用户名: 密码: 验证码:
焊锡微粉的超音速雾化原理及制备工艺的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面组装技术(SMT)已广泛应用于电子工业中,而焊锡合金微粉是该技术的关键材料之一,通常要求:粉末粒径5~74μm,形状为球形,且粒径分布均匀。为此,运用超音速雾化的基本原理和焊锡合金的基本性质,研制出一套超音速雾化装置,在该装置上对焊锡合金微粉的制备技术及工艺进行了系统的研究,并从理论上推导出适用于超音速雾化的气体速度公式。进一步对雾化器结构(导液管突出高度h)、雾化气体压力P、合金过热度ΔT、焊锡合金成份和雾化介质进行了研究。
     研究结果表明:(1)超音速雾化器的气体流场在导液管下端形成一个倒涡流锥,在二维空间上呈轴对称的双峰分布,负压形成于这个倒涡流锥内;(2)修正后的雾化气体速度公式可以满足超音速雾化的要求;(3)影响超音速雾化工艺最根本的因素有气液质量流率比(GMR)的大小、雾化气体流量和倒涡流锥范围,三个因素的值越大,对形成细粉越有利;(4)在焊锡合金为ZHL63A,雾化介质微N_2,导液管突出高度取h=6.0mm,雾化气体压力取P=1.0MPa,合金过热度取ΔT=167℃(T=350℃)时,所制得的粉末在有效雾化率、颗粒球形度、粒度及其离散度三个方面综合性能最好。
Surface Mount Technology(SMT) has been applied abroad in electronic industry.
    The fine powders of the solder alloy are one of the key materials in the SMT, the requirement as following: the particle diameter is in 5 u m~ 74 u m, the shape is spherical and the distribution of the particle size is uniform. We have developed a set of supersonic atomizing equipment with the base theory of the supersonic atomization and the base characteristic of the solder alloy. The paper studies systematic the production technology and process of the solder alloy fine powders in the equipment, and deduces the gas velocity formula used in supersonic atomization in theory. Then the paper also study the atomizer structure (the protrusion of the delivery tube value h), atomizing gas pressure P, over-heat temperature of alloy A T, the component of solder alloy and atomizing medium and so on.
    The results indicate: (1) the gas flied of the supersonic atomizer under the delivery tube forms an inverse vortex taper. The negative pressure exists in the
    
    
    inverse vortex taper. The field emerges two-peak distribution of symmetry about axis in two-dimensional space. (2) The atomizing gas velocity formula that has been revised can meet the requirement of the supersonic atomization. (3) The most principal factors that influence the supersonic atomization process include the flow ratio of the gas-liquid metal(GMR)value, the flow of atomizing of gas and the range of the inverse vortex taper. The more of the value of three factors, the more advantage they are for the atomization and the more fine the powders are. (4) the produced powders are the best in efficient atomization efficiency, particle diameter, particle shape and dispersion when the solder alloy is ZHL63A, atomizing medium is N2, the protrusion h=6.0mm, atomizing gas pressure P=100MPa, over-heat temperature △ T=167℃(T=350℃).
引文
[1] 黄培云主编.粉末冶金原理.北京:冶金工业出版社,1982:7~8
    [2] Jennie S. Huang. Solder Joining in Electronics. Int. J. Powder Metal. , 2001,37(7): 65~66
    [3] 章靖国,金慧娟,徐炜新,等.用化学还原法制备的Fe—Zr—B非晶超细颗粒的结构研究.金属功能材料,2001,8(2):19
    [4] 晏洪波,张丽英,吴成义,等.直接还原碳化法制备超细WC—Ni—Fe合金粉的研究.粉末冶金技术,2001,19(13):144
    [5] 严红革,陈振华,黄培云,等.纳米级金属复合粉末研究的进展.粉末冶金技术.2000,18(1):42
    [6] 何峰,汪武祥,韩雅芳,等.制备超细金属粉末的新型电解法.粉末冶金技术.2001.19(2):80
    [7] America Society for Metals. Metals Handbook ,9th ed(2). United States in America. 1982:620
    [8] A Unal. Influence of Gas Flow on Performance of "Confined" Atomization Nozzles. Metal. Trans. B, 1989, 20B: 833
    [9] A Unal. Flow Separation and Liquid Rundown in a Gas Atomization Process. Metal. Trans. B, 1989, 20B: 613
    [10] S Ozbilen. Satellite Formation Mechanism in Gas Atomized Powders. Powder Metal., 1999, 42 (1): 70
    [11] 陈文汨,万新华.喷嘴结构和工艺参数对雾化锌粉粒度的影响.中国有色金属学报,2001,11(5):852
    [12] Zambon A, Badan B, Ramous E. Gas Atomization of Nickel Aluminum powders. Powder Metal., 1999, 42(3): 275
    [13] Feedstock M M, Cetin Karatas, Suleyman Saritas. Rheological Properties of
    
    Mixed Gas and Water Atomized Stainless Steel Powder. Int J Powder Metal., 2001, 37(8): 39
    [14] Bauckhage K, Anderson O, Schreckenberg P. Production of Fine Powders by Ultrasonic Standing Wave Atomization. Powder Tech.,1996, 86, (1):77
    [15] 刘允中,陈振华,黄培云.多级雾化锡—铅合金的大过冷和凝固.中国有色金属学报,1998,8(Suppll):86
    [16] 吴萍,赵慈,姜恩永,等.一种制备磁性粉料的新技术.金属功能材料,2002,9(5):24
    [17] 傅定发,陈鼎,陈刚,等.固体雾化铝硅合金的粉末特性.材料开发与应用,2002,17(5):1
    [18] Ozturk S, Arslan F. Production of Rapidly Solidified Metal Powders by Water Cooled Rotating Disc Atomization. Powder Metal., 2001, 44 (2): 171
    [19] Bergquist B. New Insights into Influence Variables of Water Atomization of Iron. Powder Metal. ,1999,42 (4): 331
    [20] Bergquist B, Ericsson T. Robustness Simulation of Water Atomization. Powder Metal. ,2000, 43 (1): 37
    [21] 赵麦群.铜金粉制造技术及工艺理论研究:[博士学位论文].西安:西北工业大学材料系,2000
    [22] 清华大学工程力学系潘文全主编.流体力学基础.北京:机械工业出版社,1982:9,13~14
    [23] 易家训著.章克本,张涤明,陈启强译.流体力学.北京:高等教育出版社,1982:204~205
    [24] 时爱民,苏铭德,刘季捻.气体动力学基础.北京:科学出版社,1988:105.117
    [25] 陈再新,刘福长,鲍国华.空气动力学,航空工业出版社,1993:67,182
    
    
    [26] A. Unal. Effect of Processing Variables on Particle Size in Gas Atomization of Rapidly Solidified Aluminum Powders. Mater. Sci. Tech., 1987,3:1029
    [27] A. Unal .Production of Rapidly Solidified Magnesium Powders by Gas Atomization. Mater. Sci. Tech. 1989, 5:1027
    [28] I. Uslan, S.Saritas,T.J.Davis. Effects of Variables on Size and Characteristics of Gas Atomized Aluminium Powders. Powder Metal., 1999,42(2):57
    [29] A. Zamban, B.Badan,E.Ramous. Gas Atomization of Nickel Aluminide Powders. Powder Metal., 1999,42 (3):275
    [30] S. Ozbiten. Inftuence of Atomization Gas in Particle Characteristics of A1,Al-lwt%Li, Mg and Sn Powder. Powder Metal., 2000,43 (2):173
    [31] Chidambaran, Cubramaniarr,PrabhatMishr.李朝军译.用限制式低压喷嘴制备细金属粉末.国外锡工业,1997,25(2):48
    [32] 杨滨.喷射沉积及熔体雾化领域研究展望.材料导报,2000,14(11):68
    [33] 黄培云.粉末冶金原理.北京:冶金工业出版社,1982:102, 104~105
    [34] 沈军,蒋祖龄,李庆春.气体雾化过程的增压与吸动现象.粉末冶金技术,1994,12(1):15~17
    [35] 赵麦群,王迪功,孙俊图.铝粉雾化过程影响因素的研究.粉末冶金技术,1995,13(4):268~270
    [36] 李周,张智慧,颜鸣皋等.雾化气体和熔滴速度的研究.粉末冶金技术,1999, 17(1):11
    [37] A. Unal. Influence of Nozzle Geometry in Gas Atomization of Rapidly Solidified Aluminum Alloys. Mater. Sci. Tech., 1988,4(10):909
    [38] A. Unal. Production of Rapidly Solidified Aluminum Alloy Powders by Gas Atomization and Their Application. Powder Metal. 1990,33(1):53
    [39] 孙剑飞,曹福祥,李庆春等.金属雾化过程中气体流场动力学行为.粉末冶金技术,2002,20(2):79~81
    
    
    [40] 宣大荣,韦文兰,王德贵.表面组装技术.北京:电子工业出版社,1994:233
    [41] 李力宏.焊膏及因素对焊接质量的影响.电子工艺技术,1996,4:28
    [42] 马泗春.材料科学基础.西安:陕西科学技术出版社,1998:56,71
    [43] 黄位森.锡.北京:冶金工业出版社,2001:20
    [44] 温汝贤.SMT表面组装技术的发展及应用.新技术新工艺,1994,1:8
    [45] 杨邦朝,郝建德.新一代电子组装技术——表面组装技术与多芯片组装技术.电子元件与材料,1996,15(6):1
    [46] 吴兆华,周德俭.表面组装技术基础.北京:国防工业出版社,2002:1
    [47] 马鑫,董本霞.无铅钎料发展现状.电子工艺技术,2002,23(2):47
    [48] 贺子凯.无铅焊锡的应用与开发.有色金属,2001,4:44
    [49] 王磊.无铅焊锡开发研究的动向.材料与冶金学报,2002,1(1)13~14
    [50] 王德贵.表面组装技术的发展和微组装技术的兴起.电子工艺技术,1995,3:8
    [51] 王德贵.迎接21世纪的表面组装技术.电子工艺技术,1997,20(4):169
    [52] Masato Sumikava, Tanotoshi Sato, Chiyoshi Yoshivka, et al. Reliability of Soldered Joints in CSPs of Various Designs and Mounting Conditions.Transa. Compon. Pack.Yech.,2001,24(2):293
    [53] Jone H.Lau, Chris Change, S. W. Ricky Lee. Solder Joint Crack Propagation Analysis of Water-Level Chip Scale Package on Printed Circuit Board Assemblie. Transa. Compon. Pack.Tech., 2001,24(2): 285~286
    [54] Kaushal Verma, Seung-Bae Park, Bongtae Han, et al.On the Design Parameters of Flip-Chip PBGA Package Assembly for Optimum Solder Ball Reliability. Transa. Compon. Pack.Tech., 2001,24(2): 300~307;
    [55] N.N.Ekere, D.He, L.Cai The Influence of Wall Slip in the Measurement of Solder Paste Viscosity. Trans. Compon. Pack.Tech.,2001,24(3):468
    [56] 张文典.21世纪SMT发展趋势及对策.电子工艺技术,2001,1:1
    
    
    [57] 廖汇芳.SMT实用表面安装技术宇元器件.北京:电子工业出版社,1993:6
    [58] R.P.普拉萨德著,丁明清,张伦译.表面安装技术.北京:科学出版社,1994:12
    [59] 耿明.SMT焊膏印刷的质量控制.电子工艺技术,1999,20(4):161
    [60] 李力宏.焊膏及因素对焊接质量的影响.电子工艺技术,1996(4):28
    [61] 刘大喜.焊膏印刷中影响质量的因素.电子工艺技术,1998,19(4):133
    [62] Anil V.Nadkarni, Gary L.Cowan, Aida V.Garrard, et al. Powder Metal Pastes for Brazing and Soldering Applications and Rajesh Khattar Int. J. Powder. Metal.2001,37(7): 55
    [63] H.W.Liepmann,A Roshko合著.时爱民,章光华,高宏智等译.气体动力学基础.北京:机械工业出版社.1982:35~36
    [64] 李翼祺,马素贞.流体力学基础.北京:科学出版社,1983:197
    [65] A.Unal. Liquid Break-up in Gas Atomization of Fine Aluminum Powders. Metal. Trans. 1989, 20B: 61
    [66] 江宏俊.流体力学(下册).北京:高等教育出版社,1985:23
    [67] 吴望一.流体力学(下册).北京:北京大学出版社,1983:461~463
    [68] V.L Streeter,E.B Wylie.周均长,郝中堂,冯士明等 译.流体力学.北京:高等教育出版社,1987:190
    [69] J.W.戴莱 D.R.F.哈里曼 著.郭子中,陈玉璞等 译.流体动力学.北京:人民教育出版社,1981:314
    [70] R.柯朗,K.O.弗里德里克斯 著.李维新,徐华生,管楚淦 译.超生速流与冲击波.北京:科学出版社,1986:337
    [71] 美国金属学会编.金属手册.第九版,第二卷:650,799
    [72] 程兰征,章燕豪.物理化学.上海:上海科学技术出版社,1988:187,188
    [73] 张璟,周哲玮.喷射成形中的喷射雾化机理研究.粉末冶金技术,1999,17(3):163
    
    
    [74] 陈振华.金属液体的雾化问题.粉末冶金技术,1998,16(4):282
    [75] 陈世柱.影响雾化器工作效率的几个因素.轻合金加工技术,1998,26(3):43
    [76] 冷旭明,张锡文,谢峻石等.总压管在超音速流场测量中的影响.清华大学学报,2001(41)11:22
    [77] Baram J. C., Veistinen M.K., Lavernia E.J. et al. J Mater. Sci., 1988,23:2457
    [78] 陈世柱,尹志民.旋涡式雾化器对漏管外伸长度的影响.材料科学与工艺,1998,6(1):69
    [79] 沈军,崔成松,蒋祖龄等.气体雾化过程几个重要参量的计算.粉末冶金技术,1994,12(4):256
    [80] 陈文汨,万新华.气体雾化发制备锡粉的研究.粉末冶金工业,2002,12(3):33
    [81] 沈英俊,季道馨,徐永利等.若干雾化参数的理论简析.粉末冶金技术,1995,13(1):21
    [82] 崔成松,蒋祖龄,沈军等.金属雾化过程气体质量流率的研究.材料科学与工程,1995,13(1):30
    [83] 李清泉,欧阳通,麻润海等.气雾化微细金属粉末的生产工艺研究.粉末冶金技术,1996,14(3):181
    [84] 张曙光,王磊,马自力等.气雾化 Ni-Mn-Co 合金粉末触媒制备及其合成金刚石特性.粉末冶金技术,2002,20(1):16
    [85] A.W.亚当森.顾惕人 译.表面的物理化学.北京:科学出版社,1984:49
    [86] 谈慕华,黄蕴元.表面物理化学.北京:中国建筑工业出版社,1982:24
    [87] 顾惕人,李外朗,马季铭等.表面化学.北京:科学出版社,2001:6
    [88] 程传煊.表面物理化学.北京:科学技术文献出版社,1995:12
    [89] 李瑞松主编.铅及铅合金.长沙:中南工业大学出版社,1996:5
    [90] 母育锋,谢裕厚,吕海波等.熔炼工艺对Cu—Al雾化粉末性质的影响.上
    
    海有色金属,1996,4:152
    [91] 杨留栓.高硅ZA27合金喷雾沉积工艺、组织与性能研究.西北工业大学博士论文,1995:34
    [92] 李月珠.快速凝固技术和材料.北京:国防工业出版社,1993:22

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700