用户名: 密码: 验证码:
基于暂态量的高压输电线路故障分类与定位方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着综合国力的不断提升与电力工业的飞速发展,我国电力系统已经步入了高电压、大电网和大机组时代;但随着输电容量与电压等级的不断提高以及输电距离的不断增长,高压输电线路的故障将对电力系统的稳定运行、国民经济建设及人民日常生活带来更为严重的危害与影响。因此,研究快速、准确的输电线路故障分类与故障定位方法,不仅可以缩短停电时间、减小电力运行维护人员的工作强度,而且对保障电力系统的安全性与经济性具重要的意义。高压输电线路故障产生的暂态量虽然持续时间短,却蕴含了丰富的故障信息,这为实现快速、准确的故障分类与定位提供了可能性。基于此,本文以构筑高压输电线路的快速故障诊断系统为目标,对基于暂态量的高压输电线路故障分类与故障定位方法进行研究。
     在故障分类方面,论文基于人工智能算法给出了三种高压输电线路故障分类方法。其一为基于粗神经网络的故障分类方法,该方法提取故障暂态电流信号13种不同的时域特征和时频域特征作为故障分类的特征量,以10个不同的粗神经网络构成故障分类器对十种常见的短路故障进行分类识别。其二为基于自适应神经模糊推理系统的故障分类方法,该方法以暂态电流故障分量的时域标准差和四分位距作为故障分类的特征量,根据特征量的特点构造两个不同的自适应神经模糊推理系统作为故障分类器,第一个用于分类识别单相故障、两相故障和三相故障,当其输出结果为两相故障时,利用第二个分类器来判断故障是否为接地故障。其三是基于阴性选择算法的故障分类方法,该方法以暂态电流信号的高频暂态能量作为故障分类的特征量,并依据改进的阴性选择算法设计故障分类的分类机制。利用PSCAD/EMTDC仿真数据对三种故障分类方法进行了测试与验证,仿真结果表明:论文给出的三种方法均能快速、准确、可靠地分类识别出高压输电线路的故障类型,且其分类效果不受故障电阻、故障距离、故障初始角等因素的影响,对噪声干扰具有较强地适应性。
     其次,论文在研究高压输电线路故障暂态信号时频特征的基础上,提出了一种基于暂态信号时频特征的故障分类方法。该方法综合考虑故障暂态电流信号的时频相关系数和时频能量特征,定义了暂态信号的时频特征相关系数,以此来刻画不同的故障类型;并据此设计故障分类机制,避免了基于人工智能算法的故障分类方法中训练样本难以构造的问题。利用仿真数据对故障分类方法进行了仿真验证,结果表明:该方法能快速、准确、可靠地分类识别出高压输电线路的不同故障,且其分类效果不受故障电阻、故障距离和故障初始角等因素的影响。
     在故障定位方面,为提高现有单端行波法和行波固有频率法的定位准确性,论文基于暂态行波的时频特征,提出了两种单端故障定位方法。方法一为考虑暂态行波频域特征的时域故障定位方法,该方法以传统单端行波法为出发点,在考虑暂态电流行波频率特征对行波传播速度及波头到达时刻影响的基础上,利用暂态行波信号的Lipschitz指数将暂态行波波头的时域特征和频域特征联系起来,得到更为准确的故障定位结果。方法二为考虑暂态行波时域特征的频域故障定位方法,该方法以单端行波固有频率法为出发点,利用信号的时域周期特征来修正暂态行波信号的固有频率值,进而得到更为准确的故障定位结果。大量的PSCAD/EMTDC仿真试验结果证明:提出的两种故障定位方法的定位准确性比现有的行波法和固有频率法都有明显的提高,且其定位的可靠性、准确性不受故障电阻、故障初始角以及故障类型的影响,同时具有较强抗噪能力。
     论文最后将考虑暂态行波时域特征的频域定位方法拓展至高压输电网的故障定位中,在推导了暂态行波信号的固有频率与其在电网中的传播路径以及边界条件的数学关系的基础上,提出了基于暂态行波传播路径的高压输电网故障定位方法。该方先根据暂态行波信号的固有频率值或分布情况准确地判断故障线路,然后利用反映包含故障点的行波传播路径的固有频率对故障距离进行准确计算。大量仿真试验结果表明:在输电网拓扑结构确定的情况下,该方法不仅能准确地判断出故障线路,而且还能准确地计算出故障距离,且故障定位准确性不受故障电阻、故障初始角和故障类型的影响。
     总的来说,本论文最终形成了一个从故障分类到故障定位的高压输电线路快速故障诊断体系。
     本论文是国家自然科学基金——《基于信息理论的多信源电网故障诊断方法及应用》(No.50877068,2009-2011)和教育部博士点基金——《基于单端行波自然频率提取的输电线路故障测距新方法》(No.200806130004,2009-2011)的组成部分。
With the continuous improvement of comprehensive national strength and the rapid development of power industry, China's electric power system has entered a time of high-voltage, great gird and large generators. However, with the unceasing increase of transmission capacity and voltage level, high-voltage transmission line fault will also bring more serious harm and impact to electric power system and stable operation, national economic construction and people's daily life. Therefore, the study of fast and accurate fault classification and fault location methods for transmission lines, can not only shorten the power-off time and reduce the strength of maintenance staff for power operation, but also have a major practical significance in ensuring the security and economical efficiency of power system. Although the transient duration of fault on transmission line is short, it contains a wealth of fault information, which makes it possible to achieve a fast and accurate classification and location. Based on this, in this thesis, in order to build a rapid fault diagnosis system for high-voltage transmission lines, fault classification and fault location methods based on transient are studied.
     In fault classification, the thesis first presents three different fault classification methods based on artificial intelligence algorithms for high-voltage transmission line. One is based on rough membership neural network (RMNN), which takes13different time domain and time-frequency domain characteristics of fault transient current signals as feature values for fault classification, using the classifier for fault classification based on ten different RMNN to classify and identify the ten common short circuit faults for high-voltage transmission lines. The second one is based on adaptive-network-based fuzzy inference system (ANFIS), which takes both time domain standard deviation and interquartile range of transient current fault components as the feature values for fault classification, and the fault classifier is based on two different ANFIS, which are designed according to the characteristics of the feature values. The third one is based on negative selection algorithm, which takes high-frequency transient energy of transient current signals as the feature values, and uses improved negative selection algorithm as the transmission line fault classifier. The simulation data from PSCAD/EMTDC is used to verify and test the proposed three kinds of fault classification methods for high-voltage transmission line, indicating that: these three methods of fault classification can classify and identify different fault of transmission line fast, accurately and reliably. Moreover, their classification effects are unaffected by fault resistance, fault distance, fault inception angle, and they also have a good adaptability to noise interference.
     In addition, the thesis proposes a method for transmission line fault classification based on time-frequency characteristics of the fault transient signal. The method considers time-frequency correlation coefficient and characteristics of time-frequency energy of fault transient current signals to define time-frequency characteristic correlation coefficient, through which different fault can be characterized. Moreover, the classification criterion is designed based on time-frequency characteristic correlation coefficient directly, which avoids structural problems of training samples contained by fault classification methods based on artificial intelligence algorithms. The proposed method is verified and tested by large numbers of simulation data. The simulation results show that this method can classify the different fault of transmission line fast, accurately and reliably. In addition, fault resistance, fault distance and fault inception angle cannot affect the classification effects.
     In the aspect of fault location, this thesis proposes two kinds of single-end fault location methods based on the time-frequency characteristics of transient traveling wave to improve the accuracy of current fault location methods using single-end traveling wave and traveling wave natural frequency. One of them is time-domain location method that considers frequency domain characteristics of transient traveling wave. It uses single-end traveling wave method as a springboard. Then on the basis of considering the influence of frequency characteristics of transient current traveling wave on the wave propagation velocity and the arrival of the first wave-front, Lipschitz exponent of transient signal is used to link the time domain and frequency domain characteristics of transient wave-front. Thus a more precise and reasonable method is achieved. Another is a frequency-domain fault location method, which considers the time-domain characteristics of transient traveling wave. The starting point of this method is traveling wave natural frequency. A new method of extracting natural frequency is proposed, which compensates for the natural frequency of transient traveling wave by time-domain period characteristic of signal to result in more accurate results of fault location. A large number of PSCAD/EMTDC simulation results show that the location accuracy of the two methods raised in this thesis have a significantly improvement over existing traveling wave method and traveling wave natural frequency method. Moreover, their reliability and accuracy will not be affected by fault resistance, fault distance, fault inception angle or fault type. It also has a good adaptability to noise interference.
     Finally, the frequency-domain location method considering transient traveling wave time-domain characteristics is extended to the grid fault location. Based on the mathematical relationship between the natural frequency of transient traveling wave signal with its propagation path and boundary conditions, a grid fault location method based on propagation path of transient traveling wave is proposed. First, the method determines the fault line according to natural frequency or the distribution of the transient traveling wave signal accurately, and then the natural frequency that reflects traveling wave propagation path including fault point is used to compute the fault distance accurately. Large numbers of simulation show that, in the situation of certain power network topology, the method can not only figure out fault line, but also calculate the distance accurately, and the location accuracy is not affected by fault resistance, fault inception angle, fault type and fault distance.
     Overall, this thesis eventually forms a rapid fault diagnosis system for high-voltage transmission line from fault classification to fault location.
     This thesis is supported by National Natural Science Foundation of China:'Information theory based power network fault diagnosis of multi-sourced signal'(No.50877068,2009-2011) and Doctoral Fund of Ministry of Education of China:'A new transmission line fault location method based on the extracted natural frequency of single-ended traveling wave'(No.200806130004,2009-2011).
引文
[1]韩祯祥.电力系统分析(第3版)[M].杭州:浙江大学出版社,2005.
    [2]葛耀中.新型继电保护和故障测距的原理与技术(第2版)[M].西安:西安交通大学出版社,2007.
    [3]Lee H, Mousa A M. GPS travelling wave fault locator systems:investigation into the anomalous measurements related to lightning strikes[J]. IEEE Transactions on Power Delivery,1996,11(3): 1214-1223.
    [4]张峰.输电线路行波故障测距优化算法研究[D].济南:山东大学,2010.
    [5]甘德强,胡江溢,韩祯祥.2003年国际若干停电事故思考[J].电力系统自动化,2004,28(3):1-4.
    [6]唐斯庆,张弥,李建设,等.海南电网“9·26”大面积停电事故的分析与总结[J].电力系统自动化,2006,30(1):1-7.
    [7]陈亦平,洪军.巴西“11.10”大停电原因分析及对我国南方电网的启示[J].电网技术,2010,34(5):77-82.
    [8]刘宇,舒治淮,程逍,等.从巴西电网“2·4”大停电事故看继电保护技术应用原则[J].电力系统自动化,2011,35(8):12-15.
    [9]Bo Z Q, Aggarwal R K, Johns A T, et al. A new approach to phase selection using fault generated high frequency noise and neural networks[J]. IEEE Transactions on Power Delivery,1997,12(1): 106-115.
    [10]Mahanty R N, Gupta P B D. Aimlication of RBF neural network to fault classification and location in transmission lines[J]. IEE Proceedings-Generation Transmission and Distribution,2004, 151(2). 201-212.
    [11]Silva K M, Souza B A, Brito N S D. Fault detection and classification in transmission lines based on wavelet transform and ANN[J]. IEEE Transactions on Power Delivery,2006,21(4):2058-2063.
    [12]宋国兵.双回线时域法故障定位研究[D].西安:西安交通大学,2005.
    [13]覃剑.输电线路单端行波故障测距的研究[J].电网技术,2005,29(15):65-70.
    [14]Ekici S, Yildirim S, Poyraz M. Energy and entropy-based feature extraction for locating fault on transmission lines by using neural network and wavelet packet decomposition[J]. Expert Systems With Applications,2008,34(4):2937-2944.
    [15]Izykowski J, Rosolowski E, Balcerek P, et al. Accurate noniterative fault-location algorithm utilizing two-end unsynchronized measurements[J]. IEEE Transactions on Power Delivery,2011, 26(2):547-555.
    [16]符玲.基于信息测度的电力系统故障识别方法研究[D].成都:西南交通大学,2010.
    [17]Johns A T, Jamali S. Accurate fault location technique for power transmission-lines[J]. IEE Proceedings-C Generation Transmission and Distribution,1990,137(6):395-402.
    [18]于九祥.自适应卡尔曼滤波技术在故障分类中的应用[J].继电器,1992,20(2):2-7.
    [19]董新洲,葛耀中.一种使用两端电气量的高压输电线路故障测距算法[J].电力系统自动化,1995,19(8):47-53.
    [20]成敬周,张举,陈琛,等.基于高频暂态分量进行相关分析及模糊推理的选相新方法[J].电力系统自动化,2005,29(5):50-55.
    [21]刘千宽,李永斌,黄少锋.基于双端电气量的同杆平行双回线单线故障测距[J].电网技术,2008,32(3):27-30.
    [22]Dong X Z, Kong W, Cui T. Fault classification and faulted-phase selection based on the initial current traveling wave[J]. IEEE Transactions on Power Delivery,2009,24(2):552-559.
    [23]Jamehbozorg A, Shahrtash S M. A decision-tree-based method for fault classification in single-circuit transmission lines[J]. IEEE Transactions on Power Delivery,2010,25(4):2190-2196.
    [24]Jiang J A, Chuang C L, Wang Y C, et al. A hybrid framework for fault detection, classification, and location-Part I:concept, structure, and methodology[J]. IEEE Transactions on Power Delivery, 2011,26(3):1988-1998.
    [25]Wang H S, Keerthipala W W L. Fuzzy-neuro approach to fault classification for transmission line protection[J]. IEEE Transactions on Power Delivery,1998, 13(4):1093-1104.
    [26]Mazon A J, Zamora I, Sagastabeitia K J, et al. Strategies for fault classification in transmission lines using learning vector quantization neural networks[J]. European Transactions on Electrical Power,2006,16(4):365-378.
    [27]汤俊,王晓茹.反映重负荷下高阻故障的稳态量线路差动保护判据[J].中国电机工程学报,2008,28(4):72-77.
    [28]He Z, Fu L, Lin S, et al. Fault detection and classification in EHV transmission line based on wavelet singular entropy[J]. IEEE Transactions on Power Delivery,2010,25(4):2156-2163.
    [29]Youssef O A S. A modified wavelet-based fault classification technique[J]. Electric Power Systems Research,2003,64(2):165-172.
    [30]段建东,张保会,周艺.利用电流行波进行超高压输电线路故障类型识别的研究[J].中国电机工程学报,2005,25(7):58-63.
    [31]Parikh U B, Das B, Maheshwari R. Fault classification technique for series compensated transmission line using support vector machine[J]. International Journal of Electrical Power & Energy Systems,2010,32(6):629-636.
    [32]Bernard J P, Durocher D. Expert system for fault diagnosis integrated in existing SCADA systems[J]. IEEE Transactions on Power Systems,1994,9(1):548-554.
    [33]陈平,徐丙垠,葛耀中,等.一种利用暂态电流行波的输电线路故障测距方法[J].电力系统自动化,1999,23(14):29-32.
    [34]曾祥君,尹项根,陈德树,等.基于整个输电网GPS行波故障定位系统的研究[J].电力系统自动化,1999,23(10):8-10.
    [35]王绍部,舒乃秋,龚庆武,等.计及TA传变特性的输电线路行波故障定位研究[J].中国电机工程学报,2006,26(2):88-92.
    [36]韩志锟,饶曙勇,姜玉山,等.基于能量比法的输电线路行波故障测距[J].电网技术,2011,35(3):216-220.
    [37]邬林勇,何正友,钱清泉.一种提取行波自然频率的单端故障测距方法[J].中国电机工程学报,2008,28(10):69-75.
    [38]Magnago F M, Abur A. Fault location using wavelets[J]. IEEE Transactions on Power Delivery, 1998,13(4):1475-1480.
    [39]Spoor D, Zhu H. Improved single-ended traveling-wave fault-location algorithm based on experience with conventional substation transducers[J]. IEEE Transactions on Power Delivery,2006,21(3): 1714-1720.
    [40]Borghetti A, Bosetti M, Di Silvestro M, et al. Continuous-wavelet transform for fault location in distribution power networks:Definition of mother wavelets inferred from fault originated transients[J]. IEEE Transactions on Power Systems,2008,23(2):380-388.
    [41]Pourahmadi-Nakhli M, Safavi A A. Path characteristic frequency-based fault locating in radial distribution systems using wavelets and neural networks[J]. IEEE Transactions on Power Delivery, 2011,26(2):772-781.
    [42]Silva M, Coury D V, Oleskovicz M, et al. Combined solution for fault location in three-terminal lines based on wavelet transforms[J]. IET Generation Transmission & Distribution,2010,4(1): 94-103.
    [43]束洪春,邬乾晋,张广斌,等.基于神经网络的单端行波故障测距方法[J].中国电机工程学报,2011,31(04):85-92.
    [44]覃剑,葛维春,邱金辉,等.影响输电线路行波故障测距精度的主要因素分析[J].电网技术,2007,31(2):28-35.
    [45]张峰,梁军,张利,等.基于三端行波测量数据的输电线路故障测距新方法[J].电力系统自动化,2008,33(8):69-72.
    [46]邬林勇.利用故障行波固有频率的单端行波故障测距法[D].成都:西南交通大学,2009.
    [47]陈小勤.基于小波熵测度的电力暂态信号检测与分类方法研究[D].成都:西南交通大学,2006.
    [48]Suja S, Jerome J. Pattern recognition of power signal disturbances using S Transform and TT Transform[J]. International Journal of Electrical Power & Energy Systems,2010,32(1):37-53.
    [49]陈祥训,刘兵,赵波.分析电能质量扰动的实小波域修正相子法[J].中国电机工程学报,2006,26(24):37-42.
    [50]赵静,何正友,贾勇,等.利用形态非抽样小波的电能质量扰动定位方法[J].中国电机工程学报,2009,29(31):109-114.
    [51]Senroy N, Suryanarayanan S, Ribeiro P F. An improved Hilbert-Huang method for analysis of time-varying waveforms in power quality[J]. IEEE Transactions on Power Systems,2007,24(4): 1843-1850.
    [52]Eristi H, Ucar A, Demir Y. Wavelet-based feature extraction and selection for classification of power system disturbances using support vector machines [J]. Electric Power Systems Research, 2010,80(7):743-752.
    [53]Abu-Elanien A E B, Salama M M A. A wavelet-ANN technique for locating switched capacitors in distribution systems[J]. IEEE Transactions on Power Delivery,2009,24(1):400-409.
    [54]罗四倍,段建东,张保会.基于暂态量的EHV/UHV输电线路超高速保护研究现状与展望[J].电网技术,2006,30(22):32-41.
    [55]任伟.基于暂态能量的电力系统暂态稳定切机控制研究[D].天津:天津大学,2009.
    [56]高宁,高文胜,李福祺,等.变压器局放在线监测中的现场干扰分析[J].高电压技术,2000,26(2):31-33.
    [57]赵慧梅,张保会,段建东,等.一种自适应扑捉特征频带的配电网单相接地故障选线新方案[J].中国电机工程学报,2006,26(2):41-46.
    [58]Pradhan A K, Routray A, Pati S, et al. Wavelet fuzzy combined approach for fault classification of a series-compensated transmission line[J]. IEEE Transactions on Power Delivery,2004,19(4): 1612-1618.
    [59]Joorabian M, Asl S, Aggarwal R. Accurate fault locator for EHV transmission lines based on radial basis function neural networks[J]. Electric Power Systems Research,2004,71(3):195-202.
    [60]何正友,蔡玉梅,钱清泉.小波熵理论及其在电力系统故障检测中的应用研究[J].中国电机工程学报,2005,25(5):38-43.
    [61]何正友,陈小勤.基于多尺度能量统计和小波能量熵测度的电力暂态信号识别方法[J].中国电机工程学报,2006,26(10):33-39.
    [62]He Z, Gao S, Chen X, et al. Study of a new method for power system transients classification based on wavelet entropy and neural network[J]. International Journal of Electrical Power & Energy Systems,2011,33(3):402-410.
    [63]陈小勤,何正友,符玲.基于小波能谱的电力暂态信号分类识别方法[J].电网技术,2006,30(17):59-63.
    [64]林圣,何正友,罗国敏.基于小波能量矩的输电线路暂态信号分类识别方法[J].电网技术,2008,32(20):30-34.
    [65]王钢,李海锋,赵建仓,等.基于小波多尺度分析的输电线路直击雷暂态识别[J].中国电机工程学报,2004,24(04):139-144.
    [66]赵静.电能质量扰动信号检测与识别算法研究[D].成都:西南交通大,2010.
    [67]张保会,哈恒旭,吕志来.利用单端暂态量实现超高压输电线路全线速动保护新原理研究(一)——故障暂态过程分析及实现单端暂态量保护的可行性[J].电力自动化设备,2001,21(6):1-5.
    [68]张保会,哈恒旭,吕志来.利用单端暂态量实现超高压输电线路全线速动保护新原理的研究(二)——保护判据的研究[J].电力自动化设备,2001,21(7):1-6.
    [69]张保会,哈恒旭,吕志来.利用单端暂态量实现超高压输电线路全线速动保护新原理的研究(三)——故障选相与尚需研究的问题[J].电力自动化设备,2001,21(8):1-4.
    [70]董新洲,贺家李,葛耀中,等.基于小波变换的行波故障选相研究第1部分理论基础[J].电力系统自动化,1998,22(12):24-26.
    [71]Jafarian P, Sanaye-Pasand M. A traveling-wave-based protection technique using wavelet/PCA analysis[J]. IEEE Transactions on Power Delivery,2010,25(2):588-599.
    [72]Johns A T, Aggarwal R K, Bo Z Q. Non-unit protection technique for EHV transmission systems based on fault-generated noise. Part 1:Signal measurement[J]. IEE Proceedings-Generation Transmission and Distribution,1994,141(2):133-140.
    [73]Aggarwal R K, Johns A T, Bo Z Q. Non-unit protection technique for EHV transmission systems based on fault-generated noise. Part 2:Signal processing 141-147[J]. IEE Proceedings-Generation Transmission and Distribution,1994,141(2):141-147.
    [74]Aggarwal R K, Johns A T, Bo Z Q. Non-unit protection technique for EHV transmission systems based on fault-generated noise. Part 3:Engineering and HV laboratory testing[J]. IEE Proceedings-Generation Transmission and Distribution,1996,143(3):276-282.
    [75]Bo Z Q. A new non-communication protection technique for transmission lines[J]. IEEE Transactions on Power Delivery,1998,13(4):1073-1078.
    [76]Masoud M E, Mahfouz M M A. Protection scheme for transmission lines based on alienation coefficients for current signals[J]. IET Generation Transmission & Distribution,2010,4(11): 1236-1244.
    [77]Liu X L, Osman A H, Malik O P. Hybrid traveling wave/boundary protection for monopolar HVDC Line[J]. IEEE Transactions on Power Delivery,2009,24(2):569-578.
    [78]Lin X, Huang J, Zeng L, et al. Analysis of electromagnetic transient and adaptability of second-harmonic restraint based differential protection of UHV power transformer[J]. IEEE Transactions on Power Delivery, 2010,25(4):2299-2307.
    [79]林湘宁,刘沛,高艳.基于故障暂态和数学形态学的超高速线路方向保护[J].中国电机工程学报,2005,25(4):13-18.
    [80]Dua J D, Kuang J, An L. Research of boundary protection unit based on phase information of the improved recursive wavelet transform for EHV transmission lines[C]. Procceedings of 10th IET International Conference on Developments in Power System Protection,2010,
    [81]Pang C Z, Kezunovic M. Fast distance relay scheme for detecting symmetrical fault during power swing[J]. IEEE Transactions on Power Delivery,2010,25(4):2205-2212.
    [82]Santosh K P, Satish L. Multiresilution signal decomposition: a new tool for fualt detection in power transformers during implules tests[J]. IEEE Transactions on Power Delivery,1998,13(4):1194-1200.
    [83]郑崇伟,韦巍.基于小波分析的发电机匝间短路故障的智能诊断研究[J].浙江大学学报(工学版),1998,32(4):431-435.
    [84]王小宇.基于Hilbert-Huang变换和支持向量机的水轮发电机组状态监测与故障诊断方法研究[D].西安:西安理工大学,2007.
    [85]李辉,赵猛,赵斌,等.双馈风电机组关键传感器的故障诊断方法[J].中国电机工程学报,2011,(6):73-78.
    [86]戴剑锋,张艳霞.基于多频带分析的自适应配电网故障选线研究[J].中国电机工程学报,2003,23(5):44-47.
    [87]Michalik M, Rebizant W, Lukowicz M, et al. High-impedance fault detection in distribution networks with use of wavelet-based algorithm[J]. IEEE Transactions on Power Delivery,2006, 21(4):1793-1802.
    [88]张海申.暂态信号小波分析系统开发及谐振接地系统故障选线研究[D].成都:西南交通大学,2011.
    [89]杨光亮,乐全明,郁惟镛,等.基于小波神经网络和故障录波数据的电网故障类型识别[J].中国电机工程学报,2006,26(10):99-103.
    [90]Reddy M, Mohanta D. A wavelet-fuzzy combined approach for classification and location of transmission line faults[J]. International Journal of Electrical Power & Energy Systems,2007, 29(9):669-678.
    [91]麦瑞坤,何正友,符玲,等.基于电流行波能量和小波变换的输电线路故障选相研究[J].电网技术,2007,31(3):38-43.
    [92]Perez F E, Orduna E, Guidi G. Adaptive wavelets applied to fault classification on transmission lines[J]. IET Generation Transmission & Distribution,2011,5(7):694-702.
    [93]Bhalja B, Maheshwari R P. Wavelet-based fault classification scheme for a transmission line using a support vector machine[J]. Electric Power Components and Systems,2008,36(10):1017-1030.
    [94]Youssef O A S. New algorithm to phase selection based on wavelet transforms[J]. IEEE Transactions on Power Delivery, 2002,17(4):908-914.
    [95]邹力,赵青春,林湘宁,等.基于数学形态学的电力系统振荡中故障识别和改进的选项方法[J].中国电机工程学报,2006,26(13):37-42.
    [96]Zou L, Liu P, Zhao Q. Mathematical morphology based phase selection scheme in digital relaying[J]. IEE Proceedings-Generation Transmission and Distribution,2005,152(2):157-163.
    [97]祝志慧,孙云莲.基于EMD近似熵和SVM的电力线路故障类型识别[J].电力自动化设备,2008,28(7):81-84.
    [98]李晓晨,李天云,陈昌雷.基于固有模态能量熵和支持向量机的输电线路故障选相新方法[J].电力自动化设备,2009,29(5):104-108.
    [99]李天云,赵妍,季小慧,等.HHT方法在电力系统故障信号分析中的应用[J].电工技术学报,2005,20(6):87-91.
    [100]孙雅明,王俊丰.基于分形理论的输电线路故障类型识别新方法[J].电力系统自动化,2005,29(12):23-28.
    [101]杨丹,刘沛,王冬青,等.基于分形理论的输电线路故障检测和选相[J].电力系统自动化,2005,29(15):35-39.
    [102]Mamishev A V, Russell B D, Benner C L. Analysis of high impedance faults using fractal techniques[J]. IEEE Transactions on Power Systems,1996,11(1):435-440.
    [103]Samantaray S, Dash P, Panda G. Fault classification and location using HS-transform and radial basis function neural network[J]. Electric Power Systems Research,2006,76(9):897-905.
    [104]王晓茹,伍思涛,钱清泉.一种基于神经网络的高压输电线故障分类器[J].电力系统自动化,1998,22(11):28-31.
    [105]符玲,何正友,钱清泉.超高压输电线路的故障暂态特征提取及故障类型判断[J].中国电机工程学报,2010,30(22):100-106.
    [106]李炜,刘文莉,陈玉武.基于关联维分析法的高压输电线故障检测与分类[J].电网技术,2009,33(20):152-157.
    [107]Nguyen T, Liao Y. Transmission line fault type classification based on novel features and neuro-fuzzy system[J]. Electric Power Components and Systems,2010. 38(6):695-709.
    [108]王兴国,黄少锋.基于固有频率的超高压线路选相新方法[J].高电压技术,2009,35(6):1502-1508.
    [109]陈双,何正友,李小鹏.基于行波固有频率的特高压输电线路故障选相[J].电网技术,2011,35(6):15-21.
    [110]黄少锋,王兴国.特高压线路固有频率特征分析及其在继电保护中的应用[J].中国电机工程学报,2009,29(31):95-102.
    [111]何正友,蔡玉梅,王志兵,等.电力暂态信号小波分析的后处理方法研究[J].电网技术,2005,29(21):46-51.
    [112]段建东,张保会,周艺,等.基于暂态量的超高压输电线路故障选相[J].中国电机工程学报,2006,26(3):1-6.
    [113]李东敏,刘志刚,蔡军,等.基于多小波包和人工神经网络的电力系统故障类型识别[J].电力自动化设备,2008,29(1):99-103.
    [114]高彩亮,廖志伟,岳苓,等.基于小波奇异值和支持向量机的高压线路故障诊断[J].电力系统保护与控制,2010,38(6):35-39.
    [115]何正友,符玲,麦瑞坤,等.小波奇异熵及其在高压输电线路故障选相中的应用[J].中国电机工程学报,2007,27(1):31-36.
    [116]符玲,何正友,麦瑞坤,等.小波熵证据的信息融合在电力系统故障诊断中的应用[J].中国电机工程学报,2008,28(13):64-69.
    [117]李东敏,刘志刚,蔡军,等.基于多小波包系数熵和人工神经网络的输电线路故障类型识别方法[J].电网技术,2008,32(24):65-69.
    [118]何正友,陈小勤,罗国敏,等.基于暂态电流小波熵权的输电线路故障选相方法[J].电力系统自动化,2006,30(21):39-43.
    [119]杨健维,罗国敏,何正友.基于小波熵权和支持向量机的高压输电线路故障分类方法[J].电网技术,2007,31(23):22-26.
    [120]Adu T. An accurate fault classification technique for power system monitoring devices[J]. IEEE Transactions on Power Delivery, 2002,17(3):684-690.
    [121]Valsan S P, Swarup K S. Fault detection and classification logic for transmission lines using multi-resolution wavelet analysis[J]. Electric Power Components and Systems,2008, 36(4):321-344.
    [122]Jamehbozorg A, Shahrtash S M. A decision tree-based method for fault classification in double-circuit transmission lines[J]. IEEE Transactions on Power Delivery,2010,25(4):2184-2189.
    [123]Samantaray S R. Decision tree-based fault zone identification and fault classification in flexible AC transmissions-based transmission line[J]. IET Generation Transmission & Distribution,2009, 3(5):425-436.
    [124]Youssef O A S. Combined fuzzy-logic wavelt-based fault classification technique for power system relaying[J]. IEEE Transactions on Power Delivery,2004,19(2):582-589.
    [125]Das B. Fuzzy logic-based fault-type identification in unbalanced radial power distribution system[J]. IEEE Transactions on Power Delivery,2006,21(1):278-285.
    [126]Dash P K, Samantaray S R, Panda G. Fault classification and section identification of an advanced series-compensated transmission line using support vector machine[J]. IEEE Transactions on Power Delivery,2007,22(1):67-73.
    [127]Upendar J, Gupta C P, Singh G K. PSO and ANN-based fault classification for protective relaying [J]. IET Generation Transmission & Distribution,2010,4(10):1197-1212.
    [128]Lin W M, Yang C D, Lin J H, et al. A fault classification method by RBF neural network with OLS learning procedure[J]. IEEE Transactions on Power Delivery,2001,16(4):473-477.
    [129]Fernandez A L O.. Ghonaim N K I. A novel approach using a FIRANN for fault detection and direction estimation for high-voltage transmission lines[J]. IEEE Transactions on Power Delivery, 2002,17(4):894-900.
    [130]Bouthiba T. Fault detection and classification technique in EHV transmission lines based on artificial neural networks[J]. European Transactions on Electrical Power,2005,15(5):443-454.
    [131]Reddy M J, Mohanta D K. Adaptive-neuro-fuzzy inference system approach for transmission line fault classification and location incorporating effects of power swings[J]. IET Generation Transmission & Distribution,2008,2(2):235-244.
    [132]Upendar J, Gupta C P, Singh G K. Discrete wavelet transform and probabilistic neural network based algorithm for classification of fault on transmission systems[C]. Procceedings of India Conference, 2008 Annual IEEE.
    [133]Upendar J, Gupta C P, Singh G K. Fault classification scheme based on the adaptive resonance theory neural network for protection of transmission lines[J]. Electric Power Components and Systems,2010,38(4):424-444.
    [134]Vasilic S, Kezunovic M. Fuzzy ART neural network algorithm for classifying the power system faults[J]. IEEE Transactions on Power Delivery,2005,20(2):1306-1314.
    [135]索南加乐,王树刚,张超,等.利用单端电流的同杆双回线准确故障定位研究[J].中国电机工程学报,2005,25(23):25-30.
    [136]Silveira E, Pereira C. Transmission line fault location using two-terminal data without time synchronization[J]. IEEE Transactions on Power Systems,2007,22(1):498-499.
    [137]Apostolopoulos C, Korres G. A novel fault-location algorithm for double-circuit transmission lines without utilizing line parameters[J]. IEEE Transactions on Power Delivery, 2011,26(3):1467-1478.
    [138]陈允平,肖文峰,龚庆武,等.一种基于微分方程法的串补线路精确故障测距算法[J].电力系统自动化,2004,28(17):45-48.
    [139]索南加乐,张怿宁,齐军,等.基于参数识别的时域法双端故障测距原理[J].电网技术,2006,30(8):65-70.
    [140]Song G, Jiale S, Ge Y. An accurate fault location algorithm for parallel transmission lines using one-terminal data[J]. International Journal of Electrical Power & Energy Systems,2009,31(2): 124-129.
    [141]Borghetti A, Corsi S, Nucci C A, et al. On the use of continuous-wavelet transform for fault location in distribution power system[J]. International Journal of Electrical Power & Energy Systems,2006,28(9):608-617.
    [142]Borghetti A, Bosetti M, Nucci C A, et al. Integrated use of time-frequency wavelet decompositions for fault location in distribution networks:theory and experimental validation[J]. IEEE Transactions on Power Delivery,2010,25(4):3139-3146.
    [143]束洪春,张斌,张广斌,等.±800kV直流输电线路雷击点与闪络点不一致时的行波测距[J].中国电机工程学报,2011,31(13):114-120.
    [144]Chen Z, Maun J. Artificial neural network approach to single-ended fault locator for transmission lines[J]. IEEE Transactions on Power Systems,2000,15(1):370-375.
    [145]Ekici S, Yildirim S, Poyraz M. A transmission line fault locator based on Elman recurrent networksfJ]. Applied Soft Computing,2009,9(1):341-347.
    [146]Tawfik M M, Morcos M M. ANN-based techniques for estimating fault location on transmission lines using prony method[J]. IEEE Transactions on Power Delivery,2001,16(2):219-224.
    [147]王宾,董新洲,薄志谦,等.特高压长线路单端阻抗法单相接地故障测距[J].电力系统自动化,2008,32(14):25-29.
    [148]刘凯,索南加乐,康小宁,等.一种新的综合阻抗计算方法[J].电力自动化设备,2010,30(1):49-52.
    [149]Girgis A A, Hart D G, Peterson W L. A new fault location technique for two and three terminal Hnes[J]. IEEE Transactions on Power Delivery,1992,7(1): 98-107.
    [150]覃剑,葛维春,邱金辉,等.输电线路单端行波测距法和双端行波测趴法的对比[J].电力系统自动化,2006,30(6):92-95.
    [151]徐伟宗,唐昆明.基于导数法的故障行波波头识别改进算法[J].电网技术,2010,34(1):198-202.
    [152]Vitins M. A correlation method for transmission line pretection[J]. IEEE Transactions on Power Apparatus and Systems, 1978, 97(5): 1607-1616.
    [153]董新洲,葛耀中,徐丙垠.输电线路暂态电流行波的故障特征及其小波分析[J].电工技术学报,1999,14(1):59-62.
    [154]马丹丹,王晓茹.基于小波模极大值的单端行波故障测距[J].电力系统保护与控制,2009,37(3): 55-59.
    [155]Abur A, Magnago F. Use of time delays between modal components in wavelet based fault location[J]. International Journal of Electrical Power & Energy Systems, 2000, 22(6): 397-403.
    [156]张帆,潘贞存,马琳琳,等.基于模量行波传输时间差的线路接地故障测距与保护[J].中国电机工程学报,2009,29(10):78-83.
    [157]Mardiana R, Al Motairy H, Su C. Ground fault location on a transmission line using high-frequency transient voltages[J]. IEEE Transactions on Power Delivery, 2011, 26(2): 1298-1299.
    [158]董新洲,葛耀中,徐丙垠.利用暂态电流行波的输电线路故障测距研究[J].中国电机工程学报,1999,19(4):
    [159]Cansin Y E, Abur A. Travelling wave based fualt location for teed circuits[J]. IEEE Transactions on Power Delivery, 2005, 20(2): 1115-1121.
    [160]Lu Z, Ji T Y, Wu Q H. EHV transmission line protection using a morphological lifting scheme[J]. Electrical Power systems Research, 2009, 79(10): 1384-1392.
    [161]张小丽,曾祥君,马洪江,等.基于Hilbert-Huang变换的电网故障行波定位方法[J].电力系统自动化,2008,33(8):64-68.
    [162]尹晓光,宋琳琳,尤志,等.与波速无关的输电线路双端行波故障测距研究[J].电力系统保护与控制,2011,39(01):35-39.
    [163]李泽文,曾祥君,姚建刚,等.不受波速影响的输电线路双端行波故障测距算法[J].长沙理工大学学报(自然科学版),2006,3(4):68-71.
    [164]蒋涛,陆于平.不受波速影响的输电线路单端行波故障测距研究[J].电力自动化设备,2004,24(12):29-32.
    [165]束洪春,李义,宣映霞,等.对不受波速影响的输电线路单端行波法故障测距的探讨[J].继电器,2006,34(08):1-6.
    [166]Swift G W. The spectra of fault-induced transients[J]. IEEE Transaction on Power Apparatus and Systems,1979,98(3):940-947.
    [167]Styvaktakis E, Bollen M H J, Gu H Y. A fault location technique using high frequency fault clearing transients[[J]. IEEE Engineering Rewview,1999,9(5):58-60.
    [168]Li Y, Zhang Y, Ma Z. Fault location method based on the periodicity of the transient voltage traveling wave[C]. Procceedings of TENCON 2004,2004 IEEE Region 10 Conference, Chiang Mai, Thailand,
    [169]邬林勇,何正友,钱清泉.单端行波故障测距的频域方法[J].中国电机工程学报,2008,28(25): 99-104.
    [170]Miano G. Transmission lines and lumped circuits[M]. USA:Academic Press,2001.
    [171]王兴国,黄少锋.基于复解析带通滤波器的固有频率自适应提取原理和方法[J].电工技术学报,2009,24(12):179-184.
    [172]胡广书.现代信号处理教程[M].北京:清华大学出版社,2004.
    [173]莫娟,王雪,董明.基于粗糙集理论的电力变压器故障诊断方法[J].中国电机工程学报,2004,24(7):162-167.
    [174]Peters J F., Skowron A. Rough neural fault classification of power system signals [M]. Berlin: Transaction on Rough Sets Ⅷ, Springer-Verlag Berlin Heidelberg,2008:396-519.
    [175]Jang J R. ANFIS:adaptive-network-based fuzzy inference systems[J]. IEEE Transactions on Systems Man and Cybernetics,1993,23(3):665-685.
    [176]Hofmeyr S A, Forrest S, Architecture for an artificial immune system[J]. Evolutionary Computation,2000,8(4):443-473.
    [177]黄雄,王志华,尹项根,等.高压输电线路行波测距的行波波速度确定方法[J].电网技术,2004,28(9):34-37.
    [178]Marti J R, Marti L, Dommel H W. Transmission line models for steady-state and transients analysis[C], Proc. Joint International Power Conf. Athens Power Tech. vol. 2, pp. 744-750, Sep. 1993.
    [179]黄家裕等.电力系统数字仿真.北京:中国电力出版社,1995.
    [180]Mallat S, Hwang W L. Singularity detection and processing with wavelets[J] IEEE Transactions on Information Theory,1992,38(2):617-643.
    [181]Branin F H. Transient analysis of lossless transmission lines [J]. Proceeding of IEEE,1967, 55(11):2012-2013.
    [182]邱关源.电路[M].4版.北京:高等教育出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700