用户名: 密码: 验证码:
高强高导Cu-Cr-Zr系合金制备新工艺及理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了解决Cu-Cr-Zr系合金的非真空熔铸和板带加工成型的技术难题,本文分别对Cu-Cr-Zr系合金的非真空熔铸、微观组织演变、热变形行为、带材特征织构等方面进行了理论探讨。设计了一套非真空熔铸系统,确定了最佳熔铸和形变热处理工艺参数。
     以吉布斯自由能为判据,从热力学上分析了铬和锆元素在熔炼环境下可能发生的化学反应;并从动力学方面研究了在熔炼环境下的合金组元之间扩散和化学反应过程。研究表明:在非真空熔炼和铸造过程中,铬和锆元素与氧气、氮气、氢气、石墨、炉衬材料等发生化学反应而造渣损失;提出了适合于非真空条件下Cu-Cr-Zr系合金的熔炼气氛、炉衬材料、脱氧剂等,设计了相应的熔炼设备。并进行了多次熔铸实验,Cr组元和zr组元的平均烧损率分别9.69%和9.70%,合金组织洁净。
     采用CALPHAD(Calculation of Phase Diagram)技术,对低溶质Cu-Cr-Zr体系进行了相平衡热力学计算,预测了合金在铸造、热轧和时效温度下可能的析出相和质量分数,以此指导研制合金的化学成分设计。计算结果表明:在低溶质Cu-Cr-Zr系合金的形变热处理过程中主要存在Cu相、Cr相和Cu_5Zr相;当Cr/Zr≥3.5时,Cr相为主要析出相;当Cr/Zr≤3.5时,Cu_5Zr相为主要析出相。
     利用OM(Optical Microscopy)和HRTEM(High ResolutionTransmission Electron Microscopy)观察了所设计合金在铸造、固溶和时效等工序中析出相的演变。研究结果表明:当Cr含量较高时,在铁模铸造过程会析出大量的Cr相,并偏聚于晶界,加快铸造过程的冷却速度会抑制Cr相的析出和偏聚。铸造时析出的Cr相在固溶处理过程中不会完全返溶,有的甚至聚集长大。在时效过程中,随着Cr含量的增加和Cr/Zr值的增大,析出温度降低、析出速度加快。Cr相在基体中主要以针状、棒状、球状和六边形四种形态存在,富锆相则以不规则形态存在;亚稳相CrCu_2(Zr,Mg)在425℃下时效时分解为Cr相、Cu_4Zr和富Mg相。
     在Gleeble-1500D热/力模拟机上对Cu-Cr-Zr系合金进行了热压缩实验,研究了其在变形温度700℃-820℃和应变速率0.01-10s~(-1)条件下的热变形行为。结果表明:热形变过程的流变应力可用双曲正弦本构关系来描述,平均激活能为597.53kJ/mol。根据材料动态模型,计算并分析了该合金的加工图,确定了热变形的流变失稳区,获得了实验参数范围内的热变形过程最佳工艺参数,其热加工温度800-820℃,应变速率为0.01-0.1s~(-1)。
     采用XRD(X-Ray Diffraction)技术,对Cu-Cr-Zr系合金的热轧、固溶、冷轧和时效等工序中织构的演变规律进行研究,检测不同工序下的板材沿0度(轧向)、45度和90度(横向)的室温拉伸性能及导电率,建立该系合金的微观组织-特征织构-室温力学性能之间的基本关系。研究结果表明:在Cu-Cr-Zr合金板带中,主要存在着Copper取向、Brass取向、S取向、Goss取向、立方和旋转立方取向。在冷轧过程中,随着冷变形量的增加,Copper取向逐渐向Brass取向转变,在时效过程中则出现了旋转立方取向。当主要取向为Copper取向时,合金板带0度方向(轧向)的强度和延伸率较高,导电率较低。当Copper和Brass取向体积分数相当时,合金板带在0度、45度和90度方向上的性能相差很小。
     在上述工作的基础上,对Cu-Cr-Zr系合金进行了制备工艺参数优化实验,获得了一套最佳熔铸、热轧、固溶、冷轧和时效工艺参数,并进行了200Kg规模的半工业化生产。
The smelting process, microstructure evolution, hot deformation behavior and plate texture of Cu-Cr-Zr alloys were mainly investigated in this paper so to resolve the anti-vaccum melting and process technology of the alloys. The melting process experiments were studied by self-designed non-vacuum melting furnace and casting equipment. The melting, deformation and heat treatment process parameters were optimized by condition experiments. Specific contents and new conclusion are as follows:
     The Gibbs free energy changes of reactions of copper, chromium and zirconium with some compnents such as O_2, N_2, crucible and furnace lining materials, were calculated at the melting temperature. The possibilities of the relevant reactions were analyzed by the Gibbs free energy changes. The dynamic studies of diffusion and chemical reaction process show that chromium and zirconium can react with O_2 and N_2 under protective atmosphere; the zirconia and magnesia have a good stability for Cr and Zr, therefore, they can be used as crucible and furnace lining materials for Cu-Cr-Zr alloy melting. The favorable factor of the smelting process such as smelting atmopshere, refractory material, deoxidizing agent and so on were put forwarded and relevant equipment were deisgned. The smelting experiment results indicated that the melting loss rate of Cr and Zr elements are 9.69 wt.% and 9.7%, respectively. The casted microstructure of the alloy is clean.
     Phase equilibrium thermodynamics calculation for low solute Cu-Cr-Zr system is practiced. Precipitated phase and its mass fraction in the process of casting, hot-rolling, and aging are predicted by means of CALPHAD technology. The calculation results can give guide to the optimization of alloy chemical constitution and it is demonstrated that the main phase occurred in the process of thermomechanical treatment are (Cu), Cr and Cu_5Zr phase. The Cr phase is the main precipitated phase while the value of Cr/Zr≥3.5, and Cu_5Zr is the main precipitated phase while the value of Cr/Zr≤3.5.
     The microstructure evolution of Cu-Cr-Zr alloys in the process of casting, solution and aging treatment was studied by optical microscope (OM) and high resolution transmission electron microscope(HRTEM), It is found that when the content of Cr is higher, a large number of Cr phase congregated together in the grain boundary during the course of iron mould casting. The increase of cooling speed can inhibit the precipitation and gathering of Cr phase. The precipitated Cr phase cannot completely resolute into matrix after solution treatment. Furthermore, some precipitated Cr phases congregate and grow up. The precipitation temperature decreases with the increase of Cr content and Cr/Zr value while the precipitation speed is on the contrary in the course of aging. Cr phase exists in the matrix mainly with the shape of acerose, claviform, globosity and hexagon. Zr phase occurs with irregular shape, The CrCu_2(Zr,Mg) phase maybe decompose into chromium-rich phase and zirconium-rich phase at aging temperature above 425°C.
     The deformation behavior of Cu-Cr-Zr alloy was investigated by compression tests with Gleeble-1500D thermal simulator system. The tests temperatures are 700℃, 750℃, 800℃and 820℃, respectively. The strain rates are 0.01s~(-1), 0.1s~(-1),1s~(-1) and 10s~(-1). The results show that the flow behavior could be described by the hyperbolic sine constitutive equation, and an active energy of 597.53 kJ/mol was calculated. The processing maps were calculated and analyzed according to the dynamic materials model. And the processing parameters of hot deformation in the range of this experiment were attained by the maps. The optimal hot deformation temperature was 800-820℃and the strain rate was 0.01-0.1s~(-1).The instability zones of flow behavior can also be recognized by the maps.
     Texture evolution of Cu-Cr-Zr alloy at different processing stage was investigated by mean of orientation distribution functions(ODF), the volume fraction of the typical orientations also were calculated. Electrical conductivity, tensile strength and micro-hardness also were investigated at different process. The results show that the cold deformation texture, consisted of copper orientation(mainly {113}<332>), Brass orientation, S orientation and Goss orientation, was very strong, especially the Copper orientation and the Brass orientation. In addition, Copper orientation transformed to Brass orientation with the increase of cold deformation rate. Brass orientation dominates in the aged alloy, and the S orientation and Copper orientation was relatively lower, and no {113}<332> orientation was observed. The volume friction of the {113}<332> orientation was more than 60% in cold rolling samples after aging. When Copper texture was mainly orientation, the tensile strength and elongation of the strip increased at the orientation from 0 degree to 90 degree, the electrical conductivity decreased. When volume fraction of Copper orientation equal to that of Brass orientation, the tensile strength, elongation and electrical conductivity have little different on the orientation from 0 degree to 90 degree.
     Base on the abve investigation, the preparation processing parameters are optimized by conditions experiments, and a suit of optimal processing parameters with respect to different working procedure of melting, casting, hot-rolling, solution treatment, cold-rolling and aging are obtained. These results provide instructive attemps for the semis-inductrial production of 200kg.
引文
[1] 王笑天.金属材料学[M].北京:机械工业出版社,1987.267-274
    [2] 刘平,赵冬梅,田保红.高性能铜合金及其加工技术[M].北京:冶金工业出版社,2005.1
    [3] 王深强.高强高导铜合金的研究现状与展望[J].材料工程,1995(7):3-6
    [4] Krotz,Phill PP.,MetallTrans.,1993, 24A(1): 5
    [5]#12
    [6] 山根寿已.高强度高传导性铜合金设计の基礎[J].伸铜技術誌研究会,1990,29:13-17
    [7] 岩坂光富,中岛和隆,大山繁等.合金设计法にょゐ新高强度铜基合金の开發[J].伸铜技術誌研究会,1985,24:126-132
    [8]#12
    [9]#12
    [10]#12
    [11]#12
    [12]#12
    [13] Paulmier D, Bouhchoucha A, ZaidiH., Influence of the electrical current on wear in a sliding contact with copper/chrome steel[J]. Vacuum,1990, 41(7-9): 2213-2216
    [14] Kubo S, Kato K., Effect of arc discharge on the wear rate and wear mode transition of a copper impregnated metalized carbon contact strip sliding against a copper disk[J]. Tribology International, 1999, 32:367-378.
    [15] Bouhchoucha A, Zaidi H., Influence of electrical filed on the tribological behavior of electro dynamical copper/steel contacts[J]. Wear, 1997,(203-204):434-441
    [16] Kuhlman, Wilsdorf D. What role for contact spots and dislocations in fiction and wear[J]. Wear, 1996,(200):367-372
    [17] Matsuura A, Nagafuji T, Shimada T., Maintenance practices in over sea's railways[J]. RTRI Rep, 14 (7):1144-1148
    [18] 吴彦卿等,DHZ-1型铬锆铜电极合金[J],焊接学报,1985,9(3):143-145
    [19] 王绍雄,铜和铜合金在电子工业中的新趋向[J],铜加工,1992,3:6-8
    [20] E.ARPACI等,铜材——性能以及在电工电子学中的应用[J],西德,Metall,1996,46(1):21
    [21] 王隆寿,宝钢铬错铜结晶器铜板的研制[J],冶金设备,1999,12(6):34-36
    [22] 何启基,金属力学性能[M],北京:冶金工业出版社,1982.193
    [23] Masamichi Miki, Yoshikiyo Ogino. Effect of quenching temperature on the inter-granular and cellular precipitation of Cu-1.5Be binary alloy[J]. Materials transactions JIM, 1995,36(9): 1118-1123
    [24] Taku Sakai, Hiromi Miura, Naokuni Muramatsu. Effect of small additions of Co on dynamic re-crystallization of Cu-Be alloys[J]. Materials transactions JIM,1995,36(8):1023-1030
    [25] Ulrich E Klotz, Chunlei Liu, Peter J, et al., Experimental investigation of the Cu-Ti-Zr system at 800 ℃[J]. Intermetallics, 2007,15(12): 1666-1671
    [26] Dinda G P , Rsner H, Wilde G, Cold-rolling induced amorphization in Cu-Zr,Cu-Ti-Zr and Cu-Ti-Zr-Ni multilayers[J]. Journal of Non-Crystalline Solids,2007,353(32-40): 3777-3781
    [27] Daniela Zander, Beate Heisterkamp, Isabella Gallino. Corrosion resistance of Cu-Zr-Al-Y and Zr-Cu-Ni-Al-Nb bulk metallic glasses[J]. Journal of Alloys and Compounds, Volumes 434-435,2007, 31: 234-236
    [28] 曹兴民,郭富安,向朝建等.引线框架材料C194x的组织性能分析[J].热加工工艺,2006,35(14):22-24
    [29] 潘志勇,汪明朴,李周等.超高强度Cu-Ni-Si合金的研究进展[J].金属热处理,2007,32(7):55-59
    [30] 董明水,王冀恒,谢春生.CuCoBeZr合金力学性能及其断口分析[J].机械工程材料,2005,29(7):56-58,70
    [31] Teruo T H, Yasuhikoh S M, Koichiro K Y. Effect of Ti and Zr additions on the internal oxidation of Cu-Si Alloy[J]. Materials Transactions, 1989, 30(2):127-136.
    [32] 廖素三.Cu-Cr和Cu-Cr-Zr合金的组织和性能[D],中南工业大学硕士学位论文,长沙:中南工业大学,2000:1-3
    [33]冯端.金属物理学(第一卷)[M].北京.科学出版社,1987.154-160
    [34] Song K X, Xing J D, Dong Q M,et al. Internal Oxidation of Dilute Cu-Al Alloy Powders with Oxidant of Cu_2O[J]. Materials Science and Engineering, 2004,A380:117-122
    [35] Liang S H,Fang L,Fan Z K. Internal Oxidation of Cr in Cu-Cr/Cu2O Composite Powder Prepared by Mechanical Activation[J]. Materials Science and Engineering,2004,A374:27-33
    [36] Srivatsan T S, Narendra N, Troxell J D. Tensile Deformation and Fracture Behavior of an Oxide Dispersion Strengthened Copper Alloy[J]. Materials and design, 2000,21:191-198
    [37] Naser J, Ferkel H,Riehemann W. Grain Stabilization of Copper with Nanoscaled Al_2O_3 Powder[J]. Materials Science and Engineering,1997,A234-236:470-473
    [38] Luo C P, Dabmen U et al:, Precipitation in dilute Cu-Cr alloy: the effect of phosphorus impurities and aging procedure[J]. Scripita Metallurgical et materialia,1992 (26):649-654
    [39] Luo C P, Dahmen U et al., Morphology and crystallography of Cr precipitates in a Cu-0.33 wt.%Cr alloy [J].Acta metall. Mater, 1994(4):1923-1932
    [40] Jin Y, Adachi K, Takeuchi T, et al. Correlation between the cold-working and aging treatments in a Cu-15 Wt Pct Cr in-situ composite[J]. Metall Mater Trans A,1998,29 (8): 2195-2203
    [41] Jin Y, Adachi K, Takeuchi T, et al. Ageing characteristics of Cu-Cr in-situ composite[J]. J. Mater Sci,1998,33(5):1333-1341
    [42] Tjong S C, Lau K C. Abrasive wear behavior of TiB: particle-reinforced copper matrix composites[J]. Materials Science and Engineering A, 2000,282:183-186
    [43] Tjong S C, Lau K C. Tribological behavior of SiC particle-reinforce copper matrix composites[J]. Materials Letter ,2000(43): 274-280
    [44] Biseli C, Morris D G, Microstructure and strength of Cu-Fe in situ composite obtained from prealloyednCu-Fe powders[J], Acta metal, 1994,42(1):163-176
    [45] Biseli C, Morris D G, Microstructure and strength of Cu-Fe in situ composite after very high drawing strains[J], Acta mater, 1996,44(2):493-504
    [46] Spitzig W A, Krota P D. Comparison of the strengths microstructures of Cu-20%Ta and Cu-20%Nb in situ composites[J]. Acta metal, 1998,36(7): 1709-1715
    [47] Spitzig W A, Chumbley L S, Verhoeven J D. Effect of temperature on the strength and conductivity of a deformation processed Cu-20%Fe composite[J]. Journal of materials science, 1992,27(8):2005-2011
    [48] Formmeyer G, Wassermann G. Microstructure and anomalous mechanical properties of in situ produced silver-copper composite wire[J]. Acta Metallurgies, 1975,23(11):1353-1360
    [49] Matissen D, Paaben D, Heringhaus F. Experimental investigation and modeling of the influence of microstructure of the resistive conductivity of a Cu-Ag-Nb in situ composite[J]. Acta metal, 1999,47(5): 1627-1634
    [50] Raabe D, Matissen D. Experimental investigation and ginzburglandau modeling of the microstructure dependence of superconductivity in Cu-Ag-Nb wires[J]. Acta metal, 1999,47(3):769-777
    [51] Sakai Y, Scheider-Muntau H J. Ultra-high strength ,high conductivity Cu-Ag alloy wires[J]. Acta metal,1997,45(3): 1017-1023
    [52] Hong S I, Hill M A. Micro-structural stability and mechanical response of Cu-Ag Microcomposite wire[J]. Acta metal,1998,46(12):4111-4122
    [53] Spitzig W A. Strengthening in heavily deformation processed Cu-20%Nb[J], Acta metal,1991,47(3):1085-1090
    [54] Zhang D L, Mihara K, Suzuki H C et al. Effect of the amount of cold working and aging on the ductility of a Cu-15%Cr-0.2%Ti in situ composite[J]. Materials science and engineering, 1999, A 266:99-108
    [55] Go Y S, Spitzig W A. Strengthening in deform orion-processed Cu-20%Fe composite[J]. Journal of material science,1991,26:163-171
    [56] Zhang D L, Mihara K, S Tsubokawa et al., Precipitation characteristics of Cu-15%Cr-0.2%Zr in situ composite[J], Materials science and technology, 2000, 16:357-363
    [57] Hong S I, Song J S. Stength and conductivity of Cu-9Fe-1.2X(X=Ag or Cr) filamentary microcomposite wires[J]. Metallurgical and materials transactions, 2001,32A: 985-991
    [58] Shou Jin Sun. Structures and residual stresses of Cr fibers in Cu-15Cr in-situ composite[J]. Metallurgical and materials transactions, 2001, 32A:1225-1232
    [59] Raabe D, Kmiyake, Takahara H. Processing, microstructure, and properties of ternary high-strengh Cu-Cr-Ag in situ composite[J]. Materials science and engineering, 2000, A291:186-197
    [60] Adachi K, Tsubokawa S, Takeuchi T et al. Plastic deformation of Cr phase in Cu-Cr composite cold rolling[J]. J Japan inst met, 1997,61(5):391-396
    [61] Verhoeven J D. Chueh S C. Gibson E D. Strengthening and conductivity of in situ Cu-Fe alloy[J]. Journal of material science,1989,24:1749-1752
    [62] Mihara K, Takeuchi T, Suzuki H G. Effect of Zr on Aging characteristics and strength of Cu-Cr in situ composite[J]. J Japan inst met., 1998,62(3):238-245
    [63] K.R.Anderson, F.A. Garner,M.L.Hamilton and J.F.Stubbins., Electrical resistivity changes induced in copper alloys by fast neutron irradiation[J]. Fusion Reactor Materials Semiannual Report, DOE/ER-0313/6 1986,186-192
    [64] G J. Butterworth, C. B. A. Forty .,A survey of the properties of the copper alloys for use as fusion reactor materials[J]. Journal of Nuclear Materials, 1992, 189: 237-276
    [65] F.A.Garner, M.L.Hamilton, T. Shikama. Response of solute and precipitation strengthened copper alloys at high neutron exposure[A]. Proc.5th Int. Conf. on Fusion Reactor Materials, Clearwater, Florida, USA, November 1991:17-22
    [66] D.J.Edwards, K.R.Anderson, F.A.Garner. Irradiation performance of oxide dispersion strengthened copper alloy to 150 dpa at 415°C[A]. Proc.5th Int. Conf. on Fusion Reactor Materials, Clearwater, Florida, USA, November 1991:17-22
    [67] Misra R D K, Prasad V, Satya R et al., Dynamic embrittlement in an age- hardenable copper-chromium alloy [J]. Scripta Materialia, 1996,35(1): 129-133
    [68] Szablewski J, Haimann R, Influence of thermo-mechanical treatment on electrical properties of a Cu-Cr alloy[J]. Materials Science and Technology,1985, 1(12):1053-1056
    [69] Suzuki H, Kanno M, Kawakatsu L, some properties of Cu-Cr-Hf alloys[J]. J. Jap. Inst. Metals,1969,33(2):174-178
    [70] Batawi E, Morris D G, Morris M A. Effect of small alloying additions on behavior of rapidly solidified Cu-Cr alloy [J]. Materials Science and Technology, 1990,6(9):892-899
    [71] Dunlap R A, Stroink G, Stadnik Z M. Properties of as-quenched and hydrogenated Cu-Fe-Ti alloys[J]. Materials Science and Engineering, 1988, 543-546
    [72] Wendt H, Wagner R. Mechanical properties of Cu-Fe alloys in the transition from solid solution to precipitation hardening[J]. Acta metall, 1982,30:1561-1570
    [73] Arnberc L, Backmark U, Backstrom N. A new high strength, high conductivity Cu-0.5wt.%Zr alloy produced by rapid solidification technology [J]. Materials Science and Engineering, 1986,83:115-121
    [74] Gillessen F, Herlach D M. Crystal nucleation and class forming ability of Cu-Zr in a containerless state[J]. Materials Science and Engineering, 1988,97:147-151
    [75] Tenwick M J, Davies H A. Enhanced strength in high conductivity copper alloys[J]. Materials Science and Engineering, 1988,97:543-546
    [76] Bormann R, Gartner F, Haider F. Determination of the free energy of equilibrium and metastable phases in the Cu-Zr system[J] .Materials Science and Engineering,1988,97:79-81
    [77] Appello M, Penici P. Solution heat treatment of a Cu-Cr-Zr alloy[J]. Materials science and engineering A, 1988 (102): 69-75
    [78] Yong-Jai Kwon, Makoto Kobashi, Takao Choh, et al., Fabrication of TiC/Cu composites by combustion synthesis in Cu-TiC system[J].J Japan inst met,2001,65(4): 273-278
    [79] Jongsang Lee, J. Y. Jung, Eon-Sik Lee, et al. Microstructure and properties of titanium boride dispersed Cu alloys fabricated by spray forming[J].Materials Science and Engineering A,2000,277(2):274-283
    [80] Liu P, Kang B X, Cao X G et al., Interaction of Precipitation and Recrystallization in a rapidly Solidified Cu-Cr-Zr-Mg Alloy[J].Acta Metallurgica Sinica,1999,12(3): 273-277
    [81] 张生龙.Cu-Cr-Zr和Cu-Zn-Cr-Zr合金时效特性研究[D],中南大学硕士学位论文,2002:12-13
    [82] Mihara K, Takeuchi T, Suzuki H G Effect of Ti on aging characteristics and strength of Cu-Cr in situ composite[J]. J Japan inst met., 1998,62(7): 599-606
    [83] Motohisa M. Development trends in new copper alloy for lead-frame[J].Journal of the Japan copper and brass research association, 1990,29:18-21
    [84] Uwe Holzwarth, Hermann Stamm. The precipitation behaviour of ITER-grade Cu-Cr-Zr alloy after simulating the thermal cycle of hot isostatic pressing[J]. J.Nucl. Mater. 2000, (279):31-45
    [85] Lopez F, Reyes J, Campillo B et al., JMEPEG 1997,6:611-614
    [86] Fujii T, Nakazawa H, Kato M et al., Crystallography and morphology of nanosized Cr particles in a Cu-0.2% Cr alloy[J]. Acta Materialia 2000,48:1033-1045
    [87] Knights R W, Wilkes P et al, 1973,4:2359-2393.
    [88] Stobrawa J, Ciura L, Rdzawski Z. Rapidly solidified strips of Cu-Cr alloys[J]. 1996,34(11):1759-1763.
    [89] 田荣璋,王祝堂.铜合金及其加工手册[M].长沙:中南大学出版社,2002.296-308
    [90] 王碧文.铜合金及其加工技术[M],北京:化学工业出版社,2007.28-50
    [91] Zeng K J, Hamalainen M, Lilius K. Phase relationships in Cu-rich comer of the Cu-Cr-Zr phase diagram[J]. Scripta Metallurgica et Materialia. 1995, 32(12):2009-2014
    [92] Zeng K J, Hamalainen M. A theoretical study of the phase equilibia in the Cu-Cr-Zr system[J]. Journal of alloys and Compounds. 1995,220:53-61
    [93] Tang N Y, Taplin D M, Dunlop G L. Precipitation and aging in high-conductivity Cu-Cr alloys with additions of zirconium and magnesium[J]. Mater.Sci.and Tech.1985,(1):270-275
    [94] Batra I S, Dey G K, Kulkarni U D et al., Precipitation in a Cu-Cr-Zr alloy[J].Materials Science and Engineering, 2002, A356:32-36.
    [95] Batra I S, Dey G K, Kulkarni U D, et al. Microstructure and properties of a Cu-Cr-Zr alloy[J]. Journal of Nuclear Materials, 2001,299:91-100.
    [96] Huang F X, Ma J S, Ning H L et al. Analysis of phases in a Cu-Cr-Zr alloy[J].Scripta Materialia. 2003,48:97-102
    [97] Su J H, Dong Q M, Liu P et al. Research on aging precipitation in a Cu-Cr-Zr-Mg alloy[J].Materials Science and Engineering, 2005, A392 :422-426
    [98] Dong Q M, Su J H, Liu P et al. Aging precipitation characteristic of lead frame Cu-Cr-Zr-Mg alloy[A].Transactions of materials and heat treatment proceedings of the 14th IFHTSE congress[C].2004.10:157-160
    [99] Holzwarth U, Stamm H. The precipitation behavior of ITER-grade Cu-Cr-Zr alloy after simulating the thermal cycle of hot isostatic pressing[J]. Journal of Nuclear Materials, 2000,279:31-45
    [100] Correia J B, Davies H A, Sellars C M. Strengthening in rapidly solidified age hardened Cu-Cr and Cu-Cr-Zr alloys[J]. Acta mater.l997,.45(1):177-190
    [101] Morris M A, Morris D G, Kulkarni U D. Microstructure and properties of Cu-Cr-Zr alloy [J] Journal of Nuclear Materials, 2001,299:91-100
    [102] QI W X, Tu J P, Liu F et al. Microstructure and tribological behavior of a peak aged Cu-Cr-Zr[J]. Materials Science and Engineering, 2003,A343:89-96
    [103] Vinogradov A, Patlan V, Suzuki Y, et al. Structure and properties of ultra-fine grain Cu-Cr-Zr Alloy[J].Acta Materialia, 2002,50:1639-1651
    [104] Liu P, Su J H, Dong Q M et al. Microstructure and properties of Cu-Cr-Zr alloy after rapidly solidified aging and solid solution aging[J]. J.Mater.Sci.Technol.,2005,21(4): 475-478
    [105] Suzuki H. Strength of Cu-Cr-Zr alloy relating to the aging structure[J]. J Jpn Inst Metals,1969, 33(5):628-632
    [106] Tu J P, Qi W X, Yang Y Z et al., Effect of aging treatment on the electrical sliding wear behavior of Cu-Cr-Zr alloy[J].Wear 2002,249:1021-1027
    [107] Morris M A, Leboeuf M, Morris D G Recrystallization mechanisms in Cu-Cr-Zr-Mg alloy with a bimodal distribution of particles[J].Materials Science and Engineering A,1994,188:255-265
    [108] Kapoor K, Lahiri D, Batra L S et al., X-ray diffraction line profile analysis for defect study in Cu-lwt%Cr-0.1wt%Zr alloy[J]. Materials Characterization,2005,54:131-140
    [109] Uwe Holzwarth, Hermann Stamm The precipitation behaviour of ITER-grade Cu-Cr-Zr alloy after simulating the thermal cycle of hot isostatic pressing[J].Journal of Nuclear Materials,2000,279:31-45
    [110] Motohiro Kanno. Effect of a small addition of zirconium on hot ductility of a Cu-Cr alloy[J]. Zeitschrift fur Metallkunde,1988,79(10):684-688
    [111] 黄孝瑛.电子衍射分析方法[M].北京:科学出版社,1976
    [112] 毛卫民.金属材料的晶体学织构与各向异性[M].北京:科学出版社,2002
    [113] 毛卫民,张新明.晶体材料织构定量分析[M].北京:冶金工业出版社,1994.1-8
    [114] Blade J C. The cube texture in aluminum and its roles in the control of earing[J].J. Australian Institute of Metals, 1967,12(1):55-63
    [115] Hutchinson W B, Oscarsson A, Karlsson A. Control of microstructure and earing behaviour in aluminium alloy AA3004 hot bands[J]. Mater.Sci.Technol.,1989,5(11): 1118-1127
    [116] Ito K, Musik R, Lucke K .T he Influence of Iron Contentand Annealing Temperature on the Recrystallization Textures of High-Purity Aluminum-Iron Aloys[J]. Acta.Metal.,1983, 31( 31):2137-2149
    [117] D. Vanderschueren, I. Samajdar, B.Verlinden et al., y-Fibre recrystallization texture in IF-steel: an investigation on the recrystallization mechanisms[J].Materials Science and Engineering A, 1997,238(2): 343-350
    [118] Mathur K K, Dawson P R, et al.On modeling anisotropy in deformation process involving textured poly crystals with distorted grain shape[J]. Mechanics of Materials, 1990,10(3): 183-202
    [119] Kalidindi S R, Bronkhorst C A, et al.Crystallographic texture evolution in bulk Deformation processing of fcc metals[J]. J. Mech. Phys. Solids., 1992, 40(3):537-569
    [120] Choi S H, Texture evolution of FCC sheet metals during deep drawing process[J]. International Journal of Mechanical Sciences, 2000,42(8):1571-1592
    [121] Rabbe D, Roters F. Using texture components in crystal plasticity finite element Simulations[J]. International Journal of Plasticity,2004,20(3):339-361
    [122] 梁英教,牛荫昌.无机物热力学数据手册[M].北京:科学出版社,1993
    [123] 李振寰.元素性质数据手册[M].石家庄:河北人民出版社,1993
    [124] 叶大伦,胡建华等.实用无机物热力学数据手册[M].北京:冶金工业出版社,1981.
    [125] Barin, Ihsan, Knacke., Thermochemical properties of inorganic substances[M].Berlin :Springer-Verlag,1973.
    [126] 刘平.快速凝固高强度高导电铜合金的制备技术及组织和性能的研究[D].西安交通大学博士学位论文,1999:38-39
    [127] 郭景杰,傅恒志.合金熔体及其处理[M].北京:机械工业出版社,2005:3
    [128] Takamichi Iida, Roderick I L. Guthrie., The physical properties of Liqiud metals[M]. New York:Oxford Univeristy Press Inc.l988:179
    [129] 陈晓芳,许彪,张萌.稀土元素对铜合金显微组织的影响[J].南昌大学学报,2003 27(1):33-36
    [130] 廖乐杰,何福忠.稀土在铜及铜合金中的作用及其应用效果[J].特种铸造及有色合金,1997(2):52-53
    [131] 范世平,郭纯恩,赵越超.Zn和稀土元素La对铜性能的影响[J].有色金属,2005 58(3):13-15
    [132] 华一新.冶金过程动力学导论[M].北京:冶金工业出版社,2004:75-94,272
    [133] 陈存中.有色金属熔炼与铸锭[M].北京:冶金工业出版社,2003:67-89
    [134] 郝士明.材料热力学[M].北京:化学工业出版社,2004
    [135] Garofalo F. An empirical relation refining the stress dependence of minimum creep rate in metals[J]. Trans Metall Soc.AIME, 1963,227(2):351-355
    [136] McQueen H J, Yue S, Ryan N D, et al., Hot working characteristics of steels in austenitic state[J]. J Mater Process Technol, 1995, 53:293-310
    [137]王蕊宁,奚正平,赵永庆等.Zr-4合金的热变形和加工图[J].稀有金属材料与工程,2007,36(5):808-812.
    [138]黄光胜,汪凌云,陈华等.2618铝合金的热变形和加工图[J].中国有色金属学报,2005,15(5):763-767

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700