用户名: 密码: 验证码:
铪基高k栅介质薄膜和白色长余辉材料Ca_xMgSi_2O_(5+x):Dy~(3+)的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要包括两部分内容:
     1.Hf基高k栅介质La2Hf2O7和Hf(1-x)LaxOy薄膜的生长和性质研究
     微电子技术和产业的高速发展不断对半导体集成电路提出高性能和低功耗的要求,这些要求通过集成电路中的基本器件——金属—氧化物—半导体(MOS)晶体管的不断小型化来达到,四十多年来它一直遵循着著名的Moore定律。根据国际半导体技术线路图(ITRS)提出的未来发展趋势,晶体管的小型化将在今后相当长的时间内还会继续下去。但随着小型化的继续,传统的栅极绝缘介质材料SiO2层的厚度变得非常薄,,其等效氧化层厚度(EOT)将小于1 nm,导致栅极漏电流变得非常大,严重影响器件性能。为了解决这个问题,必须采用新的高介电常数栅极绝缘介质材料(高k材料)来替代SiO2,在保持相同结电容时具有更厚的厚度,从而大大降低漏电流,因此探寻和研究新的高k材料已经成为半导体工艺一个重要课题。目前的高k候选材料中,Hf基和稀土氧化物材料是最有希望替代SiO2的栅介质材料,但这些材料做为高k栅介质材料的基本物性研究,如界面、带偏移、影响介电系数的机制以及对电学性质的影响等还相对缺乏,因此从基本物性的角度上研究高k材料是非常必要的,对深入理解高k材料的介电性质的机制、提高材料的性能和设计新材料都具有非常重要的意义。本文选取铪基和稀土La2O3材料作为研究对象,采用脉冲激光沉积技术(PLD)生长了La2Hf2O7和Hf(1-x)LaxOy薄膜,对其结构、热稳定性、界面反应、界面结构以及声子模式进行了系统的研究。首先,我们利用脉冲激光沉积技术在Si(100)衬底上成功生长出非晶La2Hf2O7栅介质薄膜。该薄膜显示出优异的热稳定性,能够保持非晶状态至900℃,完全能够满足工艺上的热稳定性要求。EXAFS研究显示该非晶薄膜具有立方相La2Hf2O7的最近邻局域结构。结合XRR、XPS、FTIR等多种方法研究了其界面情况,表明生长过程中有硅酸盐和硅氧化物界面层形成,衬底温度越高或者沉积时间越长,则界面层越厚;在缺氧环境中生长时,有少量铪的硅化物形成,这种硅化物对电学性质有着重要的影响。通过对生长条件和后处理条件的研究,我们发现在适当的氧气氛环境中生长、或者1000℃氮气中后退火处理可以有效的抑制或者消除Hf的硅化物,其电学性能显著改善。利用同步辐射光电子能谱,对La2Hf2O7薄膜与Si的能带偏移进行了研究,结果显示,La2Hf2O7/Si价带偏移ΔEv是2.6±0.1eV,按照文献中La2Hf207的禁带宽度为5.6eV计算,其导带偏移ΔEC约为1.7±0.1eV,能够满足高k材料对能带偏移的要求。我们利用远红外光谱研究La2Hf2O7体材料和薄膜的红外声子振动模式,讨论了各声子对介电函数的贡献。薄膜样品由于具有和体材料相似的局域结构,保持了主要的声子模式,但其低频声子模式的振子强度普遍减小,造成其静态介电常数比体材料小。
     其次,我们研究了生长条件和La掺杂对HfO2栅介质薄膜的结构、红外声子模式、以及对介电函数的影响。室温下制备的HfO2薄膜为非晶状态,衬底温度400℃时已经形成单斜相的Hf02薄膜,1000℃退火后薄膜结晶质量改善,更趋向于(111)晶面取向。EXAFS研究显示低衬底温度下制备的HfO2样品具有更短的Hf-O键长,和更高的无序度。薄膜结构和薄膜质量影响其远红外声子模式,使得一些低频红外声子模式消失,造成其介电常数相对体材料有所降低。由于薄膜材料和体材料具有相似的局域结构,而且影响静态介电常数的主要远红外声子模式依然存在,因此薄膜材料仍然可以保持相对较高的介电常数。掺入少量的La,能够降低HfO2高温相的结晶温度,形成介电常数较高的立方相HfO2,而较高的La掺杂浓度则形成了近似La2Hf2O7局域结构的非晶薄膜。随着La掺杂浓度的增加,红外声子模式被逐渐软化,同时介电常数增加。因此,通过La掺杂不仅能够提高HfO2的结晶温度,而且能够改变其介电常数,为我们进一步研究该体系在高k器件中的应用以及探寻新的高k材料提供了物理依据。
     2.白色长余辉材料CaxMgSi2O5+x:Dy3+系列的发光性能和余辉机理研究。
     在长余辉材料中,白色长余辉材料的研究起步比较晚,其性能相对于蓝色,绿色长余辉材料还有比较大的差距,是近年来人们关注的热点。目前报道的白色长余辉材料相对较少,三元的焦硅酸盐和含镁正硅酸盐由于具有良好的化学稳定性和热稳定性,是一种很好的基质材料。在材料设计上,我们以钙镁硅酸盐体系为基质,利用的Dy3+离子的4F9/2→6H15/2和4F9/2→6H13/2跃迁发射产生的蓝光(475nm)和黄光(575nm),复合来得到白色长余辉。通过优化Dy离子掺杂浓度等制备条件,在CaxMgSi2O5+x:Dy3+(x=1,2,3)三种基质中成功的制备出余辉时间为1小时左右的白色长余辉材料。通过对该体系的激发和发射光谱、余辉光谱、热释光曲线和余辉衰减曲线等的研究,对其余辉机理进行了探讨。
Tow parts are included in this dissertation:
     1. The growth and properties of high k dielectric La2Hf2O7 and Hf(1-x)LaxOy films.
     The industry's demand for greater integrated circuit functionality and performance at lower cost requires an increased circuit density. As the most important electronic device, the size of metal-oxide-semiconductor field effect transistor (MOSFET) has been shrinking according to Moore's Law of scaling over forty years. According to the International Technology Roadmap for Semiconductors (ITRS), the continuous downscaling will be applied at least for one more decade. With the continuous down scaling, the thickness of conventional SiO2 gate dielectric will be thinner than lnm. This will increase the leakage current exponentially due to quantum mechanical tunneling, and seriously affects the performance of device. Therefore, it is necessary to replace the SiO2 with a new high k gate material, which can increase the thickness while maintaining the gate capacitance, potentially reducing the tunneling current. Among the various high-k dielectric materials, Hf-based dielectrics and rare earth oxides have been regarded as the most promising candidates. However, the basic study of physical properties is still lacking, such as interface, band offset, the nature and origin of their large dielectric constant. In this study, we choose the Hf-based gate dielectric and La2O3 as the materials of our research, using Pulsed Laser Deposition (PLD) technique to grow the La2Hf2O7 and Hf(1-x)LaxOy films. Different kinds of characterization methods are applied to investigate their microstructure, thermal stability, interfacial reaction and phonon modes.
     First, amorphous La2Hf2O7 films were deposited on Si (100) substrates by PLD method. La2Hf2O7 films show excellent thermal stability. The films can keep amorphous even after 900℃thermal anneal, which meet the requirement of semiconductor technology. The results of EXAFS show that the local structure of amorphous film is similar with that La2Hf2O7. The interface structure is systematically studied by combining XRR, XPS and FTIR methods. Silicate and SiOx formation from interfacial reaction are observed in the interfacial layers during deposition. With higher temperature or longer deposition time, the interfacial layers become thicker. A few of Hf-silicide microcrystals have been formed during vacuum grown condition, which is detrimental to the electric property. Our result shows that Hf-silicide can be effectively eliminated by growing in oxygen ambience or post deposition annealing, which evidently improves the electric property. By using SR-XPS, the valence band offset (△Ev) of La2Hf2O7 film to Si is determined to be 2.6±0.1eV. According to the reference, it is reported that the band gap of La2Hf2O7 is 5.6eV. Its conduction band offset (△Ec) with 1.7±0.1eV is obtained, which can satisfy the requirements of high k dielectrics. Far Infrared spectroscopy is applied to study the optical phonon modes and dielectric constants of La2Hf2O7 material and thin films. We discuss the contribution of every phonon mode to dielectric constant. The thin film can keep main infrared phonon modes, but the lost and weakness of some soft phonon modes causes the dielectric constant of film smaller than that of bulk material.
     Furthermore, HfO2 and Hf (1-x)LaxOy dielectric films are grown on Si(100) by PLD method. The effect of growth condition and La doping concentration on the film structure, infrared vibrational modes and dielectric property has been investigated. HfO2 films deposited at room temperature and 400℃are amorphous and monoclinic, respectively. Some far infrared phonon modes disappear due to the structure disorder and crystalline quality of thin film, which causes the dielectric constant of thin film smaller than that of bulk sample. However, main infrared phonon modes are preserved and the film still has enough value of dielectric constant. Lanthanum serves effectively as a dopant to induce a phase transformation from the monoclinic to the cubic phase even at 700℃, which shows higher permittivity than undoped HfO2. However, the introduction of more Lanthanum into HfO2 will cause an increase of crystallization temperature and form the amorphous films. With more La introduction, the main phonon mode is softened and higher permittivity is obtained. These results are useful for its application and search of new high-k dielectrics.
     2. Study of the luminescent properties and mechanism of the white-light long afterglow phosphors:CaxMgSi2O5+x:Dy3+(x=1,2,3).
     Colours of the developed long-lasting phosphors range from bule to red. Unfortunately, no phosphor with white-light long afterglow has been developed into a commercial application so far. Therefore, search of a better white-light long afterglow phosphor becomes a new research area. Because of their predominant chemical stability and thermal stability, calcium magnesium silicates are a kind of important host materials for long afterglow phosphors. Therefore, we prepare and investigate a series of Dy3+-doped calcium magnesium silicate phosphors—CaxMgSi2O5+x:Dy3+(x= 1,2,3). The white-light emission originates from the combination of the 475nm blue emission and the 575nm yellow emission, corresponding to the 4F9/2→6H15/2 and 4F9/2(?)→>6H13/2 transitions. The white-light afterglow can last about more than one hour in darkness for most of our samples. The afterglow decay curves and the thermoluminescence spectra are employed to discuss the origin of the traps and the mechanism of the afterglow emission.
引文
[1]G.D. Wilk, R. M. Wallace and J. M. Anthony, J. Appl. Phys.89 (2001) 5243
    [2]John Roberston, Pep. Prog. Phys.69 (2006) 327
    [3]www. Itrs.net
    [4]甘学温,黄如,刘晓彦,张兴编著,科学出版社,2004《纳米CMOS器件》
    [5]B. H. Lee, J. Oh, H. H. Tseng, R. Jammy, and H. Huff, Mater. Today 9(2006) 32
    [6]E. H. Nicollian, J. R. Brews. Metal oxide semiconductor Physics and technology [M]. John Wiley and Sons, New Yjrk,1982
    [7]Angus I. Ki ngon, J on-Pau 1M aria, and S. K. Streiffer, N ature,406,1032 (2000)
    [8]V. Cosnier, M. Olivier, G Theret, and B. Andre, J. Vac. Sci. Technol. A,19 (2001) 2267
    [9]Deok-Yong Cho, Kee-Shik Park, B.-H. Choi, S.-J. Oh, Y. J. Chang, D. H. Kim, T. W. Noh, Ranju Jung, and S. D. Bu, Appl. Phys. Lett.86 (2005) 041913
    [10]Charles M. Perkins, Baylor B. Triplett, Paul C. Mclntyre, et al. Appl. Phys. Lett, (2002)81,1417
    [11]Ikarashi N, and K. Manabe, J. Appl. Phys.,2003.94(1):480-486.
    [12]Mitsutaka Matsuse, Seiji Tsuboi, Masashi Kawasaki, and Hideomi Koinuma, Phys. Rev. B 53,12585(1996)
    [13]Chen S. C, et al, Thin Solid Film,2005,488,167-172
    [14]Jack C. Lee, C. Kang, S. Rhee, et al. Hafnium-based Hilgh-K Dielectrics, IEDM Tech. Dig, (2005)10(6),1-4.
    [15]周晓强,凌惠琴,毛大立等,高介电常数栅介质材料研究动态,微电子学,2005,4,35(2),163-168.
    [16]P.R.Willmott, J.R.Huber, Reviews of Modern Physics.72 (2000) 315
    [17]P. Baeri, E.Rimini, Mater. Chem. Phys.46 (1996) 169
    [18]R.K. Singh, and J.Narayan. Phys. Rev. B.41(13) (1990)8843
    [19]Ran, Jiang, Erqing Xie, Zhenfang Wang, Appl. Phys. Lett.89 2006) 142907
    [20]余东海,王成勇,成晓玲,宋月贤,真空,46(2009)19
    [21]L.I. Maissel, R. Glang. Handbook of Thin Film Technology (McGraw-Hill, New York,1970), p50
    [22]Putkonen M, Sajavaara T, et al. Anal Bioanal Chem,382 (2005) 1791
    [23]吴自勤,王兵,薄膜生长,科学出版社,2005,p333
    [24]Hideki Matsumura, Jpn. J. Appl. Phys.37 (1998) 3175
    [25]王金梅,李达,邓赞红,朱雪斌,董伟伟,方晓东,化学进展,21(2009)128
    [26]D.K. Sarkar, D. Brassard, M.A. El Khakani, L. Ouellet, Thin Solid Films 515 (2007)4788
    [27]H. Fricke, Phys. Rev.16 (1920).202
    [28]L.V. zaroff, D. M. Pease, X-ray Spectroscopy, Mograw-Hill, New York, Chap. 6. (1974)
    [29]王其武,刘文汉,X射线吸收精细结构及其应用,科学出版社,1994
    [30]陆坤权,物理学进展,5(1985)125
    [31]D. E. Sayers, et al., Phys. Rev., Lett.27 (1971)1204.
    [32]E.A. Stern, et al., Phys. Rev. B10 (1974)3027.
    [33]韦世强,孙治湖,潘志云,闫文盛,中国科学技术大学学报,38(2007)465
    [34]Nietubyc R, Czerwosz E, Diduszko R, et al. Journal of Alloys and Compounds, 484 (2009) 896
    [35]Zhang HZ, Chen B, Banfield JF, et al. Phys, Rev. B 78 (2008) 214106
    [36]麦振洪等.薄膜结构的X射线表征,北京:科学出版社,(2007)
    [37]X.L. Li, W.F. Xiang, H.B. Lu, and Z.H. Mai, J.Appl.Phys,97 (2005) 124104
    [38]C. Wiemer, S. Ferrari, M. Fanciulli, G. Pavia, L. Lutterotti, Thin Solid Films 450 (2004)134
    [39]张爱梅,吴小山,物理36(2007)516
    [40]王华馥,吴自勤,固体物理实验方法,高等教育出版社,1990, p129
    [41]W. G. Spitzer and D. A. Kleinman, Phys. Rev.,121 (1961) 1324
    [42]K.S. Shamala, L.C.S. Murthy, M.C. Radhakrishna, Sensors and Actuators A: Physical,135 (2007) 552
    [43]P. Vitanov, A. Harizanova, T. Ivanova, T. Dimitrova, Thin Solid Films 517 (2009) 6327
    [44]Park DJ, Lim JW, Park BO, SOLID-STATE ELECTRONICS,54 (2010) 323
    [45]Lin HC, Ye PD, Wilk GD, Appl. Phys. Lett.87 (2005) 182904
    [46]Y. Chang, F. Ducroquet, E. Gautier, O. Renault, Microelectronic Engineering,72 (2004)326
    [47]Yoh-Ichiro Ogita, Shinshi Iehara, Toshiyuki Tomita, Thin Solid Films 430 (2003) 161-164
    [48]Fang ZB, Chen S, Zhu YY, et al, Nanotechnology,18 (2007) 3704
    [49]Park SA, Roh YS, Kim YK, et al. J. Appl. Phys.98 (2005) 024906
    [50]Yue SJ, Wei F, Wang Y, et al. J. Rare. Earths,26 (2008) 371
    [51]Evangelou EK, Wiemer C, Fanciulli M, et al, J. Appl. Phys.94 (2003) 318
    [52]Iosad NN, Ruis GJ, Morks EV, et al. J. Appl. Phys.95(2004) 8087
    [53]Xuerui Cheng, Zeming Qi, Min Yin, et al, Physica B 404(2009) 146
    [54]S. Guha, E. Cartier, M. A. Gribelyuk, N. A. Bojarczuk, and M. C. Copel, Appl. Phys. Lett.77 (2000) 2710
    [55]Y. Y. Zhu, S. Chen, R. Xu, Z. B. Fang, J. F. Zhao, Y. L. Fan, X. J. Yang, and Z. M.Jiang, Appl. Phys. Lett.88 (2006) 162909
    [56]Suri R, Lichtenwalner DJ, Misra V, Appl. Phys. Lett.96 (2010)112905
    [57]Adelmann C, Tielens H, Dewulf D, et al. J. Electrochem. Soc,157 (2010) G105
    [58]Seo Y, Lee S, An I, et al. Semiconductor Science andTechnology,24 (2009) 115016
    [59]Lamagna L, Wiemer C, Baldovino S, et al, Appl. Phys. Lett.95 (2009)112902
    [60]Xu-bing Lu, Kenji Maruyama, Hiroshi lshiwara, J. Appl. Phys.103 (2008) 044105
    [61]Ando T, Copel M, Bruley J, et al, Appl. Phys. Lett.96 (2010)132904
    [62]Gueorguiev VK, Aleksandrova PV, Ivanov TE, et al. Thin Solid Film,517 (2009) 1815
    [63]Suh DC, Cho YD, Kim SW, et al. Appl. Phys. Lett.96 (2010)142112
    [64]Zhu LQ, Zhang LD, Fang Q, Appl. Phys. Lett.91 (2007)172902
    [65]Martinez E, Leroux C, Benedetto N, et al. J. Electrochem. Soc,156 (2009) G78
    [66]Young-Bae Kim, Moon-Soo Kang, Taeho Lee, Jinho Ahn, and Duck-Kyun Choi, J. Vac. Sci. Technol. B,21 (2003) 2029
    [67]Feng LP, Liu ZT, Appl. Phys. Lett.94 (2009) 252907
    [68]Gao LG, Xu B, Guo HX, et al. Appl. Phys. Lett.94 (2009) 252901
    [69]Mizubayashi W, Yasuda N, Hisamatsu H, et al., Appl. Phys. Lett.85 (2004) 6227
    [70]Jin H, Oh SK, Kang HJ, et al. Surface and Interface Analysis,38 (2006) 502
    [71]Seong NJ, Yoon SG, Yeom SJ, et al., Integrated Ferroelectrics,74 (2005) 131
    [72]Zhu J, Liu ZG, Li YR, J. Ph Journal of Physics D:Applied Physics,38 (2005) 446
    [73]Fujitsuka R, Sakashita M, Sakai A, Ogawa M, Zaima S, Yasuda Y, Jpn. J. Appl. Phys,44(2005) 2428
    [74]H.Y. Yu, M.F. Li, D.L. Kwong, Thin Solid Film,462 (2004) 110
    [75]John Roberston, J. Appl. Phys.104 (2008) 124111
    [76]J.M.J. Lopes, E. Durgun Ozben, M. Roeckerath, et al, Microelectronic Engineering,86 (2009) 1646
    [77]Yeh LY, Chang IYK, Chen CH, et al. Appl. Phys. Lett.95 (2009) 162902
    [78]Suzuki M, Yamaguchi T, Fukushima N, et al. J. Appl. Phys,103(2008) 034118
    [79]L. F. Edge, D. G. Schlom, R. T. Brewer, et al. Chabal, Appl. Phys. Lett.84 (2004) 4629
    [80]L. F. Edge, D. G. Schlom, S. A. Chambers, et al., Appl. Phys. Lett.84(2004)4726
    [81]L. F. Edge, D. G. Schlom, P. Sivasubramani, et al., Appl. Phys. Lett.88 (2006) 112907
    [82]J. M. J. Lopes, M. Roeckerath, T. Heeg, et al, Appl. Phys. Lett.89 (2006) 222902
    [83]J. Schubert, O. trithaveesak, W. zander, et al, Appl. Phys. A 90 (2008) 577
    [84]V. V. Afanasev, S. Shamuilia, M. Badylevich, et al. Microelectronic Engineerinzg 84 (2007)2278
    [85]M. Roeckerath, T. Heeg, J.M.J. Lopesa, et al. Thin Solid Films,517 (2008) 201
    [86]Y. Yamamoto, K. Kita, K. Kyuno, and A. Toriumi, Appl. Phys. Lett.89 (2006) 032903
    [87]X. P. Wang, M. F. Li, A. Chin, et al, Solid-State Electron.50 (2006)986
    [88]Feng Wei, Hailing Tu, Yi Wang, et al, Appl. Phys. Lett.92 (2008) 012901
    [1]Y. Yamamoto, K. Kita, K. Kyuno, and A. Toriumi, Appl. Phys. Lett.89, (2006) 032903
    [2]N. Li, H.Y. Xiao, X.T. Zu, L.M.Wang, et al, J. Appl. Phys.102 (2007) 063704
    [3]Feng Wei, Hailing Tu, Yi Wang, Shoujing Yue, and Jun Du, Appl. Phys. Lett.92 (2008)012901
    [4]A. Dimoulas, G. Vellianitis, G. Mavrou, G. Apostolopoulos, Appl. Phys. Lett.85 (2004)3205
    [5]Z. M. Rittersma, J. C. Hooker, G. Vellianitis, et al. J. Appl. Phys.99 (2006) 024508
    [6]Stern E A, Newville M, Ravel B, et al. Physica B,208(12) (1995) 117
    [7]X.L. Li, W.F. Xiang, H.B. Lu, and Z.H. Mai, J.Appl.Phys,97 (2005) 124104
    [8]S. Ferrari, M. Modreanu, G. Scarel, M. Fanciulli, Thin Solid Films 450 (2004) 124
    [9]Y. Wang, M. Dai, M.-T. Ho, L. S. Wielunski, Y. J. Chabal, Appl. Phys. Lett.90 (2007)022906
    [10]Anand Deshpande, Ronald Inman, Gregory Jursich, Microelectronic Engineering,83 (2006) 547
    [11]V. Cosnier, M. Olivier, G. Theret, and B. Andre, J. Vac. Sci. Technol. A,19 (2001)2267
    [12]G. He, L.D. Zhang, Q. Fang, J.Appl.Phys,100 (2006) 083517
    [13]L. Shi, Y. Yuan, X.F. Liang, Y.D. Xia, J. Yin, Z.G. Liu, Applied Surface Science,253(2007)3731
    [14]Q.-Y. Shao, A.-D. Li, J.-B. Cheng, H.-Q. Ling, Appl. Phys. A.81 (2005) 1181
    [15]R.L. Nigro, G. Toro, G. Malandrino, G.G. Condorelli, V. Raineri, Fragala, Adv. Funct. Mater.15 (2005) 838.
    [16]Theodosia Gougousi, M. Jason Kelly, David B. Terry and Gregory N. Parsons, J.Appl.Phys 93 (2003)1691
    [17]X.B. Lu, Z.G. Liu, G.H. Shi, H.Q. Ling, Appl. Phys. A.78 (2004) 921
    [18]Deok-Yong Cho, Kee-Shik Park, B.-H. Choi, Appl. Phys. Lett.86 (2005) 41913
    [19]T.S Jeon, J.M. White, D.L. Kwong, Appl. Phys. Lett.78 (2001) 368
    [20]S. J. Wang, P. C. Lim, A. C. H. Huan, C. L. Liu, Appl. Phys. Lett.80 (2003) 2541
    [21]Kouichi Muraoka, Appl. Phys. Lett.80 (2002) 4516
    [22]Charles M. Perkins, Baylor B. Triplett, Paul C. Mclntyre, Appl. Phys. Lett.81 (2002) 1417
    [23]Hiroya IKEDA, Satoru GOTO, Jpn. J. Appl. Phys.41 (2002) 2476
    [24]G.W. Rowe, Wear,3 (1960) 274
    [25]R.H. Savage, and D.L. Schaeffer, J.Appl.Phys,27 (1956) 136
    [26]H. J. Osten, J. P. Liu,b) and H. J. Mussig, Appl. Phys. Lett.80 (2002) 297
    [27]H. Y. Yu, M. F. Li, et al, Appl. Phys. Lett.81 (2002) 379
    [28]G. Seguini, S.Spiga, E. Bonera, M. Fanciulli, et al, Appl. Phys. Lett.88 (2006) 202903
    [29]ZHU Yanyan, FANGZebo, LIU Yongsheng, et al, J. Rare. Earth,26 (2008) 775
    [30]XuR, Yan Z J, Chen S, Fan Y L, et al, Surface Science,581 (2005) 236
    [31]S. A. Chambe-rs, Y. Liang, Z. Yu, R. D. Roopad, J. Ramdani, J. Vac. Sci. Technol. A 19, (2001) 934
    [32]Y. Y. Zhu, S. Chen, R. Xu, Z. B. Fang, J. F. Zhao, Y. L. Fan, X. J. Yang, Z. M. Jiang, Appl. Phys. Lett.88 (2006) 162909
    [33]D. Liu, K. Tse, J. Robertson, Appl. Phys. Lett.90 (2007) 062901
    [34]A.B.Kuzmenko, Rev. Sci.Instrum.76 (2005) 083108
    [35]A. Schubert.et al. Phys. Rev. Lett.72 (1994) 1608
    [36]Kyeongjae Cho, Computational Materials Science,23 (2002) 43
    [37]C. Kittel, Introduction to Solid State Physics, seventh ed.,Wiley, New York, 1996.
    [38]Stephen A. Shevlin, Alessandro Curioni, and Wanda Andreoni, Phys. Rev. Lett. 94(2005) 146401
    [39]Pietro Delugas, Vincenzo Fiorentini, Alessio Filippetti, Phys. Rev. B 71 (2005) 134302
    [40]Emiliano Bonera, Giovanna Scarel, Marco Fanciulli, Phys. Rev. Lett.94 (2005) 027602
    [41]L. M. Lin and P. T. Lai, J. Appl. Phys.102, (2007) 054515
    [42]Ronald A. McCauley, Opt. Soc. Am 63 (1973) 721
    [43]H. C. Gupta, Sonal Brown, Neelima Rani, V. B. Gohel, J. Raman Spectrosc.32 (2001)41
    [44]H. C. Gupta, Sonal Brown, Neelima Rani, V. B. Gohel, journal of physics and chemistry of solids,63 (2002) 535
    [45]A. B. Kuzmenko, E. A. Tishchenko, and A. S. Krechetov, Opt. Spectrosc.84 (1998) 402
    [46]A.B.Kuzmenko, Rev. Sci. Instrum.76 (2005) 083108
    [47]A.B.Kuzmenko, N.Tombros, H.J.A.Molegraaf, M.Gruninger, D. van der Marel and S.Uchida, Phys. Rev. Lett.91 (2003) 037004
    [48]A.B. Kuzmenko, D. van der Marel, P. J. M. van Bentum, E. A. Tishchenko, C. C.Presura, and A. A. Bush, Phys. Rev. B,63 (2001) 094303.
    [1]Suri R, Lichtenwalner DJ, Misra V, Appl. Phys. Lett.96 (2010)112905
    [2]Adelmann C, Tielens H, Dewulf D, et al. J. Electrochem. Soc,157 (2010) G105
    [3]Lamagna L, Wiemer C, Baldovino S, et al, Appl. Phys. Lett.95 (2009)112902
    [4]X. Zhao and D. Vanderbilt, Phys. Rev. B 65 (2002) 233106
    [5]Xinyuan Zhao, David Vanderbilt, Phys. Rev. B,65 (2002) 233106
    [6]D. W. Stacy and D. R. Wilder, J. Am. Ceram. Soc.58 (1975)285
    [7]Jin H, Oh SK, Kang HJ, et al. Surface and Interface Analysis,38 (2006) 502
    [8]Pirkle A, Wallace RM, Colombo L, Appl. Phys. Lett.95 (2009)133106
    [9]Kadoshima M, Ogawa A, Ota H, et al, J. Appl. Phys.99 (2006) 054506
    [10]Son SY, Jang JH, Kumar P, et al. Journal of Vacuum Science & Technology B,27 (2009) 71
    [11]H.Y. Yu, M.F. Li, D.L. Kwong, Thin Solid Film,462 (2004) 110
    [12]E. Rauwel, C. Dubourdieu, B. Hollander, et al, Appl. Phys. Lett.89 (2006) 012902
    [13]Koji Kita, Kentaro Kyuno, Akira Toriumi, Appl. Phys. Lett.86 (2005) 102906
    [14]Z. K. Yang, W. C. Lee, Y. J. Lee, P. Chang, M. L. Huang, Appl. Phys. Lett.90 (2007)152908
    [15]HaoWang, Y.Wang, J. Feng, et al. Appl. Phys. A.2008,93(3):681
    [16]Stern E A, Newville M, Ravel B, et al. Physica B,1995,208(12):117
    [17]Zabinsky. S, Phys. Rev. B,52(4) (1994) 2995
    [18]Patrick S. Lysaght, Joseph C. Woicik, M. Alper Sahiner, et al. J. Non-crystal. Solids,354(5) (2008):399
    [19]Deok-Yong Cho, Tae Joo Park, Kwang Duk Na, et al. Phy Rev B,78 (13) (2008) 132102
    [20]Wanderla L. Scopel, Antonio J. R. da Silva, A. Fazzio, Phy Rev B,77(17) (2008)172101
    [21]Kazuyuki Tomida, Koji Kita, and Akira Toriumi, Appl. Phys. Lett.89 (2006) 142902
    [22]Xinyuan Zhao, David Vanderbilt, Phy Rev B,65(23) (2002) 233106
    [23]Justin C. Hackley, Theodosia Gougousi, Thin Solid Films,517 (2009) 6576
    [24]Kazuyuki Tomida, Haruka Shimizu, Koji Kita, Kentaro Kyuno and Akira Toriumi, Mat. Res. Soc. Symp. Proc,811 (2004) D10.9.1
    [25]Gargi Dutta, Appl. Phys. Lett.94 (2009) 012907
    [26]Jacob Gavartin, Alexander Shluger, phys. stat. sol. (c),10(3) (2006) 3382
    [27]Zhan Jie Wang, Toshihide Kumagai, Hiroyuki Kokawa, Journal of Crystal Growth,281(3) (2005) 452
    [28]J.Y. Dai, P.F. Lee, K.H. Wong, et al. J. Appl. Phys.94(12) (2003) 912
    [29]S. Sayan, S. Aravamudhan, B.W. Busch, et al. J. Vac. Sci. Technol. A,20(2) (2002) 507
    [30]Yi-Chun Chen, Hsiang-Lin Liu, Hsiu-Fung Cheng,Journal of the European Ceramic Society,21(10) (2001)1711
    [31]Wang Yuanxu, CHIN. PHYS. LETT.26(1) (2009) 016801
    [32]B. Butz, P. Kruse, et al, Solid State Ionics,177 (2006) 3275
    [33]C. Jimenez-Solis, L. Esquivias, C. Prieto, Journal of Alloys and Compounds,228 (1995) 188
    [34]B.W. Veal, A.G. McKale, et al, Physica B,150 (1988) 234
    [1]W. Hoogeustraten,Philips Res. Repts,13(1958)515.
    [2]S. J. Xu, S. J. Chua, B. Liu, L. M. Gan, C. H. Chew, and G. Q. Xu, J. Appl. Phys. 73 (1998)478
    [3]K. Sooklal, B. S. Cullum, S. M. Angel, and C. J. Murhy, J. Phys. Chem. 100(1996)4551
    [4]F.C. Palilla, A.K. Levine, M.R Tomkus, J. Electrochem. Soc.:Solid State Science, 115(1968)642
    [5]Qin Fei, Chengkang Chang, Dali Mao, Journal of Alloys and Compounds 390 (2005)133
    [6]Wen Pan, Guiling Ning, Sensors and Actuators A 139 (2007) 318-322
    [7]A.A. Sabbagh Alvani, F. Moztarzadeh, A.A. Sarabi, J. Lumin.115(2005)147
    [8]Ran Pang, Chengyu Li, Su Zhang, Qiang Su, Materials Chemistry and Physics, 113(2009)215
    [9]Ran Pang, Chengyu Li, Lili Shi, Qiang Su, Journal of Physics and Chemistry of Solids,70 (2009) 303
    [10]Y. Murazaki, K. Arai, K. Ichinomiya, Japanese Rare Earth(In Japan) 35 (1999) 41
    [11]X.X. Wang, Z.T. Zhang, Z.L. Tang,et al. Mater. Chem. Phys.,80 (2003) 1
    [12]Hyun Kyoung Yang, Jong Won Chung, Byung Kee Moon, J. Phys. D:Appl. Phys.42 (2009) 085411
    [13]Lin Lin, Min Yin, Chaoshu Shi, Weiping Zhang, Journal of Alloys and Compounds,455 (2008) 327
    [14]Bo Liu, Chaoshu Shi, and Zeming Qi, Appl. Phys. Lett.,86 (2005) 191111
    [15]Yingliang Liu,Bingfu Lei, Chunshan Shi, Chem. Mater,17 (2005) 2108
    [16]Bo Liu,Linjie Kong,Clmoshu Shi, J. Lumin.122-123(2007)121
    [17]Bo Liu,Chaoshu Shi, Zeming Qi, J. Phys. Chem. Solids,67(2006) 1674
    [18]Lin L, Chen YH, Wang ZF, et al.,Journal of Rare Earth,26 (2008) 648
    [19]Lin Lin, Zhao Zhonghua, Zhang Weiping, Zheng Zhiqiang, Yin min, J. Rare. Earth,27(2009) 749
    [20]Wei RP, Ju ZH, Ma JX, et al., Journal of Alloys and Compounds,486 (2009) L17
    [21]中国科学技术大学与长春物理所合编, 《固体发光》(1976)
    [22]李建宇编,化学工业出版社, 《稀土发光材料及其应用》(2003)
    [23]O.P. Pogrebisskaya, N.V. Popovich, S.S. Galaktionov and P.D. Sarkisov. Glass Ceram.57 (2000) 370
    [24]T. Kunimoto, R. Yoshimatsu, K. Ohmi, S. Tanaka and H. Kobayashi. IEICE Trans. Electron.11 (2002) 1888
    [25]Yuanhua Lin, Zhongtai Zhang, Zilong Tang, et al, Journal of the European Ceramic Society,21 (2001) 683
    [26]Ling Jiang, Chengkang Chang, Dali Mao, Journal of Alloys and Compounds 360 (2003) 193-197
    [27]Prencipe M, Tribaudino M, Pavese A, Hoser A, Reehuis M, Canadian Mineralogist,38 (2000) 183
    [28]黄立辉,林海,王晓君,刘行仁,光谱学与光谱分析,20(2000)265-267
    [29]Elizebeth A, Thomas V, Jose G, et al. Cryst. Res. Technol.39 (2004) 1052110
    [30]L. Jiang, C. Chang, D. Mao, C. Feng, Journal of Alloys and Compounds 377 (2004)211
    [31]Schaper A K, Schosnig M, Kutoglu A, et al., Acta Crystallogr. B,57 (2001) 443
    [32]T.Aitasalo, J. Hols a, H. Jungner, M. Lastusaari, J. Niittykoski, J. Phys. Chem. B 110(2006)4589.
    [33]T. Aitasalo, P. Deren, J. Hols a, H. Jungner, J.-C. Krupa, M. Lastusaari, J. Solid State Chem.171(2003)114.
    [34]Y. Chen, B. Liu, M. Kirm, Z. Qi, C. Shi, J. Lumin.118(2006)70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700