用户名: 密码: 验证码:
粗糙集理论在属性约简和数据压缩中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粗糙集理论是一种有效的处理不确定和不精确问题的数学工具,其已经与模糊集、概率论等不确定性理论相结合并广泛应用于数据挖掘、人工智能和模式识别等很多领域。粗糙集的研究主要包括理论研究和应用研究。其中,属性约简是粗糙集理论研究最核心的问题。属性约简即在不影响分类精度的前提下,用最少的属性表示原有的信息。针对属性约简领域的研究,虽然很多研究者提出了许多有效的属性重要度函数,但是有些属性重要度函数并不适用于不完备信息系统。还有研究者基于信息系统之间的同态提出了一种压缩信息系统进行属性约简的方法。然而很多信息系统的属性约简并未采取基于信息系统同态的方法,并且目前对动态信息系统属性约简和概念近似方面的研究比较少。
     在计算属性重要度方面,Yamaguchi为完备信息系统提出了一种新的属性重要度函数,但这个模型在用于不完备信息系统时存在一些问题。为了在不完备信息系统中更精确的计算属性的重要度,我们首先为不完备信息系统定义了三种属性重要度函数,并用12个数据集验证其有效性。然后,利用定义的函数简化不完备信息系统的区分矩阵。数据实验表明我们给出的重要度函数在不完备信息系统中能有效地计算条件属性的重要度。
     在概念近似方面,王石平等基于特征矩阵和近似算子之间的关系把计算集合的近似转换成特征矩阵的计算,但他们没有研究如何有效的计算特征矩阵。为了计算概念的近似,我们提出了两种有效计算特征矩阵的方法。然后,基于递增式算法研究了如何计算动态覆盖的特征矩阵。主要包括三种情形:(1)覆盖中等价类的变化;(2)对象集合的变化;(3)属性值的变化。数据实验表明我们提出的方法能够明显地减少计算动态覆盖特征矩阵的时间复杂度。
     在覆盖近似空间的压缩方面,为了研究覆盖近似空间之间的关系,我们提出了上、下同态同态的概念。然后,我们引入覆盖近似子空间和乘积空间的概念,并研究了它们的基本性质。基于覆盖近似空间之间的同态,我们研究了覆盖近似空间和覆盖信息系统的压缩,进而研究了覆盖近似空间的粒约简和覆盖信息系统的属性约简。针对覆盖近似空间和覆盖信息系统的动态性,我们基于原始空间和信息系统的压缩研究了动态覆盖近似空间和信息系统的压缩。数据实验表明我们引入的同态为覆盖近似空间和覆盖信息系统的压缩提供了一种有效的方法。
     在集值信息系统的压缩方面,我们提出了三种关系并研究了它们的基本性质。针对集值信息系统的属性约简,我们研究了集值信息系统的数据压缩。然后,基于原始集值信息系统的压缩,研究了动态集值信息系统的压缩。数据实验表明我们提出的方法能够简化集值信息系统属性约简的计算过程。
     总之,本文为信息系统的属性约简、动态信息系统的属性约简和计算动态概念的近似提出了一些有效的方法,完善了信息系统属性约简的理论体系,进一步丰富了粗糙集理论。
Rough set theory as an efective mathematical tool to deal with uncertain andimprecise problems has been applied to various areas such as data mining, artifcialintelligence and pattern recognition. Current research regarding rough sets main-ly focuses on two aspects: theory and its applications. Among them, attributereductions is the most important problem for rough set theory. For attribute re-ductions, on one hand, researchers have proposed efective attribute dependencydegree functions. But some functions are not ft for incomplete information sys-tems. On the other hand, on the basis of homomorphisms between informationsystems, researchers have presented an approach to attribute reductions by com-pressing information systems. But there is not much research on other types ofinformation systems. Furthermore, researchers paid a little attention to attributereductions and approximations of concepts with respect to dynamic informationsystems.
     In terms of computing the attribute dependency degree, Yamaguchi present-ed a new attribute dependency degree function for complete information systems.But there are some issues on applying it to incomplete information systems. Forcomputing the attribute dependency degree, we introduce three attribute depen-dency degree functions for incomplete information systems, and apply them to12data sets. Then we conduct the simplifcation for discernibility matrixes of incom-plete information systems with the proposed function. The experimental resultsshow that our proposed functions are more fexible to calculate the degree of eachconditional attribute related to the decision attribute for incomplete informationsystems.
     With respect to approximations of concepts, Wang Shiping et al. transformedcomputing approximations of concepts into the computing of characteristic matrix-es, but there are few studies on the approach to computing characteristic matrixes.To compute approximation of concepts, we propose two approaches to computingcharacteristic matrixes. Then, by using an incremental approach, we computecharacteristic matrixes of the dynamic covering without running the matrix acqui-sition algorithm repeatedly. We mainly address the characteristic matrix updatingfrom three aspects: the variations of blocks in the covering, the immigration andemigration of objects and the changes of attribute values. Several illustrative exam-ples are employed to show that the time complexity of constructing characteristic matrixes of the dynamic covering can be reduced signifcantly with the proposedapproach.
     For the compression of covering approximation spaces, we introduce the con-cepts of upper and lower homomorphisms as well as homomorphisms in order tostudy the relationship between covering approximation spaces. Then the notionsof covering approximation subspaces and product spaces are presented and theirfundamental properties are examined. Afterwards, we investigate the compres-sion of covering approximation spaces and covering information systems with theaim of reductions. Finally, we discuss the compression of dynamic covering ap-proximation spaces and dynamic covering information systems by utilizing thecompressions of the original spaces and systems, respectively. Several illustrativeexamples are employed to demonstrate that the homomorphisms provide an efec-tive approach to the compression of covering approximation spaces and coveringinformation systems.
     For the compression of set-valued information systems, we put forward threerelations for set-valued information systems and explore their basic properties indetail. Then the compression is investigated for attribute reductions of set-valuedinformation systems. Afterwards, we discuss the compression of dynamic set-valued information systems by utilizing the precious compression of the originalsystems. Several illustrative examples are employed to show that attribute re-ductions of set-valued information systems can be simplifed signifcantly by ourproposed approach.
     This dissertation has developed efective approaches to approximations of con-cepts and attribute reductions of information systems especially for dynamic in-formation systems. It enriches the rough set theory and attribute reductions ofinformation systems.
引文
[1] Zadeh L A. Fuzzy sets. Information and Control,1965,8:338-353
    [2] Pawlak Z. Rough sets. International Journal of Computer and Information Sci-ences,1982,11(5):341-356
    [3] Pawlak Z, Skowron A. Rudiments of rough sets. Information Sciences,2007,177:3-27
    [4] Pawlak Z, Skowron A. Rough sets: some extensions. Information Sciences,2007,177:28-40
    [5] Pawlak Z, Skowron A. Rough sets and Boolean reasoning. Information Sciences,2007,177:41-73
    [6] Pawlak Z. Information systems theoretical foundations. Information Systems,1981,6(3):205-218
    [7] Pawlak Z. Rough Sets: Theoretical Aspects of Reasoning About Data. KluwerAcademic Publishers, Boston,1991
    [8] Pawlak Z. Rough sets and intelligent data analysis. Information Sciences,2002,147:1-12
    [9] Pawlak Z. Rough Sets, Bayes’ Theorem and Flow Graphs. In: Meunier BB, Foul-loy L, Yager R R (Eds.), Intelligent Systems for Information Processing: FromRepresentation to Applications. Elsevier, Amsterdam,2003,243-252
    [10] Pawlak Z. Elementary rough set granules: toward a rough set processor. In: PalS K, Polkowski L, Skowron A(Eds.), Rough-Neural Computing: Techniques forComputing with Words. Springer-Verlag, Berlin,2003,5-13
    [11] Pawlak Z. Computing, Artifcial Intelligence and Information Technology Decisionsrules and fow networks. European Journal of Operational Research,2004,154:184-190
    [12] Banerjee M, Pal S K. Roughness of a fuzzy set. Information Sciences,1996,93(3-4):235-246
    [13] Bhatt R B, Gopal M. On the compact computational domain of fuzzy-rough sets.Pattern Recognition Letters,2005,26(11):1632-1640
    [14] Biswas R. On rough sets and fuzzy rough sets. Bulletin of the Polish Academy ofSciences: Mathematics,1994,42:345-349
    [15] Biswas R. On rough fuzzy sets. Bulletin of the Polish Academy of Sciences: Math-ematics,1994,42:352-355
    [16] Bobillo F, Straccia U. Generalized fuzzy rough description logics. Information Sci-ences,2012,189:43-62
    [17] Capotorti A, Barbanera E. Credit scoring analysis using a fuzzy probabilistic roughset model. Computational Statistics and Data Analysis,2012,56(4):981-994
    [18] Chakrabarty K, Biswas R, Nanda S. Fuzziness in rough sets. Fuzzy Sets and Sys-tems,2000,110:247-251
    [19] Deng T, Chen Y, Xu W, Dai Q. A noval approach to fuzzy rough sets based on afuzzy covering. Information Science,2007,177:2308-2326
    [20] Dubois D, Prade H. Rough fuzzy sets and fuzzy rough sets. International Journalof General Systems,1990,17:191-209
    [21] He Q, Wu C X, Chen D G. Fuzzy rough set based attribute reduction for in-formation systems with fuzzy decisions. Knowledge-Based Systems,2011,24(5):689-696
    [22] Hu Q H, Xie Z X, Yu D R. Hybrid attribute reduction based on a novel fuzzy-roughmodel and information granulation. Pattern Recognition,2007,40(12):3509-3521
    [23] Jensen R, Shen Q. Semantics-preserving dimensionality reduction: rough andfuzzy-rough-based approaches. IEEE Transactions on Knowledge and Data En-gineering,2004,16(12):1457-1471
    [24] Li T J, Leung Y, Zhang W X. Generalized fuzzy rough approximation operatorsbased on fuzzy coverings. International Journal of Approximation Reasoning,2008,48:836-856
    [25] Liang J Y, Shi Z Z. The information entropy, rough entropy and knowledge gran-ulation in rough set theory. International Journal of Uncertainty, Fuzziness andKnowledge-Based Systems,2004,12(1):37-46
    [26] Morsi N N, Yakout M M. Axiomatics for fuzzy rough sets. Fuzzy Sets and Systems,1998,100(1-3):327-342
    [27] Mordeson J. Rough set theory applied to (fuzzy) ideal theory. Fuzzy Sets andSystems,2001,121:315-324
    [28] Nanda S, Majumdar S. Fuzzy rough sets. Fuzzy Sets and Systems,1992,45(2):157-160
    [29] Chen X Y, Li Q G. Construction of rough approximations in fuzzy setting. FuzzySets and Systems,2007,158(23):2641-2653
    [30] Wu W Z, Mi J S, Zhang W X. Generalized fuzzy rough sets. Information Sciences,2003,151:263-282
    [31] Zhang H Y, Zhang W X, Wu W Z. On characterization of generalized interval-valued fuzzy rough sets on two universes of discourse. International Journal ofApproximate Reasoning,2009,51(1):56-70
    [32] Diker M, Uˇgur A A. Textures and covering based rough sets. Information Sciences,2012,184(1):44-63
    [33] Du Y, Hu Q H, Zhu P F, Ma P J. Rule Learning for Classifcation Based onNeighborhood Covering Reduction. Information Sciences,2011,181(24):5457-5467
    [34] Feng T, Zhang S P, Mi J S, Feng Q. Reductions of a fuzzy covering decision system.International Journal of Modelling, Identifcation and Control,2011,13(3):225-233
    [35] Hu Q H, Yu D R, Liu J F, Wu C X. Neighborhood rough set based heterogeneousfeature subset selection. Information Sciences,2008,178(18):3577-3594
    [36] Hu Q H, Yu D R, Xie Z X. Neighborhood classifers. Expert Systems with Appli-cations,2008,34:866-876
    [37] Hu Q H, Yu D R, Liu J F, Wu C X. Neighborhood rough set based heterogeneousfeature subset selection. Information Sciences,2008,178(18):3577-3594
    [38] Li T J, Wu W Z. Attribute reduction in formal contexts: a covering rough setapproach. Fundamenta Informaticae,2011111(1):15-32
    [39]Sˇeˇselja B. L-fuzzy covering relation. Fuzzy Sets and Systems,2007,158(22):2456-2465
    [40] Tsang Eric C C, Chen D G, Yeung D S. Approximations and reducts with coveringgeneralized rough sets. Computers and Mathematics with Applications,2008,56:279-289
    [41] Wu W Z, Zhang W X. Neighborhood operator systems and approximations. In-formation Sciences,2002,144:201-217
    [42] Xu W H, Zhang W X. Measuring roughness of generalized rough sets induced bya covering. Fuzzy Sets and Systems,2007,158:2443-2455
    [43] Yang T, Li Q G. Reduction about approximation spaces of covering generalizedrough sets. International Journal of Approximate Reasoning,2010,51(3):335-345
    [44] Yang T, Li Q G, Zhou B L. Related family: A new method for attribute reductionof covering information systems. Information Sciences,2013,228:175-191
    [45] Yang X B, Zhang M, Dou H L. Neighborhood systems-based rough sets in incom-plete information system. Knowledge-Based Systems,2011,24(6):858-867
    [46] Yang X B, Song X N, Chen Z H, Yang J Y. On multigranulation rough sets inincomplete information system. International Journal of Machine Learning andCybernetics,2012,3:223-232
    [47] Yao Y Y, Yao B X. Covering based rough set approximations. Information Sciences,2012,200:91-107
    [48] Yao Y Y. Three-way decisions with probabilistic rough sets. Information Sci-ences,2012,180(3):341-353
    [49] Yao Y Y. The superiority of three-way decisions in probabilistic rough set models.Information Sciences,2011,181(6):1080-1096
    [50] Yao Y Y, Zhao Y. Attribute reduction in decision-theoretic rough set models.Information Sciences,2008178(17):3356-3373
    [51] Zhou X Z, Huang B. Rough set-based attribute reduction under incomplete infor-mation systems. Journal of Nanjing University of Science and Technology,2003,27(5):630-635
    [52] Zhang Y L, Li J J, Wu W Z. On axiomatic characterizations of three pairs ofcovering based approximation operators. Information Sciences,2010,180:552274-287
    [53] Zhang Y L, Luo M K. On minimization of axiom sets characterizing covering-basedapproximation operators. Information Sciences,2011,181:3032-3042
    [54] Zhu W, Wang F Y. Reduction and axiomization of covering generalized rough sets.Information Sciences,2003,152:217-230
    [55] Zhu W. Relationship between generalized rough sets based on binary relation andcoverings. Information Sciences,2009,179(3):210-225
    [56] Zhu W. Generalized rough sets based on relations. Information Sciences,2007,177:4997-5011
    [57] Zhu W. Relationship among basic concepts in covering-based rough sets. Informa-tion Sciences,2009,179:2478-2486
    [58] Zhu W, Wang F Y. Relationships among three types of covering rough sets. In:IEEE GRC,2006,43-48
    [59] Zhu W, Wang F Y. A new type of covering rough set. In: IEEE IS’06,2006,444-449
    [60] Zhu W, Wang F Y. On three types of covering-based rough sets. IEEE Transactionson Knowledge and Data Engineering,2007,19(8):1131-1144
    [61] Zhu W. Topological approaches to covering rough sets. Information Sciences,2007,177(6):1499-1508
    [62] Zhu W, Wang F Y. The fourth type of covering-based rough sets. InformationSciences,2012,201:80-92
    [63] Zhu P. Covering rough sets based on neighborhoods: an approach without usingneighborhoods. International Journal of Approximate Reasoning,2011,52:461-472
    [64] Dai J H, Wang W T, Xu Q, Tian H W. Uncertainty measurement for interval-valued decision systems based on extended conditional entropy. Knowledge-BasedSystems,2012,27:443-450
    [65] Greco S, Matarazzo B, Slowin′ski R. Parameterized rough set model using roughmembership and Bayesian confrmation measures. International Journal of Ap-proximate Reasoning,2007,49(2):285-300
    [66] Grzymala-Busse J W, Yao Y Y. Probabilistic rule induction with the LERS datamining system. International Journal of Intelligent Systems,2011,26(6):518-539
    [67] Mi J S, Wu W Z, Zhang W X. Approaches to knowledge reduction based onvariable precision rough set model. Information Sciences,2004,159(3-4):255-272
    [68]S′l ezak D, Ziarko W. The investigation of the Bayesian rough set model. Interna-tional Journal of Approximate Reasoning,2005,40(1-2):81-91
    [69] Skowron A, Rauszer C. The discernibility matrices and functions in informationsystems. In: Slowinski R (ed.) Intelligent Decision Support-Handbook of Appli-cations and Advances of the Rough Sets Theory. Kluwer Academic Publishers,Dordrecht,1992,331-362
    [70] Skowron A. Rough sets and vague concepts. Fundamenta Informaticae,2005,64(1-4):417-431
    [71] Wang J, Wang J. Reduction algorithms based on discernibility matrix: the orderedattributes method. Journal of Computer Science and Technology,2001,16:489-504
    [72] Xu W H, Zhang X Y, Zhong J M, Zhang W X. Attribute reduction in ordered in-formation systems based on evidence theory. Knowledge and Information Systems,2010,25:169-184
    [73] Yun Z Q, Ge X, Bai X L. Axiomatization and conditions for neighborhoods in acovering to form a partition. Information Sciences,2011,181:1735-546
    [74] Yao Y Y. Probabilistic rough set approximations. International Journal of Ap-proximate Reasoning,2008,49(2):255-271
    [75] Yao Y Y. Probabilistic approaches to rough sets. Expert Systems,2003,20(5):287-297
    [76] Yao Y Y, Zhou B, Luo J G. A Three-Way Decision Approach to Email Spam Fil-tering. In: Proceedings of the23rd Canadian Conference on Artifcial Intelligence.Springer-Verlag, Berlin,2010,28-39
    [77] Ziarko W. Probabilistic approach to rough sets. International Journal of Approx-imate Reasoning,2008,49(2):272-284
    [78] Zakowski W. Approximations in the space (u, π). Demonstratio Mathematics,1983,16:761-769
    [79] Chen X Y, Li Q G, Long F, Deng Z K. Generalizations of Approximable ConceptLattice. Lecture Notes in Computer Science,2008,4923:107-122
    [80] Chen D G, Wang C Z, Hu Q H. A new approach to attributes reduction of con-sistent and inconsistent covering decision systems with covering rough sets. Infor-mation Sciences,2007,177:3500-3518
    [81] Dai J H, Xu Q. Approximations and uncertainty measures in incomplete informa-tion systems. Information Sciences,2012,198:62-80
    [82] Feng L, Li T R, Ruan D, Gou S R. A vague-rough set approach for uncertainknowledge acquisition. Knowledge-Based Systems,2011,24:837-843
    [83] Wang S P, Zhu Q X, Zhu W, Min F. Matroidal structure of rough sets andits characterization to attribute reduction. Knowledge-Based Systems,(2012)http://dx.doi.org/10.1016/j.knosys.2012.06.006
    [84] Liu G L. Rough set theory based on two universal sets and its applications.Knowledge-Based Systems,2010,23(2):110-115
    [85] Liu P H, Chen Z C, Qin K Y. Attribute reduction of set-valued information systemsbased on maximal variable precision tolerance classes. Journal of Sichuan NormalUniversity (Nature Science),2009,32(5):576-580
    [86] Leung Y, Li D Y. Maximal consistent block technique for rule acquisition in in-complete information systems. Information Sciences,2003,153:85-106
    [87] Nguyen S H, Nguyen H S. Some efcient algorithms for rough set methods. In:Proceedings of the International Conference on Information Processing and Man-agement of Uncertainty on Knowledge Based Systems.1996,1451-1456
    [88] Nguyen S H, Nguyen H S. Quantization of real values attributes for control prob-lems. In: Proceedings of the Fourth European Congress on Intelligent Techniquesand Soft Computing.1996,188-191
    [89] Nguyen H S, Nguyen S H, Skowron A. Searching for Features Defned by Hyper-planes. Lecture Notes in Computer Science,1996,1079:366-375
    [90] Pal S, Mitra P. Case generation using rough sets with fuzzy representation. IEEETransactions on Knowledge and Data Engineering,2004,16(3):292-300
    [91] Pomykala J A. On defnability in the nondeterministic information system. Bulletinof the Polish Academy of Sciences: Mathematics,1988,36:193-210
    [92] Ramentol E, Caballero Y, Bello R, Herrera F. SMOTE-RSB: a hybrid prepro-cessing approach based on oversampling and undersampling for high imbalanceddata-sets using SMOTE and rough sets theory. Knowledge and Information Sys-tems,2012,33(2):245-265
    [93] Wang X Z, Li C G. A new defnition of sensitivity for RBFNN and its applicationsto feature reduction. Lecture Notes in Computer Science,2005,3496:81-86
    [94] Wang X Z, Tsang E, Zhao S Y, Chen D G, Yeung D. Learning Fuzzy Rulesfrom Fuzzy Examples Based on Rough Set Techniques. Information Sciences,2007,177(20):4493-4514
    [95] Wang X Z, Wang Y D, Wang L J. Improving fuzzy c-means clustering based onfeature-weight learning. Pattern Recognition Letters,2004,25(10):1123-1132
    [96] Wang X Z, Zhai J H, Lu S X. Induction of multiple fuzzy decision trees based onrough set technique. Information Sciences,2008,178(16):3188-3202
    [97] Yang X B, Yang J Y, Wu C, Yu D J. Dominance-based rough set approach andknowledge reductions in incomplete ordered information system. Information Sci-ences,2008,178(4):1219-1234
    [98] Zhao K, Wang J. A reduction algorithm meeting users’s requirements. Journal ofComputer Science and Technology,2002,17(5):578-593
    [99] Xiang X Q, Zhou J Z, Li C S, Li Q Q, Luo Z W. Fault diagnosis based on Walshtransform and rough sets. Mechanical Systems and Signal Processing,2009,23:1313-1326
    [100] Yamaguchi D. Attribute dependency functions considering data efciency. Inter-national Journal of Approximate Reasoning,2009,51(1):89-98
    [101] Skowron A, Rauszer C. The discernibility matrices and functions in informationsystems. In: Slowinski R (ed.) Intelligent Decision Support-Handbook of Appli-cations and Advances of the Rough Sets Theory. Kluwer Academic Publishers,Dordrecht,1992,331-362
    [102] Yao Y Y, Zhao Y. Discernibility matrix simplifcation for constructing attributereducts. Information Sciences,2009,179(7):867-882
    [103] Grzymala-Busse J W. Algebraic properties of knowledge representation systems.In: Proceedings of the ACM SIGART International Symposium on Methodologiesfor Intelligent Systems. Knoxville,1986,432-440
    [104] Grzymala-Busse J W. Rough Set and CART Approaches to Mining IncompleteData. In:2010International Conference of Soft Computing and Pattern Recogni-tion (SoCPaR). Paris, France,2010,214-219
    [105] Grzymala-Busse J W, Sedelow Jr. W A. On rough sets and information systemhomomorphism. Bulletin of the polish academy of sciences: technical sciences,1998,36(3):233-239
    [106] Grzymala-Busse J W, Than S. Data compression in machine learning applied tonatural language, Behavior Research Methods. Instruments and Computers,1988,25(2):318-321
    [107] Li D Y, Ma Y C. Invariant characters of information systems under some homo-morphisms. Information Sciences,2000129(1-4):211-220
    [108] Gong Z T, Xiao Z Y. Communicating between information systems based on in-cluding degrees. International Journal of General Systems,2010,39(2):189-206
    [109] Wang C Z, Chen D G, Zhu L K. Homomorphisms between fuzzy informationsystems. Applied Mathematics Letters,2009,22(7):1045-1050
    [110] Wang C Z, Wu C X, Chen D G. A systematic study on attribute reduction withrough sets based on general binary relations. Information Sciences,2008,178(9):2237-2261
    [111] Wang C Z, Wu C X, Chen D G, Du W J. Some properties of relation informationsystems under homomorphisms. Applied Mathematics Letters,2008,21(9):940-945
    [112] Wang C Z, Wu C X, Chen D G, Hu Q H, Wu C. Communicating between infor-mation systems. Information Sciences,2008,178(16):3228-3239
    [113] Zhu P, Wen Q Y. Some improved results on communication between informationsystems, Information Sciences,2010,180(18):3521-3531
    [114] Wang C Z, Chen D G, Wu C, Hu Q H. Data compression with homomorphism incovering information systems. International Journal of Approximation Reasoning,2011,52(4):519-525
    [115] Zhu P, Wen Q Y. Homomorphisms between fuzzy information systems revisited,Applied Mathematics Letters,2011,24(9):1548-1553
    [116] Hayashi K, Takenouchi T, Shibata T, Kamiya Y, Kato D, Kunieda K, Yamada K,Ikeda K. Exponential Family Tensor Factorization for Missing-Values Predictionand Anomaly Detection. In:2010IEEE10th International Conference on DataMining (ICDM). IEEE press, Piscataway, USA,2010,216-225
    [117] Im S, Ra′s Z, Wasyluk H. Action rule discovery from incomplete data. Knowledgeand Information Systems,2010,25:21-33
    [118] Kryszkiewicz M. Rough set approach to incomplete information systems. Informa-tion Sciences,1998,112(1-4):39-49
    [119] Luengo J, Garc′a S, Herrera F. On the choice of the best imputation methods formissing values considering three groups of classifcation methods. Knowledge andInformation Systems,2012,32(1):77-108
    [120] Meng Z Q, Shi Z Z. A fast approach to attribute reduction in incomplete deci-sion systems with tolerance relation-based rough set. Information Sciences,2009,179(16):2774-2793
    [121] Qi Y S, Wei L H, Sun H J, Song Y Q, Sun Q S. Characteristic relations in gener-alized incomplete information system. In: Proceedings of the First InternationalWorkshop Knowledge Discovery Data Mining. IEEE press, Piscataway, USA,2008,519-523
    [122] Qian Y H, Liang J Y, Li D Y, Wang F, Ma N N. Approximation reduction ininconsistent incomplete decision tables. Knowledge-Based Systems,2010,23(5):427-433
    [123] Wang H, Wang S H. Mining incomplete survey data through classifcation. Knowl-edge and Information Systems,2010,24:221-233
    [124] Wang S P, Zhu W, Zhu Q H, Min F. Characteristic matrix of covering and its appli-cation to boolean matrix decomposition and axiomatization, arXiv:1207.0262v3
    [125] Liu D, Li T R, Ruan D, Zhang J B. Incremental learning optimization on knowledgediscovery in dynamic business intelligent systems. Journal of Global Optimization,2011,51(2):325-344
    [126] Liu D, Li T R, Ruan R, Zou W L. An incremental approach for inducing knowledgefrom dynamic information systems. Fundamenta Informaticae,2009,94(2):245-260
    [127] Li T R, Ruan D, Geert W, Song J, Xu Y. A rough sets based characteristic relationapproach for dynamic attribute generalization in data mining. Knowledge-BasedSystems,2007,20(5):485-494
    [128] Wang F, Liang J Y, Dang C Y. Attribute reduction for dynamic data sets. AppliedSoft Computing,2013,13:676-689
    [129] Zhang J B, Li T R, Ruan D, Liu D. Rough sets based matrix approaches with dy-namic attribute variation in set-valued information systems. International Journalof Approximate Reasoning,2012,53(4):620-635
    [130] Chen H M, Li T R, Qiao S J, Ruan D. A rough set based dynamic maintenanceapproach for approximations in coarsening and refning attribute values. Interna-tional Journal of Intelligent Systems,2010,25(10):1005-1026
    [131] Sloane N J A. The on-line encyclopedia of integer sequences. Published electroni-cally at http://www.research.att.com/~njas/sequences/,2000
    [132] Guan Y Y, Wang H K. Set-valued information systems. Information Sciences,2006,176(17):2507-2525
    [133] Qian Y H, Dang C Y, Liang J Y, Tang D W. Set-valued ordered informationsystems. Information Sciences,2009,179:2809-2832
    [134] Frank A, Asuncion A. UCI Machine Learning Repository
    [http://archive.ics.uci.edu/ml], Irvine, CA: University of California, Schoolof Information and Computer Science,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700