用户名: 密码: 验证码:
基于多点电流测量的输电线路故障定位方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
输电线路故障定位对于帮助线路维护人员寻找故障点和线路的及时恢复具有重要意义。与传统基于工频量的故障分析法相比,行波法在定位精度上具有明显优势。然而,在实际中行波法还存在一些问题没有很好地解决,有时会严重影响其定位精度和可靠性。输电线路在线监测技术和通信技术的发展为这些问题的解决提供了条件,在此基础上本文从影响行波法定位精度的主要因素入手,对行波波头检测方法、波速测定方法和多测点行波故障定位方法进行研究,同时还对具有特殊网络结构的多端线路精确故障定位以及故障选相问题进行研究。
     论文提出了一种基于快速本征模态分解(Fast Intrinsic Mode Decomposition, FIMD)和Teager能量算子(Teager Energy Operator, TEO)的行波波头检测方法。首先对各测点电流行波线模分量进行FIMD分解,然后利用TEO计算所得首个本征模态分量的瞬时Teager能量,通过首个能量突变点确定出故障初始行波的到达时刻。该方法能解决希尔伯特-黄变换存在的问题。
     论文提出了一种基于三点电流测量的输电线路行波故障定位新方法。在线路中途增设一罗氏电流互感器测量故障电流,根据分相电流相位差动原理判断出故障点所在的线路段,再利用非故障段线路长度和故障行波到达其两端测点的时间差之比在线计算出故障行波波速,进而准确定位出故障点。
     论文提出了一种基于多点电流测量的输电线路行波故障定位新方法。首先通过多点电流相位比较判断出故障区段,再根据故障区段选择其两侧的电流测点,并使其尽量处于所选测点的中部,然后利用前述波速测定方法在线测定出波速,最后根据双端行波法定位出故障点。
     论文提出了一种基于双端行波定位原理的多端输电线路故障定位新方法。利用双端行波定位原理和故障初始行波到达各端的时刻形成所提故障支路判定矩阵,并针对不同位置故障的情况分别提出了故障支路判定原理。选择能够经过故障点形成双端支路最多的母线作为初始端,将所计算出双端支路故障距离的均值作为最终故障距离。
     论文提出了一种基于电流故障分量高阶多分辨率奇异熵的输电线路故障选相方法。将电流故障分量小波变换系数的高阶累积量作为元素形成状态矩阵,并根据计算所得奇异熵值判断出故障类型。
The fault location for transmission lines is of great significance to help power line maintenance crews search for fault point and restore the lines'transmission service without too much delay. Being compared with traditional fault location methods based on fundamental frequency components, the traveling wave methods have higher accuracy. However, some problems existed in the traveling wave methods are still not well solved in practice and they may seriously affect the fault location accuracy and reliability sometimes. The development of transmission line on-line monitoring technology and communication technology may provide conditions for solving these problems. On this basis, starting with the main factors that influence the fault location accuracy of traveling wave methods, the traveling wave detection method, the wave velocity determination method and the fault location method based on traveling waves of multiple measurements are studied in this paper. At the same time, the accurate fault location for multi-terminal transmission lines which have a special network structure and the fault phase selection are also studied.
     A traveling wave detection method based on Fast Intrinsic Mode Decomposition (FIMD) and Teager Energy Operator (TEO) is proposed in this paper. The aerial mode component of each measured current wave is decomposed by FIMD, and then the instantaneous teager energy of the obtained first intrinsic mode function is calculated by TEO. According to the first sudden arising of the calculated teager energy, the arrival time of the initial fault traveling wave is determined. The problems of Hilbert-Huang Transform for traveling wave detection can be solved by the proposed method.
     A novel fault location scheme for transmission lines based on traveling waves of three current measurements is proposed in this paper. A rogowski coil current transformer is used to measure the fault current in the midway of a transmission line and the faulted line section is identified through comparing the phase angles of the measured currents at two ends of a line section. The wave velocity is calculated by the ratio of the length of the non-faulted line section to the time that the wave travels through this line section, and then the fault point is located accurately.
     A novel fault location scheme for transmission lines based on traveling waves of multiple current measurements is proposed in this paper. The faulted line section is identified through comparing the phase angles of multiple current measurements. Then the current measurements used for fault location are selected according to the identified faulted line section and the principle is to make the faulted line section be in the middle of the selected current measurements as far as possible. The wave velocity of the fault current wave is calculated by the aforementioned wave velocity determination method, and finally the fault point is located according to the two-ended traveling wave method.
     A novel fault location scheme for multi-terminal transmission lines based on the two-ended traveling wave method is proposed in this paper. According to the two-ended traveling wave fault location method and the time that the initial fault traveling wave arrives at each terminal, the proposed fault section identification matrix is formed. Then, the fault section identification rules are proposed respectively for different fault conditions. The terminal that can form the most two-ended lines through the fault point is selected as the local terminal, and then the fault point is located by averaging the fault distances calculated with all the two-ended lines.
     A fault phase selection method based on high order muti-resolution singular entropy is proposed in this paper. The high-order cumulant calculated with wavelet coefficients of the fault current components are used to form state matrix, and then the fault types of a transmission line are determined by the entropy of the obtained singular values from the state matrix.
引文
[1]葛耀中.新型继电保护与故障测距的原理与技术(第2版)[M].西安:西安交通大学出版社,2007:256-335
    [2]何大愚.对于美国西部电力系统1996年7月2日大停电事故的初步认识[J].电网技术,1996,20(9):35-39
    [3]郭永基.加强电力系统可靠性的研究和应用——北美东部大停电的思考[J].电力系统自动化,2003,27(19):1-5
    [4]林伟芳,孙华东,汤涌,等.巴西“11·10”大停电事故分析及启示[J].电力系统自动化,2010,34(7):1-5
    [5]邵允临,曹晋恩,尚大伟.直升机巡检华北电网超高压输电线路[J].中国电力,2003,36(7):35-38
    [6]邱国新.在直升飞机上应用红外热像技术巡视检测高压输电线路设备的回顾[J].广东电力,2005,18(3):71-73
    [7]周浩.高压输电线路故障定位综述[J].电气应用,2007,26(4):6-13
    [8]马超然.输电线路行波故障定位技术发展及展望[J].继电器,2007,35(24):11-15,20
    [9]黄新波,刘家兵,程荣贵.绝缘子泄漏电流在线监测系统的设计与应用[J].电测与仪表,2007,44(497):9-14
    [10]黄新波,陈荣贵,王孝敬,等.输电线路在线监测与故障诊断[M].北京:中国电力出版社,2008:1-59
    [11]黄新波,孙钦东,丁建国,等.基于GSM SMS的输电线路覆冰在线监测系统[J].电力自动化设备,2008,28(5):72-76
    [12]孙利民.无线传感网络[M].北京:清华大学出版社,2005:3-26
    [13]王雪.无线传感网络测量系统[M].北京:机械工业出版社,2007:1-14
    [14]唐宏,谢静,鲁玉芳,等.无线传感器网络原理及应用[M].北京:人民邮电出版社,2010:1-10
    [15]Sukun K, Shamim P, David C, et al. Health monitoring of civil infrastructures using wireless sensor networks [C]. The 6th International Conference on Information Processing in Sensor Networks, Cambridge, Massachusetts, USA, 2007:254-263
    [16]杨吉云,廖晓峰.一种用于桥梁健康监测无线传感网络的路由协议[J].重庆大学学报,2009,32(12):1472-1476
    [17]梁昊.基于ZigBee的隧道健康监测系统设计[D].武汉:中国科学院研究生院(武汉岩土力学研究所)硕士论文,2010:25-82
    [18]吴学文,彭光路,查理敏.基于ZigBee的无线传感器网络在大坝安全监测中的应用[J].水电自动化与大坝监测,2008,32(6):48-52
    [19]赵增华,石高涛,韩双立,等.基于无线传感器网络的高压输电线路在线监测系统[J].电力系统自动化,2009,33(19):80-84
    [20]李丽芬,朱永利,张君艳.基于隶属云蚁群算法的长链型无线传感器网络路由优化[J].计算机工程与科学,2010,32(11):10-14
    [21]李丽芬,于永华,朱永利.输电线路在线监测的无线传感器网络抗干扰分析[J].高电压技术,2011,37(5):1180-1185
    [22]刘芹,王钢,董镝,等.线路在线监测的自组织自愈无线传感器网络方案[J].高电压技术,2010,36(3):616-620
    [23]雷霖,代传龙,王厚军.基于Rough set理论的无线传感器网络节点故障诊断[J].北京邮电大学学报,2007,30(4):69-73
    [24]蒋鹏.一种改进的DFD无线传感器网络节点故障诊断算法研究[J].传感技术学报,2008,21(8):1417-1421
    [25]Zhou Yao, Wang Wei, Xu Lijie, et al. Transmission line temperature on-line monitoring system based on ZigBee [C]. The 1st International Conference on Sustainable Power Generation and Supply, Nanjing China,2009:1-4
    [26]韩蓓,盛戈皞,江秀臣,等.基于ZigBee无线传感网络的导线接头在线测温系统[J].电力系统自动化,2008,32(16):72-77
    [27]Ward D A, Exon J La.T. Using Rogowski coils for transient current measurements [J]. Engineering Science and Education Journal,1993,2(3): 105-113
    [28]戴建华,李开成.基于Rogowski线圈的大电流测量[J].高电压技术,2002,28(1):6-7,10,14
    [29]龙祖利.小型大电流Rogowski线圈设计及性能[J].高电压技术,2007,33(7):7983,106
    [30]Rigoni M, Garcia J S D, Garcia A P, et al. Rogowski coil current meters [J]. IEEE Potentials,2008,27(4):40-45
    [31]Pettinga J A J, Siersema J. A polyphase 500 kA current measuring system with Rogowski coils [J]. IEE Proceedings B Electric Power Applications,1983, 130(5):360-363
    [32]李伟,尹项根,陈德树,等.基于Rogowski线圈的电子式电流互感器暂态特 性的研究[J].电力自动化设备,2008,18(10):34-37
    [33]全玉生.高压架空输电线路故障测距新算法的研究[D].西安:西安交通大学博十论文,1999:2-13
    [34]IEEE Power Engineering Society. IEEE guide for determining fault location on AC transmission and distribution lines [S]. IEEE Std C37-114-2004
    [35]国家能源局.输电线路行波故障测距装置技术条件[S].中华人民共和国电力行业标准(DL/T 357-2010)
    [36]毛晓明,刘沛,程时杰.利用单侧电量的高压输电线路故障测距算法研究[J].电网技术,1998,22(11):15-17
    [37]Takagi T, Yamakoshi Y, Baba J, et al. A new alogorithm of an accurate fault location for EHV/UHV transmission lines:part I-Fourier Transformation Method [J]. IEEE Transactions on Power Apparatus and Systems,1981, PAS-100(3):1316-1323
    [38]Eriksson L, Saha M M, Rockefeller G D. An accurate fault location with compensation for apparent reactance in the fault resistance resulting from remote-end infeed [J]. IEEE Transactions on Power Apparatus and Systems, 1985, PAS-104(2):423-436
    [39]Sachdev M S, Agarwal R. A technique for estimating transmission line fault location from digital impedance relay measurement [J]. IEEE Transactions on Power Delivery,1988,3(1):121-129
    [40]Johns A T, Jamali S. Accurate fault location technique for power transmission lines [J]. IEE Proceedings C Generation, Transmission and Distribution,1990, 137(6):395-402
    [41]Lian Bao, Salama M M A. An overview of the digital fault location algorithms for the power transmission line protection based on the steady-state phasor approaches [J]. Electric Power Components and Systems,1996,24(1):83-115
    [42]张爱枫,卢继平,叶一麟,等.不需要双端数据同步的工频故障测距新方法[J].重庆大学学报.2003,26(8):78-82
    [43]索南加乐,张怿宁,齐军,等.基于参数识别的时域法双端故障测距原理[J].电网技术,2006,30(8):65-70
    [44]吴欣荣,罗承沐,苏进喜,等.基于单端电气量的故障定位算法研究[J].中国电力,2000,33(6):48-50
    [45]胡帆,刘沛,程时杰.高压输电线路故障测距算法仿真研究[J].中国电机工程学报,1995,15(1):67-72
    [46]吴萍,张尧.基于单端电气量的故障测距算法[J].电力系统及其自动化学报,2003,15(4):5-7,31
    [47]Kawady T, Stenzel J. A practical fault location approach for double circuit transmission lines using single end data[J]. IEEE Transactions on Power Delivery,2003,18(4):1166-1173
    [48]鲁文,徐晨亮,丁孝华,等.一种考虑分布电容的模糊故障测距算法[J].电力系统自动化,2006,30(8):57-60
    [49]Gopalakrishnan A, Kezunovic M, McKenna S M, et al. Fault location using the distributed parameter transmission line model [J]. IEEE Transactions on Power Delivery,2000,15(4):1169-1174
    [50]Novosel D, Hart D G, Udren E, et al. Unsynchronized two-terminal fault location estimation [J]. IEEE Transactions on Power Delivery,1996,11(1): 130-138
    [51]宋振红,张举,唐杰.一种基于双端电压相量测量的故障测距新算法[J].电力自动化设备,2006,26(6):27-29
    [52]陈允平,吴夙,龚庆武,等.输电线路故障定位的最小二乘法实现[J].电力系统自动化,2001,(13):54-56
    [53]卢斌先,王泽忠,赵传生,等.基于节点导纳方程的故障定位及仿真[J].华北电力大学学报,2003,30(6):17-19
    [54]束洪春,高峰,陈学允,等.双端不同步采样的高压输电线路故障测距算法研究[J].电工技术学报,1997,12(6):43-48,54
    [55]索南加乐,宋国兵,许庆强,等.利用两端非同步电流的同杆双回线故障定位研究[J].电工技术学报,2004,19(8):99-106
    [56]全玉生,杨敏中,王晓蓉,等.双端测距中的自适应线路参数在线估计[J].电力系统自动化,2000,(11):26-30
    [57]徐内垠,李京,陈平,等.现代行波测距技术及其应用[J].电力系统自动化,2001,25(23):62-65
    [58]陈平,徐丙垠,李京,等.现代行波故障测距装置及其运行经验[J].电力系统自动化,2003,27(6):66-69
    [59]覃剑.输电线路单端行波故障测距的研究[J].电网技术,2005,29(15):65-70
    [60]Lee H, Mousa A M. GPS Traveling-wave fault locator systems:investigation into the anomalous measurements related to lightning strikes [J]. IEEE Transactions on Power Delivery,1996,11(3):1214-1223
    [61]Gale P F. The use of GPS for precise time tagging of power system disturbances and in overhead line fault location [J]. Proceedings of IEE Colloquium on Developments in the Use of Global Positioning Systems (GPS) in Power Systems,1994,5/1-5/2
    [62]覃剑,葛维春,邱金辉,等.输电线路单端行波测距法和双端行波测距法的对比[J].电力系统自动化,2006,30(6):92-95
    [63]Magnago F H, Abur A. Fault location using wavelets [J]. IEEE Transanctions on Power Delivery,1998,13(4):1475-1480
    [64]Silva M.da, Coury D V, Oleskovicz M, et al. Combined solution for fault location in three-terminal lines base on wavelet transforms [J]. IET Generation, Transmission and Distribution Journal,2010,4(1):94-103
    [65]覃剑,陈祥训,郑健超,等.利用小波变换的双端行波测距新方法[J].中国电机工程学报,2000,20(8):6-10
    [66]张峰.输电线路行波故障测距优化算法研究[D].济南:山东大学博士论文,2010:6-10
    [67]Chanda D, Kishore N K, Sinha A K. A wavelet multiresolution-based analysis for location of the point of strike of a lightning overvoltage on a transmission line[J]. IEEE Transanctions on Power Delivery,2004,19(4):1727-1733
    [68]危韧勇,刘春芳.基于小波理论的超高压输电线路故障定位与选相方法[J].中国电机工程学报,2000,20(5):85-88
    [69]覃剑,彭莉萍,王和春.基于小波变换技术的输电线路单端行波故障测距[J].电力系统自动化,2005,29(19):62-65,86
    [70]董新洲,耿中行,葛耀中,等.小波变换应用于电力系统故障信号分析初探[J].中国电机工程学报,1997,17(6):421-424
    [71]董新洲,刘建政,张言苍.行波的小波表示[J].清华大学学报,2001,41(9):13-17
    [72]董新洲,刘建政,余学文.输电线路暂态电压行波的故障特征及其小波分析[J].清华大学学报,2001,16(3):57-61,74
    [73]Silva M, Oleskovicz M, Coury D V. A fault locator for transmission lines using traveling waves and wavelet transform theory [C]. The 8th IEE International Conference on Developments in Power System Protection, Amsterdam Netherlands,2004:212-215
    [74]黄子俊,陈允平.行波故障定位中小波基的选择[J].电力系统自动化,2006,30(3):61-64,104
    [75]何正友,钱清泉.电力系统暂态信号分析中小波基的选择原则[J].电力系统自动化,2003,27(10):45-48,76
    [76]Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis [J]. Proceedings of the Royal Society A,1998,454(21):903-995
    [77]Huang N E, Shen Z, Long S R. A new view of nonlinear waves:the hilbert spectrum [J]. Annual Review of Fluid Mechanics,1999,31:417-457
    [78]张小丽,曾祥君,马洪江,等.基于Hilbert-Huang变换的电网故障行波定位方法[J].电力系统自动化,2008,32(8):64-68
    [79]Zhang Xiaoli, Zeng Xiangjun, Li Zewen, et al. Hilbert-huang transform based fault location for transmission line[C]. The 2009 International Conference on Electrical Engineering, Shenyang China,2009:1-5
    [80]Qin Xiao'an, Zeng Xiangjun, Zhang Xiaoli, et al. Traveling wave based distribution lines fault location using Hilbert-Huang Transform [C]. The 2008 IEEE Industry Applications Society Annual Meeting, Edmonton, Alberta, Canada,2008:1-5
    [81]Zhang Liguo, Han Xu, Jia Jian, et al. Power systems faults location with traveling wave based on Hilbert-Huang Transform [C]. The 2009 International Conference on Energy and Environment Technology, Guilin China,2009: 197-200
    [82]徐俊明,汪芳宗,尹星,等.基于Hilbert-Huang变换的行波法高压输电线路故障定位[J].电力系统保护与控制,2012,40(2):88-92,105
    [83]Louis Yu Lu. Fast Intrinsic Mode Decomposition and filtering of time series data [R]. ORACLE Technical Report,2008
    [84]Teager H M. Some observations on oral air flow during phonation[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing,1980,28(5):599-601
    [85]Maragos P, Kaiser J F, Quatieri T F. Energy separation in signal modulations with applications to speech analysis [J]. IEEE Transactions on Signal Processing, 1993,41(10):3024-3051
    [86]Hamila R, Astola J, Alaya Cheikh F, et al. Teager energy and the ambiguity function [J]. IEEE Transactions on Signal Processing,1997,47(1):260-262
    [87]Jabloun F, Cetin A E, Erzin E. Teager energy based feature parameters for speech recognition in car noise [J]. IEEE Transactions on Signal Processing, 1999,6(10):259-261
    [88]Bahoura M, Rouat J. Wavelet speech enhancement based on the Teager energy operator [J]. IEEE Signal Processing Letters,2001,8(1):10-12
    [89]范春菊,张兆宁,郁惟镛.小波方法在超高压输电线行波故障测距中的应用[J].电网技术,2003,27(8):50-53
    [90]黄雄,王志华,尹项根,等.高压输电线路行波测距的行波波速确定方法[J].电网技术,2004,28(19):34-37
    [91]尹晓光,宋琳琳,尤志,等.与波速无关的输电线路双端行波故障测距研究[J].电力系统保护与控制,2011,39(1):35-39
    [92]蒋涛,陆于平.不受波速影响的输电线路单端行波故障测距研究[J].电力自动化设备,2004,240(12):29-32
    [93]束洪春,李义,宣映霞,等.对不受波速影响的输电线路单端行波法故障测距的探讨[J].继电器,2006,34(8):1-6,12
    [94]李泽文,曾祥君,姚建刚,等.不受波速影响的输电线路双端行波故障测距算法[J].长沙理工大学学报(自然科学版),2006,3(4):6-71
    [95]张峰,梁军,张利,等.基于三端行波测量数据的输电线路故障测距新方法[J].电力系统自动化,2008,32(8):69-72
    [96]Abe M, Otsuzuki N, Emura T, et al. Development of a new fault location system for multi-terminal single transmission lines [J]. IEEE Transactions on Power Delivery,1995,10(1):159-168
    [97]Nagasawa T, Abe M, Otsuzuki N, et al. Development of a new fault location algorithm for multi-terminal two-parallel transmission lines [J]. IEEE Transactions on Power Delivery,1992,7(3):1516-1532
    [98]Brahma S M. Fault location scheme for a multi-terminal transmission line using synchronized voltage measurements [J]. IEEE Transactions on Power Delivery, 2005,20(2):1325-1331
    [99]Funabashi T, Otoguro H, Mizuma Y, et al. Digital fault location for parallel double-circuit multi-terminal transmission lines [J]. IEEE Transactions on Power Delivery,2000,15(2):531-537
    [100]施世鸿,何奔腾,张武军.T型高压输电线路故障测距[J].中国电机工程学报,2008,28(25):105-110
    [101]束洪春,司大军,葛耀中,等.T型输电线路电弧故障测距时域方法研究[J].电工技术学报,2002,17(4):99-103,57
    [102]Girgis A A, Hart D G, Peterson W L. A new fault location technique for two-and three-terminal lines[J]. IEEE Transactions on Power Delivery,1992,7(1): 98-107
    [103]Minambres J F, Zamora I, Mazon A J, et al. A new technique, based on voltages, for fault location on three-terminal transmission lines [J]. Electric Power Systems Research,1996,37(2):143-151
    [104]张峰,梁军,杜涛,等.T型线路的行波精确故障测距新方法[J].高电压技术,2009,35(3):527-532
    [105]Bo Z Q, Aggarwal R K, Johns A T. A New Approach to Phase Selection Using Fault Generated High Frequency Noise and Neural Networks [J]. IEEE Trans on Power Delivery,1997,12(1):106-114
    [106]段建东,张保会,周艺,等.基于暂态量的超高压输电线路故障选相[J].中国电机工程学报,2006,26(3):1-6
    [107]何正友,符玲,麦瑞坤,等.小波奇异熵及其在高压输电线路故障选相中的应用[J].中国电机工程学报,2007,27(1):31-36
    [108]Blakely C D. A Fast Empirical Mode Decomposition Technique for nonstationary nonlinear time series, Preprint Submitted to Elsevier Science, 2005,1-14
    [109]维信导航.DTM560架空导线测温系统[EB/OL].[2011-03-20].http://www.sf6-vg.com/prod.asp?proid=sf6_vg62837459
    [110]国家电网报.重庆检修分公司带电安装在线监测仪[EB/OL].[2011-03-20].http://epaper.indaa.com.cn/html/2010-11/30/content_253271.htm
    [111]湖北省输变电工程公司.恩施基站带电安装覆冰在线监测装置[EB/OL].湖北,武汉:湖北省输变电工程公司,2002-5-10[2011-03-20].http://www.hbsbd.com.cn/display.php?id=8990
    [112]LGP型输电线路短路故障区段判别系统[EB/OL].[2011-03-20].http://www.chinapower.com.cn/companyproduct_new/enterprise2front.asp?enter priseid=ent1022699&target=productdetail&productid=pro1095143
    [113]胡广书.数字信号处理——理论、算法与实现(第2版)[M].北京:清华大学出版社.2003:156-163
    [114]王安定,葛耀中.模量变换技术在反应故障分量的微机保护中的应用研究[J].电力系统自动化,1988,12(3):15-25
    [115]何奔腾,胡为进.同杆并架双回线路模变换分析[J].电网技术,1998,22(1):25-27,30
    [116]徐松晓,贺家李,李永丽,等.特高压输电线分相电流相位差动保护的研究[J].继电器,2007,35(3):1-5
    [117]姜晟,舒乃秋,胡芳,等.基于小波变换的含噪声行波信号奇异点检测[J]. 电网技术,2004,28(10):59-62
    [118]王兴国,黄少锋.一种基于屏蔽滤波的行波信号消噪方法[J].电力自动化设备,2009,29(6):35-39
    [119]王兆华,侯正信,苏飞.全相位FFT频谱分析[J].通信学报,2003,24(11A):16-19
    [120]王兆华,黄翔东,杨尉.全相位FFT相位测量法[J].世界科技研究与发展,2007,29(4):28-32
    [121]Huang Xiaohong, Wang Zhaohua, Hou Guoqiang. New method of estimation of phase, amplitude, and frequency based on all phase FFT spectrum analysis [C]. The 2007 International Symposium on Intelligent Signal Processing and Communication Systems, Xiamen China,2007:284-287
    [122]Zhang Yonghui, Zhang Xiyuan, Chen Xi. Phase measurement of three-phase power based on all-phase FFT[C]. The 2nd International Conference on Signal Processing Systems, Dalian China,2010:V3-580-V3-583
    [123]刘万顺.电力系统故障分析(第二版)[M].北京:中国电力出版社,1998,177-190
    [124]陈小林,罗毅,王伟平,等.基于故障录波数据的保护特性分析方法及其实现[J].电网技术,2005,29(18):70-74
    [125]段雄英,邹积岩.一种新型光纤电流互感器的研究[J].高电压技术,2000,26(6):46-48
    [126]胡剑鸣,严玉婷.基于罗哥夫斯基线圈的高相位精度线路工频电流测量的实验研究[J].华中电力,2005,18(2):1-4
    [127]黄翔东,王兆华.全相位FFT相位测量法的抗噪性能[J].数据采集与处理,2011,26(3):286-291
    [128]邱良丰,刘敬彪,于海滨.基于STM32的全相位FFT相位差测量系统[J].电子器件,2010,33(3):357-361
    [129]贺家李,宋从矩,李永丽,等.电力系统继电保护原理(增订版)[M].北京:中国电力出版社,2004,156-202
    [130]曾祥辉,宋玮,邓健,等.面向对象的电力图形系统的分析和设计[J].继电器,2004,32(5):36-39
    [131]周超,熊易,杨俊杰,等.电力系统故障模拟的图形化建模方法[J].电力系统保护与控制,2008,36(17):32-37
    [132]Christian Nagel, Bill Evjen, Jay Glynn, et al李铭译.C#高级编程(第6版)[M].北京:清华大学出版社,2008:712-829,916-1035
    [133]蔺华,唐菁,王宇灵.C#面向对象程序设计与框架[M].北京:电子工业出版社,2011:74-157
    [134]Simon Robinson, Christian Nagel李敏波译.C#高级编程(第3版)[M].北京:清华大学出版社,2005:558-611
    [135]林湘宁,刘沛.全电流与故障分量电流比例差动判据的比较研究[J].中国电机工程学报,2004,24(10):27-31
    [136]何正友,蔡玉梅,钱清泉.小波熵理论及其在电力系统故障检测中的应用研究[J].中国电机工程学报,2005,25(5):38-43
    [137]谢平,刘彬,林洪彬,等.多分辨率奇异谱熵及其在振动信号监测中的应用研究[J].传感技术学报,2004,(4):547-550
    [138]袁坚,肖先赐.非线性时间序列的高阶奇异谱分析[J].物理学报,1998,47(6):897-905
    [139]张贤达.现代信号处理(第二版)[M].北京:清华大学出版社,2002,263-281
    [140]梁霖,徐光华,刘弹,等.小波奇异值分解在异步电机转子故障特征提取中的应用[J].中国电机工程学报,2005,25(19):111-115
    [141]徐志向,侯世英,周林,等.基于奇异值分解的电力系统谐波状态估计[J].电力自动化设备,2006,26(11):28-31
    [142]潘明清,周晓军,杨辰龙,等.基于信息谱熵的支持向量机机械状态识别[J].传感技术学报,2005,18(2):277-280
    [143]谢平,杜义浩,黄双峰.基于信息熵的复杂机械系统非线性特征提取方法研究[J].振动与冲击,2008,27(7):135-137
    [144]魏明国.实用小波分析[M].北京:北京理工大学出版社,2005,1-70
    [145]胡国胜,任震,黄雯莹.小波变换在电力系统中的应用研究[J].电力自动化设备,2002,22(3):71-78

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700