, Perriat P, Roux S and Tillement O. Sulfur K-edge XANES study of dihydrolipoic acid capped gold nanoparticles:dihydrolipoic acid is bound by both sulfur ends. Chemical Communications.2005, (3):369-371.
    Geets J, Borrernans B, Diels L, Springael D, Vangronsveld J, van der Lelie D and Vanbroekhoven K. DsrB gene-based DGGE for community and diversity surveys of sulfate-reducing bacteria. Journal of Microbiological Methods.2006,66(2):194-205.
    Ghosh W and Roy P. Chemolithoautotrophic oxidation of thiosulfate, tetrathionate and thiocyanate by a novel rhizobacterium belonging to the genus Paracoccus. FEMS Microbiology Letters. 2007,270(1):124-131.
    Glasauer S, Langley S and Beveridge TJ. Intracellular iron minerals in a dissimilatory iron-reducing bacterium. Science.2002,295(5552):117-119.
    Graff A and Stubner S. Isolation and molecular characterization of thiosulfate-oxidizing bacteria from an Italian rice field soil. Systematic and Applied Microbiology.2003,26(3):445-452.
    Gregory PJ. Roots, rhizosphere and soil:the route to a better understanding of soil science? European Journal of Soil Science.2006,57(1):2-12.
    Habicht KS, Canfield DE and Rethmeier J. Sulfur isotope fractionation during bacterial reduction and disproportionation of thiosulfate and sulfite. Geochimica Et Cosmochimica Acta.1998, 62(15):2585-2595.
    Harneit K, Goksel A, Kock D, Klock JH, Gehrke T and Sand W. Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans. Hydrometallurgy.2006,83(1-4):245-254.
    Harrison JJ, Ceri H, Yerly J, Rabiei M, Hu YP, Martinuzzi R and Turner RJ. Metal ions may suppress or enhance cellular differentiation in Candida albicans and Candida tropicalis biofilms. Applied and Environmental Microbiology.2007,73(15):4940-4949.
    Harrison JJ, Rabiei M, Turner RJ, Badry EA, Sproule KM and Ceri H. Metal resistance in Candida biofilms. FEMS Microbiology Ecology.2006,55(3):479-491.
    Heinhorst S, Williams EB, Cai F, Murin CD, Shively JM and Cannon GC. Characterization of the carboxysomal carbonic anhydrase CsoSCA from Halothiobacillus neapolitanus. Journal of Bacteriology.2006,188(23):8087-8094.
    Heinhorst S, Williams EB, Cai F, Murin CD, Shively JM and Cannon GC. Characterization of the carboxysomal carbonic anhydrase CsoSCA from Halothiobacillus neapolitanus. Journal of Bacteriology.2006,188(23):8087-8094.
    Hesterberg D, Chou JW, Hutchison KJ and Sayers DE. Bonding of Hg(Ⅱ) to reduced organic, sulfur in humic acid as affected by S/Hg ratio. Environmental Science and Technology.2001, 35(13):2741-2745.
    Hoa TTH, Liamleam W and Annachhatre AP. Lead removal through biological sulfate reduction process. Bioresource Technology.2007,98(13):2538-2548.
    Houle D and Carignan R. Sulfur Speciation and Distribution in Soils and Aboveground Biomass of a Boreal Coniferous Forest. Biogeochemistry.1992,16(1):63-82.
    Huang PM, Wang MK and Chiu CY. Soil mineral-organic matter-microbe interactions:Impacts on biogeochemical processes and biodiversity in soils. Pedobiologia.2005,49(6):609-635.
    Hundal LS, Carmo AM, Bleam WL and Thompson ML. Sulfur in biosolids-derived fulvic acid: Characterization by XANES spectroscopy and selective dissolution approaches. Environmental Science and Technology.2000,34(24):5184-5188.
    Hutchison KJ, Hesterberg D and Chou JW. Stability of reduced organic sulfur in humic acid as affected by aeration and pH. Soil Science Society of America Journal.2001,65(3): 704-709.
    Isaure MP, Laboudigue A, Manceau A, Sarret G, Tiffreau C, Trocellier P, Lamble G, Hazemann JL and Chateigner D. Quantitative Zn speciation in a contaminated dredged sediment by μ-PIXE, μ-SXRF, EXAFS spectroscopy and principal component analysis. Geochimica Et Cosmochimica Acta.2002,66(9):1549-1567.
    Jalilehvand F. Sulfur:not a "silent" element any more. Chemical Society Reviews.2006,35(12): 1256-1268.
    Karlsson T and Skyllberg U. Complexation of zinc in organic soils-EXAFS evidence for sulfur associations. Environmental Science and Technology.2007,41(1):119-124.
    Karlsson T, Elgh-Dalgren K, Bjorn E and Skyllberg U. Complexation of cadmium to sulfur and oxygen functional groups in an organic soil. Geochimica Et Cosmochimica Acta.2007, 71(3):604-614.
    Kayser A, Wenger K, Keller A, Attinger W, Felix HR, Gupta SK and Schulin R. Enhancement of phytoextraction of Zn, Cd, and Cu from calcareous soil:The use of NTA and sulfur amendments. Environmental Science and Technology.2000,34(9):1778-1783.
    Kelly DP, Stackebrandt E, Burghardt J and Wood AP. Confirmation that Thiobacillus halophilus and Thiobacillus hydrothermalis are distinct species within the gamma-subclass of the Proteobacteria. Archives of Microbiology.1998,170(2):138-140.
    Kelly DP and Wood AP. Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen. nov., Halothiobacillus gen. nov and Thermithiobacillus gen. nov. International Journal of Systematic and Evolutionary Microbiology.2000,50: 511-516.
    Kemner KM, Kelly SD, Lai B, Maser J, O'Loughlin EJ, Sholto-Douglas D, Cai ZH, Schneegurt MA, Kulpa CF and Nealson KH. Elemental and redox analysis of single bacterial cells by X-ray microbeam analysis. Science.2004,306(5296):686-687.
    Klein MG, Zwart P, Bagby SC, Cai F, Chisholm SW, Heinhorst S, Cannon GC and Kerfeld CA. Identification and Structural Analysis of a Novel Carboxysome Shell Protein with Implications for Metabolite Transport. Journal of Molecular Biology.2009,392(2): 319-333.
    Krishnamurti GSR and Naidu R. Solid-solution Speciation and Phytoavailability of Copper and Zinc in Soils. Environmental Science and Technology.2002,36(12):2645-2651.
    Labrenz M, Druschel GK, Thomsen-Ebert T, Gilbert B, Welch SA, Kemner KM, Logan GA, Summons RE, De Stasio G, Bond PL, Lai B, Kelly SD and Banfield JF. Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science.2000, 290(5497):1744-1747.
    Lee YJ, Prange A, Lichtenberg H, Rohde M, Dashti M and Wiegel J. In situ analysis of sulfur species in sulfur globules produced from thiosulfate by Thermoanaerobacter sulfurigignens and Thermoanaerobacterium thermosulfurigenes. Journal of Bacteriology. 2007,189(20):7525-7529.
    Lehmann J, Solomon D, Zhao FJ and McGrath SP. Atmospheric SO2 emissions since the late 1800s change organic sulfur forms in humic substance extracts of soils. Environmental Science and Technology.2008,42(10):3550-3555.
    Leloup J, Quillet L, Oger C, Boust D and Petit F. Molecular quantification of sulfate-reducing microorganisms (carrying dsrAB genes) by competitive PCR in estuarine sediments. FEMS Microbiology Ecology.2004,47(2):207-214.
    Lemelle L, Labrot P, Salome M, Simionovici A, Viso M and Westall F. In situ imaging of organic sulfur in 700-800 My-old Neoproterozoic microfossils using X-ray spectromicroscopy at the S K-edge. Organic Geochemistry.2008,39(2):188-202.
    Liamleam W and Annachhatre AP. Electron donors for biological sulfate reduction. Biotechnology Advances.2007,25(5):452-463.
    Liu XD, Bagwell CE, Wu LY, Devol AH and Zhou JH. Molecular diversity of sulfate-reducing bacteria from two different continental margin habitats. Applied and Environmental Microbiology.2003,69(10):6073-6081.
    Liu YG, Zhou M, Zeng GM, Wang X, Li X, Fan T and Xu WH. Bioleaching of heavy metals from mine tailings by indigenous sulfur-oxidizing bacteria:Effects of substrate concentration. Bioresource Technology.2008,99(10):4124-4129.
    Llobet-Brossa E, Rossello-Mora R and Amann R. Microbial community composition of Wadden Sea sediments as revealed by fluorescence in situ hybridization. Applied and Environmental Microbiology.1998,64(7):2691-2696.
    Lock K and Janssen CR. Ecotoxicity of zinc in spiked artificial soils versus contaminated field soils. Environmental Science and Technology.2001,35(21):4295-4300.
    Lombi E and Susini J. Synchrotron-based techniques for plant and soil science:opportunities, challenges and future perspectives. Plant and Soil.2009,320(1-2):1-35.
    Loy A, Lehner A, Lee N, Adamczyk J, Meier H, Ernst J, Schleifer KH and Wagner M. Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Applied and Environmental Microbiology.2002,68(10):5064-5081.
    Lu YH, Wassmann R, Neue H-U and Huang C. Dynamics of Dissolved Organic Carbon and Methane Emissions in a Flooded Rice Soil. Soil Science Society of America Journal.2000, 64(6):2011-2017.
    Ma HB, Li J, Yu Y, Zuo GZ and Ren TH. Tribological behaviors and film analysis of two ashless phosphorus/sulfur-containing additives in rapeseed oil. Acta Physico-Chimica Sinica.2008, 24(5):799-804.
    Maini G, Sharman AK, Sunderland G, Knowles CJ and Jackman SA. An Integrated Method Incorporating Sulfur-Oxidizing Bacteria and Electrokinetics To Enhance Removal of Copper from Contaminated Soil. Environmental Science and Technology.2000,34(6): 1081-1087.
    Manceau A, Nagy KL, Marcus MA, Lanson M, Geoffroy N, Jacquet T and Kirpichtchikova T. Formation of metallic copper nanoparticles at the soil-root interface. Environmental Science and Technology.2008,42(5):1766-1772.
    Mangold S, Harneit K, Rohwerder T, Claus G and Sand W. Novel combination of atomic force microscopy and epifluorescence microscopy for visualization of leaching bacteria on pyrite. Applied and Environmental Microbiology.2008,74(2):410-415.
    Martinez CE, McBride MB, Kandianis MT, Duxbury JM, Yoon SJ and Bleam WF. Zinc-sulfur and cadmium-sulfur association in metalliferous peats:evidence from spectroscopy, distribution coefficients, and phytoavailability. Environmental Science and Technology. 2002,36(17):3683-9.
    Martinez CE, Yanez C, Yoon S and Bruns MA. Biogeochemistry of metalliferous peats:Sulfur speciation and depth distributions of dsrAB genes and Cd, Fe, Mn, S, and Zn in soil cores. Environmental Science and Technology.2007,41(15):5323-5329.
    Masaka J and Muunganirwa M. The effects of copper oxy chloride waste contamination on selected soil biochemical properties at disposal site. Science of the Total Environment.2007, 387(1-3):228-236.
    Mcbride MB and Bouldin DR. Long-Term Reactions of Copper(II) in a Contaminated Calcareous Soil. Soil Science Society of America Journal.1984,48(1):56-59.
    McCully ME. Roots in soil:Unearthing the complexities of roots and their rhizospheres. Annual Review of Plant Physiology and Plant Molecular Biology.1999,50:695-+.
    McGuire MM, Edwards KJ, Banfield JF and Hamers RJ. Kinetics, surface chemistry, and structural evolution of microbially mediated sulfide mineral dissolution. Geochimica Et Cosmochimica Acta.2001,65(8):1243-1258.
    Meyer B, Imhoff JF and Kuever J. Molecular analysis of the distribution and phylogeny of the soxB gene among sulfur-oxidizing bacteria-evolution of the Sox sulfur oxidation enzyme system. Environmental Microbiology.2007,9(12):2957-2977.
    Moreau JW, Weber PK, Martin MC, Gilbert B, Hutcheon ID and Banfield JF. Extracellular proteins limit the dispersal of biogenic nanoparticles. Science.2007,316(5831):1600-1603.
    Morra MJ, Fendorf SE and Brown PD. Speciation of sulfur in humic and fulvic acids using X-ray absorption near-edge structure (XANES) spectroscopy. Geochimica Et Cosmochimica Acta.1997,61(3):683-688.
    Muyzer G, de Waal EC and Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology.1993,59(3): 695-700.
    Muyzer G, Teske A, Wirsen CO and Jannasch HW. Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Archives of Microbiology.1995, 164(3):165-72.
    Naz N, Young HK, Ahmed N and Gadd GM. Cadmium Accumulation and DNA Homology with Metal Resistance Genes in Sulfate-Reducing Bacteria. Applied and Environmental Microbiology.2005,71(8):4610-4618.
    Oren A. Bioenergetic aspects of halophilism. Microbiology and Molecular Biology Reviews.1999, 63(2):334-+.
    Perez-Jimenez JR and Kerkhof LJ. Phylogeography of sulfate-reducing bacteria among disturbed sediments, disclosed by analysis of the dissimilatory sulfite reductase genes (dsrAB). Applied and Environmental Microbiology.2005,71(2):1004-1011.
    Petri R, Podgorsek L and Imhoff JF. Phylogeny and distribution of the soxB gene among thiosulfate-oxidizing bacteria. FEMS Microbiology Letters.2001,197(2):171-178.
    Pickering IJ, George GN, Yu EY, Brune DC, Tuschak C, Overmann J, Beatty JT and Prince RC. Analysis of sulfur biochemistry of sulfur bacteria using X-ray absorption spectroscopy. Biochemistry.2001,40(27):8138-8145.
    Pickering IJ and George GN, Bacterial sulfur storage globules. SSRL Highlightes Archive.2007, (8-10):9-11.
    Pinheiro JP, Mota AM and Benedetti MF. Lead and calcium binding to fulvic acids:Salt effect and competition. Environmental Science and Technology.1999,33(19):3398-3404.
    Prange A, Arzberger I, Engemann C, Modrow H, Schumann O, Truper HG, Steudel R, Dahl C and Hormes J. In situ analysis of sulfur in the sulfur globules of phototrophic sulfur bacteria by X-ray absorption near edge spectroscopy. Biochimica Et Biophysica Acta-General Subjects.1999,1428(2-3):446-454.
    Prange A, Chauvistre R, Modrow H, Hormes J, Truper HG and Dahl C. Quantitative speciation of sulfur in bacterial sulfur globules:X-ray absorption spectroscopy reveals at least three different species of sulfur. Microbiology-SGM.2002,148:267-276.
    Polette LA, Gardea-Torresdey JL, Chianelli RR, George GN, Pickering IJ and Arenas J. XAS and microscopy studies of the uptake and bio-transformation of copper in Larrea tridentata (creosote bush). Microchemical Journal.2000,65(3):227-236.
    Prietzel J, Thieme J, Salome M and Knicker H. Sulfur K-edge XANES spectroscopy reveals differences in sulfur speciation of bulk soils, humic acid, fulvic acid, and particle size separates. Soil Biology and Biochemistry.2007,39(4):877-890.
    Rani SA, Pitts B, Beyenal H, Veluchamy RA, Lewandowski Z, Davison WM, Buckingham-Meyer K and Stewart PS. Spatial patterns of DNA replication, protein synthesis, and oxygen concentration within bacterial biofilms reveal diverse physiological states. Journal of Bacteriology.2007,189(11):4223-4233..
    Remonsellez F, Orell A and Jerez CA. Copper tolerance of the thermoacidophilic archaeon Sulfolobus metallicus:possible role of polyphosphate metabolism. Microbiology-SGM. 2006,152:59-66.
    Rohwerder T, Gehrke T, Kinzler K and Sand W. Bioleaching review part A:Progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Applied Microbiology and Biotechnology.2003,63(3):239-248.
    Rompel A, Cinco RM, Latimer MJ, McDermott AE, Guiles RD, Quintanilha A, Krauss RM, Sauer K, Yachandra VK and Klein MP. Sulfur K-edge x-ray absorption spectroscopy:A spectroscopic tool to examine the redox state of S-containing metabolites in vivo. Proceedings of the National Academy of Sciences of the United States of America.1998, 95(11):6122-6127.
    Quaranta D, McCarty R, Bandarian V and Rensing C. The Copper-Inducible cin Operon Encodes an Unusual Methionine-Rich Azurin-Like Protein and a Pre-QO Reductase in Pseudomonas putida KT2440.2007,189:5361-5371.
    Sand W, Gehrke T, Jozsa PG and Schippers A. (Bio) chemistry of bacterial leaching-direct vs. indirect bioleaching. Hydrometallurgy.2001,59(2-3):159-175.
    Sarret G, Saumitou-Laprade P, Bert V, Proux O, Hazemann JL, Traverse A, Marcus MA and Manceau A. Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. (vol 130, pg 1815,2002). Plant Physiology.2003,133(1):423-423.
    Seguin V, Gagnon C and Courchesne F. Changes in water extractable metals, pH and organic carbon concentrations at the soil-root interface of forested soils. Plant and Soil.2004,260(1-2): 1-17.
    Shen H, He LF, Sasaki T, Yamamoto Y, Zheng SJ, Ligaba A, Yan XL, Ahn SJ, Yamaguchi M, Sasakawa H and Matsumoto H. Citrate secretion coupled with the modulation of soybean root tip under aluminum stress. Up-regulation of transcription, translation, and threonine-oriented phosphorylation of plasma membrane H+-ATPase (vol 138, pg 287, 2005). Plant Physiology.2005,139(1):557-557.
    Shi JY, Wu B, Yuan XF, Cao YY, Chen XC, Chen YX and Hu TD. An X-ray absorption spectroscopy investigation of speciation and biotransformation of copper in Elsholtzia splendens. Plant and Soil.2008,302(1-2):163-174.
    Sievert SM, Heidorn T and Kuever J. Halothiobacillus kellyi sp nov., a mesophilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium isolated from a shallow-water hydrothermal vent in the Aegean Sea, and emended description of the genus Halothiobacillus. International Journal of Systematic and Evolutionary Microbiology. 2000,50:1229-1237.
    Sigalevich P, Meshorere, Helman Y, and Cohen, Y. Transition from anaerobic to aerobic growth conditions for the sulfate-reducing bacterium Desulfovibrio oxyclinae results in flocculation. Applied and Environmental Microbiology.2000,66(11):5005-5012.
    Solomon D, Lehmann J and Martinez CE. Sulfur K-edge XANES spectroscopy as a tool for understanding sulfur dynamics in soil organic matter. Soil Science Society of America Journal.2003,67(6):1721-1731.
    Solomon El, Hedman B, Hodgson KO, Dey A and Szilagyi RK. Ligand K-edge X-ray absorption spectroscopy:covalency of ligand-metal bonds. Coordination Chemistry Reviews.2005, 249(1-2):97-129.
    Sorokin DY and Kuenen JG. Haloalkaliphilic sulfur-oxidizing bacteria in soda lakes. FEMS Microbiology Reviews.2005,29(4):685-702.
    Sorokin DY, Tourova TP, Kolganova TV, Spiridonova EM, Berg IA and Muyzer G. Thiomicrospira halophila sp nov., a moderately halophilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium from hypersaline lakes. International Journal of Systematic and Evolutionary Microbiology.2006,56:2375-2380.
    Sorokin DY, Tourova TP, Sjollema KA and Kuenen JG. Thialkalivibrio nitratireducens sp nov., a nitrate-reducing member of an autotrophic denitrifying consortium from a soda lake. International Journal of Systematic and Evolutionary Microbiology.2003,53:1779-1783.
    Stein OR, Borden-Stewart DJ, Hook PB and Jones WL. Seasonal influence on sulfate reduction and zinc sequestration in subsurface treatment wetlands. Water Research.2007,41(15): 3440-8.
    Strawn DG and Baker LL. Speciation of Cu in a contaminated agricultural soil measured by XAFS, μ-XAFS, and μ-XRF. Environmental Science and Technology.2008,42(1):37-42.
    Stubner S. Enumeration of 16S rDNA of Desulfotomaculum lineage 1 in rice field soil by real-time PCR with SybrGreen detection. Journal of Microbiological Methods.2002,50(2):155-64.
    Stubner S. Quantification of Gram-negative sulphate-reducing bacteria in rice field soil by 16S rRNA gene-targeted real-time PCR. Journal of Microbiological Methods.2004,57(2): 219-30.
    Stubner S, Wind T and Conrad R. Sulfur oxidation in rice field soil:activity, enumeration, isolation and characterization of thiosulfate-oxidizing bacteria. Systematic and Applied Microbiology.1998,21(4):569-78.
    Tao S, Liu WX, Chen YJ, Xu FL, Dawson RW, Li BG, Cao J, Wang XJ, Hu JY and Fang JY. Evaluation of factors influencing root-induced changes of copper fractionation in rhizosphere of a calcareous soil. Environmental Pollution.2004,129(1):5-12.
    Templeton A and Knowles E. Microbial Transformations of Minerals and Metals:Recent Advances in Geomicrobiology Derived from Synchrotron-Based X-Ray Spectroscopy and X-Ray Microscopy. Annual Review of Earth and Planetary Sciences.2009,37(1):367-391.
    Teske A, Wawer C, Muyzer G and Ramsing NB. Distribution of sulfate-reducing bacteria in a stratified fjord (Mariager fjord, Denmark) as evaluated by most-probable-number counts and denaturing gradient gel electrophoresis of PCR-amplified ribosomal DNA fragments. Applied and Environmental Microbiology.1996,62(4):1405-1415.
    Teske A, Ramsing NB, Habicht K, Fukui M, Kuver, J, Jorgensen BB and Cohen Y. Sulfate-reducing bacteria and their activities in cyanobacterial mats of Solar Lake (Sinai, Egypt). Applied and Environmental Microbiology.1998,64(8):2943-2951.
    Tsai Y, Sawaya MR, Cannon GC, Cai F, Williams EB, Heinhorst S, Kerfeld CA and Yeates TO. Structural analysis of CsoSIA and the protein shell of the Halothiobacillus neapolitanus carboxysome. Plos Biology.2007,5(6):1345-1354.
    van Hoof NALM, Hassinen VH, Hakvoort HWJ, Ballintijn KF, Schat H, Verkleij JAC, Ernst WHO, Karenlampi SO and Tervahauta AI. Enhanced copper tolerance in Silene vulgaris (Moench) Garcke populations from copper mines is associated with increased transcript levels of a 2b-type metallothionein gene. Plant Physiology.2001,126(4):1519-1526.
    Vester F and Ingvorsen K. Improved most-probable-number method to detect sulfate-reducing bacteria with natural media and a radiotracer. Applied and Environmental Microbiology. 1998,64(5):1700-1707.
    Visscher P T, Prins R A, Gemerden H. Rates of sulfate reduction and thiosulfate consumption in a marine microbial mat. FEMS Microbiology Ecology.1992,86(4):283-294.
    Wagner M, Roger AJ, Flax JL, Brusseau GA and Stahl DA. Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. Journal of Bacteriology.1998, 180(11):2975-2982.
    Wang YP, Li QB, Wang H, Shi JY, Lin Q, Chen XC and Chen YX. Effect of sulphur on soil Cu/Zn availability and microbial community composition. Journal of Hazardous Materials.2008, 159(2-3):385-389.
    Wetherall KM, Moss RM, Jones AM, Smith AD, Skinner T, Pickup DM, Goatharn SW, Chadwick AV and Newport RJ. Sulfur and iron speciation in recently recovered timbers of the Mary Rose revealed via X-ray absorption spectroscopy. Journal of Archaeological Science.2008, 35(5):1317-1328.
    Wilke M, Jugo PJ, Klimm K, Susini J, Botcharnikov R, Kohn SC and Janousch M. The origin of S4+ detected in silicate glasses by XANES. American Mineralogist.2008,93(1):235-240.
    Wind T and Conrad R. Sulfur compounds, potential turnover of sulfate and thiosulfate, and numbers of sulfate-reducing bacteria in planted and unplanted paddy soil. FEMS Microbiology Ecology.1995,18(4):257-266.
    Wind T, Stubner S and Conrad R. Sulfate-reducing bacteria in rice field soil and on rice roots. Systematic and Applied Microbiology.1999,22(2):269-79.
    Wood AP, Woodall CA and Kelly DP. Halothiobacillus neapolitanus strain OSWA isolated from "The old sulphur well" at Harrogate (Yorkshire, England). Systematic and Applied Microbiology.2005,28(8):746-748.
    Xia K, Weesner F, Bleam WF, Bloom PR, Skyllberg UL and Helmke PA. XANES studies of oxidation states of sulfur in aquatic and soil humic substances. Soil Science Society of America Journal.1998,62(5):1240-1246.
    York JT, Bar-Nahum I and Tolman WB. Copper-sulfur complexes supported by N-donor ligands: Towards models of the Cu-Z site in nitrous oxide reductase. Inorganica Chimica Acta.2008, 361(4):885-893.
    Zeng F, Mao Y, Cheng W, Wu F and Zhang G. Genotypic and environmental variation in chromium, cadmium and lead concentrations in rice. Environmental Pollution.2008,153(2):309-314.
    陈英旭.土壤重金属的植物污染化学.北京,2008.科学出版社.
    程国峰,黄月鸿,杨传铮.同步辐射X射线应用技术基础.上海.上海科学技术出版社.
    崔岩山,王庆仁,董艺婷,李海峰.硫磺对土壤中Pb和Zn形态的影响.环境化学.2004,23(01):46-50.
    东秀珠,蔡妙英.常见细菌系统鉴定手册.北京,2001.科学出版社.
    李成保.土壤硫素形态及其转化研究进展.土壤学进展.1990,18(6):42-46,49.
    李庆逵.中国水稻土.北京,1992.科技出版社.
    李书田,林葆,周卫.土壤硫素形态及其转化研究进展.土壤通报.2001,32(03):132-135.
    鲁如坤.土壤农业化学分析方法.北京,1999.中国农业科技出版社.
    闵航,陈美慈,赵宇华,钱泽澍.厌氧微生物学.杭州,1993.浙江大学出版社.
    马礼敦,杨福家.同步辐射应用概论.上海,2001.复旦大学出版社.
    徐彭寿,潘国强.同步辐射应用基础.合肥,2009.中国科学技术大学出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700