用户名: 密码: 验证码:
特高压输电线路潜供电弧的动态物理特性与抑制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为提高系统稳定性和供电可靠性,单相重合闸技术在超/特高压线路上获得广泛应用。特高压线路较长,运行电压高,潜供电弧的熄灭是一个技术难题。如果潜供电弧不能及时熄灭,将使断路器重合于弧光接地故障,造成重合闸失败。研究潜供电弧的产生机理与动态物理特性,进而发展有效的抑制技术,具有重要的理论意义和应用价值。
     本文结合我国在建的特高压输电工程实践,针对潜供电弧的物理特性与抑制技术开展探索与创新研究。通过建立潜供电弧的低压模拟实验平台,研究潜供电弧的动态物理特性与数学建模方法,完善潜供电弧熄灭、重燃机理的分析方法,发展新型的潜供电弧抑制技术。
     低压模拟实验是研究潜供电弧物理特性的重要技术途径。本文完善了潜供电弧实验回路及其测量系统,建立了特高压线路潜供电弧的低压物理模拟实验平台,通过观测长间隙潜供电弧的运功图像和物理参量,揭示潜供电弧弧根与弧柱的运动特性及其对电弧电流及电压的影响规律,获得了潜供电弧熄灭与重燃的动态物理特征。
     本文还就特高压半波长输电线路潜供电弧的物理特性开展了探索研究,建立了新的潜供电弧实验回路拓扑,重点分析潜供电弧的燃弧时间特性与伏安特性等。通过大量实验揭示了风对半波长线路潜供电弧的影响机制,并获得了两个燃弧时间临界点,可作为半波长输电线路快速接地开关配置的参考依据。
     潜供电弧零休阶段的物理特性是影响电弧熄灭与重燃的关键所在,此时弧道恢复电压上升率是反映潜供电弧熄灭与重燃机制的重要参数。本文将单相接地故障过程分解为4个阶段,基于建立的复频域等效模型研究获得了潜供电弧弧道恢复电压上升率的影响因素及其作用规律。该研究结果进一步完善了潜供电弧熄灭与重燃机理的分析方法,可为特高压输电线路的参数优化以及重合闸策略提供理论基础。
     特高压输电线路并联电抗器的配置是一个多目标统筹问题。本文基于建立的输电线路分布参数耦合模型以及潜供电弧动态模型,纳入三种特高压输电线路潜供电弧的实验参数进行计算与比较,获得面向潜供电弧抑制的并联电抗器和中性点小电抗优化取值准则。同时,兼顾线路非全相运行以及谐振过电压抑制,基于谐振频率分析法,提出临界谐振高抗的概念并给出了相应的计算公式,可用于并联电抗器与中性点小电抗的进一步优化。
     考虑到现有潜供电弧抑制措施的不足,本文研究提出一种基于断路器并联阻抗的新型潜供电弧抑制技术,适用于超/特高压等级输电线路。大量分析表明,采用该抑制拓扑可将潜供电流与弧道恢复电压的强制分量减小至极低水平,从而显著加速潜供电弧的熄灭。该抑制技术可作为现有潜供电弧抑制措施的一种有效补充,但尚待实用化研究。
     本文工作成果进一步丰富了输电线路潜供电弧研究的基础理论和分析方法,对特高压输电技术领域的科学研究与工程设计具有重要意义。
Single-phase auto-reclosure (SPAR) is widely used in extra high voltage (EHV) and ultra high voltage (UHV) transmission lines to improve the stability and reliability of the power systems. Reliable extinction of the secondary arcs is a critical issue for the UHV transmission lines, otherwise, the circuit breaker would be re-closed at grounded arc faults, may will result in failure of the re-closing operation. Hence, investigation on the formation mechanism and physical characteristics of the secondary arcs, as well as development of effective suppressing technologies, are of great significance in both theory and application arenas.
     Based on the ongoing UHV transmission project in China, secondary arc physics and corresponding suppressing technologies are systematically researched in this dissertation. The research contents cover several aspects as follows, namely establishment of the test platform for physical simulation of the secondary arcs, physical and mathematical modeling methodology of the secondary arcs incorporating the extinction and re-ignition mechanisms, development of novel suppressing technologies of secondary arcs and so on.
     Low voltage physical simulation is an effective approach to study secondary arcs. Based on an established experimental system, high speed images as well as the arc current and voltage waveforms are recorded as to explore the unique and intrinsic mechanisms of the secondary arc inception, development, movement, extinction and re-ignition. The motion characteristics of the arc root and arc column as well as their impacts on arc current and voltage are also fully elucidated and illustrated through the high-speed imaging equipment.
     Specifically for the secondary arcs of half-wavelength transmission lines (HWTL), exploratory research are also carried out, for which a new test topology is proposed via Thevenin transform of the established equivalent circuitry. With physical experiments, two critical points of the arcing time are obtained as to present useful reference for optimization of the high speed grounding switch (HSGS) arrangement along HWTL. Further, wind impacts on the secondary arc physics are given full account through large numbers of experiments.
     Secondary arc physics during zero-crossing stage of arc current plays a unique role to determine the arc extinction and re-ignition mechanisms, where the rate of rise of the recovery voltage (RRRV) across the arc path is one of the most important parameters to influence secondary arc extinction. The whole process of a single-phase-to-ground fault are divided into four stages, based on which corresponding equivalent circuit of the transmission lines is established in the complex frequency domain. The impact factors and their interacting mechanisms on the RRRV of secondary arc path are studied in details. The research results present theoretical basis for parameter optimization and auto-reclosing strategy development of the UHV transmission lines.
     The parameter determination of the four-legged shunt reactors within UHV transmission lines is a multi-objective issue of optimization. With a dynamic secondary arc model being taken into account, the impacts of the initial arc length and the neutral reactor on the arcing time of the secondary arcs are studied as to set up a guide criterion for parameter optimization of the four-legged shunt reactors. In addition, with full consideration of secondary arc suppression as well as resonant over-voltage mitigation due to out-of-phase operations, further optimization methodologies are presented for the four-legged shunt reactors.
     To achieve preferable suppression of the secondary arcs, a novel scheme based on paralleled impedance to line circuit breaker is proposed, which is applicable to both EHV and UHV transmission lines. An algorithm for topology parameter design and optimization under different conditions is given based on equivalent circuit transform. Simulation results indicate that the proposed arc suppressing theme can greatly reduce the forced components of the secondary arc current and the recovery voltage, thus resulting in quick extinction of the secondary arcs. The proposed scheme may be an applicable alternative and supplement of the traditional secondary arc suppressing measures prevailing within EHV and UHV transmission lines.
     The research work in the dissertation presents further development in both fundamental theories and analyzing methodologies for secondary arc study, and is of great significance for future development of the UHV transmission technologies.
引文
[1]刘振亚.特高压电网[M].北京:中国经济出版社,2005.
    [2]刘振亚.特高压交流输电技术研究成果专辑[M].北京:中国经济出版社,2005.
    [3]国家电网公司:特高压输电工程,http://www.sgcc.com.cn.
    [4]J. E. Sztergalyos, J. Andrichak, D. H. Colwell, et al. Single phase tripping and auto reclosing of transmission lines[J]. IEEE Transactions on Power Delivery, 1992,7(1):182-192.
    [5]梅忠恕.超高压电网潜供电流与单相重合闸[J]_云南电力技术,1999,27(2):9-11.
    [6]梅忠恕.超高压电网潜供电流与单相重合闸(II)[J].云南电力技术,1999,27(2):15-18.
    [7]曹荣江,朱拱照,崔景春.关于超高压线路上潜供电弧持续现象的研究(第一部分)[J].高电压技术,1975(1):27-77.
    [8]曹荣江,朱拱照,崔景春.关于超高压线路上潜供电弧持续现象的研究(第二部分)[J].高电压技术,1976(3):14-59.
    [9]韩彦华.熄灭潜供电弧新方法的研究[D].西安:西安交通大学,2000.
    [10]韩彦华.单相重合闸在串联补偿系统中的应用研究[D].西安:西安交通大学,2003.
    [11]谷定燮,周沛洪.特高压输电系统过电压,潜供电流和无功补偿[J].高电压技术,2005,31(11):21-25.
    [12]林莘,何柏娜,徐建源.超高压线路上潜供电弧熄灭特性的研究[J].高电压技术,2006,32(3):7-9.
    [13]M. Danyek, P. Danyek. Improving the reliability of experimental data about secondary arc duration[C]. Proceeding of the 17th Hungarian-Korean Seminar, EHV Technology-II, Keszthely-Lake Balaton, Hungary, October,2001.
    [14]A. A. Montanari, M. C. Tavares, C. M. Portela. Secondary arc voltage and current harmonic content for field tests results[C]. IPST09, Kyoto, Japan, Jun 2009.
    [15]A. A. Montanari, M. C. Tavares, C. M. Portela. Adaptive single-phase autoreclosing based on secondary arc voltage harmonic signature[C]. IPST09, Kyoto, Japan, Jun 2009.
    [16]蒋卫平,朱艺颖.750kV输变电示范工程单相人工接地故障试验现场测量和计算分析[J].电网技术,2006,30(19):42-47.
    [17]I. M. Dudurych, T. J. Gallagher, E. Rosolowski. Arc effect on single-phase reclosing time of a UHV power transmission line[J]. IEEE Transactions on Power Delivery,2004,19(2):854-860.
    [18]陈维江,颜湘莲,贺子鸣,等.特高压交流输电线路单相接地潜供电弧仿真[J].高电压技术,2010,36(1):1-6.
    [19]G. Ban, L. Prikler, G. Banfai. Testing EHV secondary arcs[C].10th-13th IEEE porto power conference Porto, Portugal, September 2001.
    [20]D. E. Perry. Investigation and evaluation of single phase switching on EHV network in the United States. CIGRE 1984 session,39-08.
    [21]和彦淼,宋杲,曹荣江.特高压同塔双回输电线路潜供电弧模拟试验等价性研究[J].电网技术,2008,32(22):4-7.
    [22]曹荣江,顾霓鸿,盛勇.电力系统潜供电弧自灭特性的模拟研究[J].中国电机工程学报,1996,16(2):73-78.
    [23]和彦淼,宋杲,曹荣江,等.1000kV特高压输电线路潜供电弧试验研究[J].中国电机工程学报,2011,31(16):138-143.
    [24]陈维贤.超高压电网稳态计算[M].北京:水利电力出版社,1993.
    [25]刘亚芳,袁亦超,汪启槐,等.电力系统潜供电弧有补偿情况的试验研究[J].华北电力技术,1995,8:53-58.
    [26]过增元,赵文华.电弧和热等离子体[M].北京:科学出版社,1986.
    [27]王其平.电器电弧理论[M].北京:机械工业出版社,1982.
    [28]H. A. Darwish, N. I. Elkalashy. Universal arc representation using EMTP[J]. IEEE Transactions on Power Delivery,2005,20(2):772-779.
    [29]V. V. Terzija, H. J. Koglin. On the modeling of long arc in still air and arc resistance calculation[J]. IEEE Transactions on Power Delivery,2004,19(3): 1012-1017.
    [30]M. Farzaneh, J. Zhang, S. S. Aboutorabi. Dynamic modeling of dc discharge on ice surfaces[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2003,10(3):463-474.
    [31]M. V. Dmitriev, G. A. Evdokunin, A. Gamilko. EMTP simulation of the secondary arc extinction at overhead transmission lines under single phase automatic reclosing[C]. IEEE Conference on Power Technology, Russia,2005, 1-6.
    [32]A. T. Johns, A. M. A1-Rawi. Digital simulation of EHV systems under secondary arcing conditions associated with single-pole autoreclosure[J]. IEE Proceeding-Generation, Transmission, Distribution,1982,129(2):49-58.
    [33]A. T. Johns, A. M. Al-Rawi. Developments in the simulation of long distance single-pole-switched EHV systems[J]. IEE Proceeding-Generation, Transmission, Distribution,1984,131(2):67-77.
    [34]A. T. Johns, R. K. Aggarwal, Y. H. Song. Improved techniques for modeling fault arcs on faulted EHV transmission system[J]. IEE Proceeding-Generation, Transmission, Distribution,1994,141(2):148-154.
    [35]S.Goldberg, F. H. Horton. A computer model of the secondary arc in single phase operation of transmission lines[J]. IEEE Transactions on Power Delivery, 1989,4(1):586-595.
    [36]舒亮,贾磊,郑士普,等.超高压线路潜供电弧电压的频率特性分析[J].西安交通大学学报,2007,41(6):713-716.
    [37]D. S. Fitton, R. W. Dunn, R. K. Aggrawal, et al. Design and implementation of an adaptive single pole autoreclosure technique for transmission lines using artificial neutral networks[J]. IEEE Transactions on Power Delivery,1996, 11(2):748-756.
    [38]L. K. Yu, Y. H. Song. Wavelet transform and neutral network approach to development adaptive single-pole auto reclosing schemes for EHV transmission systems[J]. IEEE Power Engineering Review,1998,11,62-64.
    [39]袁越,张保会.电力系统自动重合闸研究的现状与展望[J].中国电力,1997,30(10):54-57.
    [40]颜湘莲,陈维江,王承玉.长间隙小电流空气电弧动态特性[J].电工技术学报,2009,24(11):165-171.
    [41]颜湘莲,陈维江,王承玉,等.计及风影响的潜供电弧自熄特性计算研究[J].中国电机工程学报,2009,29(10):1-6.
    [42]颜湘莲.交流输电线路单相接地潜供电弧自熄特性研究[D].北京:中国电力科学研究院,2009.
    [43]Yutaka Goda, Shoji Matsuda, Tsuginori Inaba, et al. Insulation recovery characteristics after arc interruption on UHV transmission lines[J]. IEEE Transactions on Power Delivery,1993,8(4):1907-1913.
    [44]刘继.送电线路自动重合闸装置[M].上海:科技卫生出版社,1958:70-81.
    [45]陈禾,陈维贤.并联电抗器中性点小电抗的选择[J].高电压技术,2004,28(8):9-10.
    [46]L. Prikler, M. Kizilcay, G. Ban, et al. Improved secondary arc models based on identification of arc parameters from staged fault test records[C].14th PSCC, Sevilla,24-28 June 2002. Session 24, pp:1-7.
    [47]韩彦华,施围.故障点接地电阻对超高压输电线路潜供电流的影响[J].西安交通大学学报,2002,36(6):555-559.
    [48]钱鑫,谢鹏,李琥,等.故障类型及换位方式对同杆双回线回路间耦合影响的研究[J].电网技术,2002,26(10):18-20,57.
    [49]商立群,施围.计算同杆双回输电线路潜供电流与恢复电压的二次模方法[J].西安交通大学学报,2005,39(2):193-199.
    [50]尹忠东,刘虹.超高压电网可控串联补偿与潜供电弧的抑制[J].高电压技术,1998,24(1):14-16.
    [51]钟胜.与超高压输电线路加装串补装置有关的系统问题及其解决方案[J].电网技术,2004,28(6):26-30.
    [52]牛晓明,李华伟,施围.超高压串联补偿输电线路的潜供电流[J].高电压技术,1997,23(4):48-50.
    [53]牛晓明,王晓彤,施围,等.超高压串联补偿输电线路的潜供电流和恢复电压[J].电网技术,1998,22(9):9-16.
    [54]柴旭峥,梁曦东,曾嵘,等.串联补偿的远距离输电线路潜供电弧参数特 性[J].电网技术,2007,21(5):7-12.
    [55]刘洪顺,李庆民,邹亮,等.安装故障限流器的输电线路潜供电弧特性与单相重合闸策略[J].中国电机工程学报,2008,28(31):62-67.
    [56]S. J. Kinney, A. M. William, W. S. Randy. Test results and initial operation experience for the BPA 500kV thyristor controlled series capacitor design, operation, and fault test results[C]. IEEE Technical applications conference and workshops Northcon:268-273.
    [57]Nouredine Hadj-said, Jean Claude, Sabonnadiere,et al. Reducing dead time for single-phase auto-reclosing on a series-capacitor compensated transmission line[J]. IEEE Transactions on Power Delivery,2000,15(1):51-56.
    [58]孙秋芹,王冠,李庆民,等.特高压双回线路耦合效应的计算与分析[J].高电压技术,2009,35(4):737-742.
    [59]张纬钹,何金良,高玉明.过电压保护及绝缘配合[M].北京:清华大学出版社,2002.
    [60]王皓,李永丽,李斌.750kV及特高压输电线路抑制潜供电弧的方法[J].中国电力,2005,38(12):29-32.
    [61]商立群,施围.超高压同杆双回输电线路中熄灭潜供电弧的研究[J].电力系统自动化,2005,29(10):60-63,72.
    [62]E. W. Kimbark. Selective-pole switching of long double-circuit EHV line[J]. IEEE Transacions on Power Apparatus and Systems,1976,95(1):219-230.
    [63]李博通,李永丽,景雷,等.同塔双回线的并联电抗器补偿方式研究[J].电力自动化设备,2009,29(8):23-27,32.
    [64]刘海军,韩民晓,文俊,等.特高压双回线路并联电抗器中性点小电抗的优化设计[J].电力自动化设备,2009,29(11):87-91.
    [65]陈维贤,陈禾.可控并联电抗器的功能和调节[J].高电压技术,2006,32(12):92-95.
    [66]陈维贤,陈禾,鲁铁成,等.关于特高压可控电抗器[J].高电压技术,2005,31(11):26-27.
    [67]韩彦华,范越,施围.快速接地开关熄灭潜供电弧的研究[J].西安交通大学学报,2000,34(8):14-17.
    [68]商立群,施围.快速接地开关熄灭同杆双回输电线路潜供电弧的研究[J].电工电能新技术,2005,24(2):5-7.
    [69]R. N. Hasiber, A. C. Legate, J. Brunke, et al. The application of high speed grounding switches for single-pole on 500kV power systems[J]. IEEE Transactions on Power Apparatus and System,1981,100(4):1512-1515.
    [70]H. Mizoguchi, I. Hioki, T. Yokota, et al. Development of an interruption of an interruption chamber for 1000kV high-speed grounding switches[J]. IEEE Transactions on Power Delivery,1998,13(2):495-504.
    [71]Yutaka Goda, Shoji Matsuda, Tsuginori Inaba, et al. Forced extinction characteristics of secondary arc on UHV transmission lines[J]. IEEE Transactions on Power Delivery,1993,8(3):1322-1330.
    [72]B. R. Sherling, A. Fakheri, B. J. Ware. Compensation scheme for single-pole switching on untransposed transmission lines[J]. IEEE Transactions on Power Apparatus and Systems,1978,97(4):1421-1429.
    [73]B. R. Sherling, A. Fakheri. Single-phase switching parameters for untransposed EHV lines[J]. IEEE Transactions on Power Apparatus and Systems,1979,98(2): 643-654.
    [74]F. M. Gatta, F. Lliceto. Analysis of some operation problems of half-wave length transmission lines[C]. AFRICON'92 Proceedings,1992,59-64.
    [75]Scott J.Kinney, William A.Mittelstadt, Randy W.Suhrbier. Test results and initial operation experience for the BPA 500kV thyristor controlled series capacitor design, operation, and fault test results[C]. IEEE Technical applications conference and workshops Northcon. Portland, USA,1995: 268-273.
    [76]S. P. Ahn, C. H. Kim, H. J. Ju, et al. The investigation for adaption of high speed grounding switches on the korean 765kV lines[C]. IPST'05 in Montreal, Canada on June 19-23,2005, Paper No. IPST05-096.
    [77]C. H. Kim, S. P. Ahn, R. K. Aggrawal, et al. An alternative approach to adaptive single pole auto-reclosing in high voltage transmission system based on variable dead time control[J]. IEEE Transactions on Power Delivery,2001, 16(4):676-686.
    [78]S. P. Websper, A. T. Johns, R. K. Aggrawal, et al. An investigation into breaker reclosure strategy for adaptive single pole autoreclosing[J]. IEE Proceeding-Generation, Transmission, Distribution,2005,142(6):601-607.
    [79]Jannati, B. Vahidi, S. H. Hosseinian, et al. A novel approach for optimizing dead time of extra high voltage transmission lines[C].11th International Conference on OPTIM,2008,:215-220.
    [80]E. V. Larsen, R. A. Walling, C. J. Bridenbaugh. Parallel AC/DC transmission lines steady-state induction issues[J]. IEEE Transactions on Power Delivery, 1989,4(1):667-674.
    [81]D. Woodford. Secondary arc effects in AC/DC hybrid transmission[J]. IEEE Transactions on Power Delivery,1993,8(2):704-711.
    [82]郑健超.智能电力设备与半波长交流输电[J].动力与电气工程师,2009(3):12-15.
    [83]何大愚.对我国未来西电东送输电技术的战略初探[J].电网技术,1993,4:7-10.
    [84]F. J. Hubert, M. R. Gent. Half-wavelength power transmission lines[J]. IEEE Transactions on Power Apparatus and Systems,1965,84(10):965-974.
    [85]F. lliceto, E. Cinieri. Analysis of half-wave length transmission lines with simulation of corona losses[J]. IEEE Transactions on Power Delivery,1988, 3(4):2081-2091.
    [86]F. S. Prabhakara, K. Parthasarathy, H. N. R. Rao. Analysis of natural half-wave-length power transmission lines[J]. IEEE Transactions on Power Apparatus and Systems,1969,88(12):1787-1794.
    [87]Shanqiang Gu, Jinliang He, Wei Jiang Chen, et al. Motion characteristics of long ac arcs in atmospheric air. Applied Physics Letter,2007,90(5): 051501-1-3.
    [88]谷山强.架空线路长间隙交流电弧运动特性及其应用研究[D].北京:清华大学,2007.
    [89]谷山强,何金良,陈维江,等.架空输电线路并联间隙防雷装置电弧磁场力 计算研究[J].中国电机工程学报,2006,26(7):140-145.
    [90]司马文霞,谭威,杨庆,等.基于热浮力-磁场力结合的并联间隙电弧运动模型[J].中国电机工程学报,2011,31(19):138-145.
    [91]王冠,吕鑫昌,孙秋芹,等.半波长输电技术的研究现状与展望[J].电力系统自动化,2010,34(16):13-18,68.
    [92]何仰赞.电力系统分析[M].武汉:华中科技大学出版社,2009.
    [93]1000kV级交流输变电系统过电压与绝缘配合研究[R].武汉:国网武汉高压研究院,2006.
    [94]Qingmin Li, Hongshun Liu, Jie Lou, et al. Impact Research of Inductive FCL on the Rate of Rise of Recovery Voltage with Circuit Breakers[J]. IEEE Transactions on Power Delivery,2008,23(4):1978-1985.
    [95]林莘.现代高压电器技术[M].北京:机械工业出版社,2002.
    [96]李斌,李永丽,盛鹍,等.带并联电抗器的超高压输电线单相自适应重合闸的研究[J].中国电机工程学报,2004,24(5):52-56.
    [97]邱关源.电路[M].北京:高等教育出版社,1999.
    [98]李永丽,李博通.带并联电抗器输电线路三相永久性和瞬时性故障的判别方法[J].中国电机工程学报,2010,30(1):82-90.
    [99]Takanashi. Secondary arc extinction device[P]. United States, Patent Number: 4485422, Nov 27,1984.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700